jedi-academy/code/renderer/tr_light.cpp
2013-04-04 17:35:38 -05:00

572 lines
15 KiB
C++

// tr_light.c
// leave this as first line for PCH reasons...
//
#include "../server/exe_headers.h"
#include "tr_local.h"
#define DLIGHT_AT_RADIUS 16
// at the edge of a dlight's influence, this amount of light will be added
#define DLIGHT_MINIMUM_RADIUS 16
// never calculate a range less than this to prevent huge light numbers
/*
===============
R_TransformDlights
Transforms the origins of an array of dlights.
Used by both the front end (for DlightBmodel) and
the back end (before doing the lighting calculation)
===============
*/
void R_TransformDlights( int count, dlight_t *dl, orientationr_t *or) {
int i;
vec3_t temp;
for ( i = 0 ; i < count ; i++, dl++ ) {
VectorSubtract( dl->origin, or->origin, temp );
dl->transformed[0] = DotProduct( temp, or->axis[0] );
dl->transformed[1] = DotProduct( temp, or->axis[1] );
dl->transformed[2] = DotProduct( temp, or->axis[2] );
}
}
/*
=============
R_DlightBmodel
Determine which dynamic lights may effect this bmodel
=============
*/
#ifndef VV_LIGHTING
void R_DlightBmodel( bmodel_t *bmodel, qboolean NoLight ) {
int i, j;
dlight_t *dl;
int mask;
msurface_t *surf;
// transform all the lights
R_TransformDlights( tr.refdef.num_dlights, tr.refdef.dlights, &tr.or );
mask = 0;
if (!NoLight)
{
for ( i=0 ; i<tr.refdef.num_dlights ; i++ ) {
dl = &tr.refdef.dlights[i];
// see if the point is close enough to the bounds to matter
for ( j = 0 ; j < 3 ; j++ ) {
if ( dl->transformed[j] - bmodel->bounds[1][j] > dl->radius ) {
break;
}
if ( bmodel->bounds[0][j] - dl->transformed[j] > dl->radius ) {
break;
}
}
if ( j < 3 ) {
continue;
}
// we need to check this light
mask |= 1 << i;
}
}
tr.currentEntity->needDlights = (mask != 0);
tr.currentEntity->dlightBits = mask;
// set the dlight bits in all the surfaces
for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
surf = bmodel->firstSurface + i;
if ( *surf->data == SF_FACE ) {
((srfSurfaceFace_t *)surf->data)->dlightBits = mask;
} else if ( *surf->data == SF_GRID ) {
((srfGridMesh_t *)surf->data)->dlightBits = mask;
} else if ( *surf->data == SF_TRIANGLES ) {
((srfTriangles_t *)surf->data)->dlightBits = mask;
}
}
}
#endif // VV_LIGHTING
/*
=============================================================================
LIGHT SAMPLING
=============================================================================
*/
extern cvar_t *r_ambientScale;
extern cvar_t *r_directedScale;
extern cvar_t *r_debugLight;
/*
=================
R_SetupEntityLightingGrid
=================
*/
#ifdef VV_LIGHTING
void R_SetupEntityLightingGrid( trRefEntity_t *ent ) {
#else
static void R_SetupEntityLightingGrid( trRefEntity_t *ent ) {
#endif
vec3_t lightOrigin;
int pos[3];
int i, j;
float frac[3];
int gridStep[3];
vec3_t direction;
float totalFactor;
unsigned short *startGridPos;
#ifdef _XBOX
byte zeroArray[3];
byte style;
zeroArray[0] = zeroArray[1] = zeroArray[2] = 0;
#endif
if (r_fullbright->integer || (tr.refdef.rdflags & RDF_doLAGoggles) )
{
ent->ambientLight[0] = ent->ambientLight[1] = ent->ambientLight[2] = 255.0;
ent->directedLight[0] = ent->directedLight[1] = ent->directedLight[2] = 255.0;
VectorCopy( tr.sunDirection, ent->lightDir );
return;
}
if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
// seperate lightOrigins are needed so an object that is
// sinking into the ground can still be lit, and so
// multi-part models can be lit identically
VectorCopy( ent->e.lightingOrigin, lightOrigin );
} else {
VectorCopy( ent->e.origin, lightOrigin );
}
#define ACCURATE_LIGHTGRID_SAMPLING 1
#if ACCURATE_LIGHTGRID_SAMPLING
vec3_t startLightOrigin;
VectorCopy( lightOrigin, startLightOrigin );
#endif
VectorSubtract( lightOrigin, tr.world->lightGridOrigin, lightOrigin );
for ( i = 0 ; i < 3 ; i++ ) {
float v;
v = lightOrigin[i]*tr.world->lightGridInverseSize[i];
pos[i] = floor( v );
frac[i] = v - pos[i];
if ( pos[i] < 0 ) {
pos[i] = 0;
} else if ( pos[i] >= tr.world->lightGridBounds[i] - 1 ) {
pos[i] = tr.world->lightGridBounds[i] - 1;
}
}
VectorClear( ent->ambientLight );
VectorClear( ent->directedLight );
VectorClear( direction );
// trilerp the light value
gridStep[0] = 1;
gridStep[1] = tr.world->lightGridBounds[0];
gridStep[2] = tr.world->lightGridBounds[0] * tr.world->lightGridBounds[1];
startGridPos = tr.world->lightGridArray + pos[0] * gridStep[0]
+ pos[1] * gridStep[1] + pos[2] * gridStep[2];
#if ACCURATE_LIGHTGRID_SAMPLING
vec3_t startGridOrg;
VectorCopy( tr.world->lightGridOrigin, startGridOrg );
startGridOrg[0] += pos[0] * tr.world->lightGridSize[0];
startGridOrg[1] += pos[1] * tr.world->lightGridSize[1];
startGridOrg[2] += pos[2] * tr.world->lightGridSize[2];
#endif
totalFactor = 0;
for ( i = 0 ; i < 8 ; i++ ) {
float factor;
mgrid_t *data;
unsigned short *gridPos;
int lat, lng;
vec3_t normal;
#if ACCURATE_LIGHTGRID_SAMPLING
vec3_t gridOrg;
VectorCopy( startGridOrg, gridOrg );
#endif
factor = 1.0;
gridPos = startGridPos;
for ( j = 0 ; j < 3 ; j++ ) {
if ( i & (1<<j) ) {
factor *= frac[j];
gridPos += gridStep[j];
#if ACCURATE_LIGHTGRID_SAMPLING
gridOrg[j] += tr.world->lightGridSize[j];
#endif
} else {
factor *= (1.0 - frac[j]);
}
}
if (gridPos >= tr.world->lightGridArray + tr.world->numGridArrayElements)
{//we've gone off the array somehow
continue;
}
data = tr.world->lightGridData + *gridPos;
#ifdef _XBOX
const byte *memory = (const byte *)tr.world->lightGridData + data->data;
style = data->flags & (1 << 4) ? memory[0] : LS_NONE;
if ( style == LS_NONE )
{
continue; // ignore samples in walls
}
totalFactor += factor;
const byte *array;
for(j=0;j<MAXLIGHTMAPS;j++)
{
if(data->flags & (1 << (j + 4))) {
style = *memory;
memory++;
} else {
style = LS_NONE;
}
if (style != LS_NONE)
{
if(data->flags & (1 << j)) {
array = memory;
memory += 3;
} else {
array = zeroArray;
}
ent->ambientLight[0] += factor * array[0] * styleColors[style][0] / 255.0f;
ent->ambientLight[1] += factor * array[1] * styleColors[style][1] / 255.0f;
ent->ambientLight[2] += factor * array[2] * styleColors[style][2] / 255.0f;
if(array != zeroArray) {
array = memory;
memory += 3;
}
ent->directedLight[0] += factor * array[0] * styleColors[style][0] / 255.0f;
ent->directedLight[1] += factor * array[1] * styleColors[style][1] / 255.0f;
ent->directedLight[2] += factor * array[2] * styleColors[style][2] / 255.0f;
}
else
{
break;
}
}
#else // _XBOX
if ( data->styles[0] == LS_NONE )
{
continue; // ignore samples in walls
}
#if 0
if ( !SV_inPVS( startLightOrigin, gridOrg ) )
{
continue;
}
#endif
totalFactor += factor;
for(j=0;j<MAXLIGHTMAPS;j++)
{
if (data->styles[j] != LS_NONE)
{
const byte style= data->styles[j];
ent->ambientLight[0] += factor * data->ambientLight[j][0] * styleColors[style][0] / 255.0f;
ent->ambientLight[1] += factor * data->ambientLight[j][1] * styleColors[style][1] / 255.0f;
ent->ambientLight[2] += factor * data->ambientLight[j][2] * styleColors[style][2] / 255.0f;
ent->directedLight[0] += factor * data->directLight[j][0] * styleColors[style][0] / 255.0f;
ent->directedLight[1] += factor * data->directLight[j][1] * styleColors[style][1] / 255.0f;
ent->directedLight[2] += factor * data->directLight[j][2] * styleColors[style][2] / 255.0f;
}
else
{
break;
}
}
#endif // _XBOX
lat = data->latLong[1];
lng = data->latLong[0];
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
normal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
normal[1] = tr.sinTable[lat] * tr.sinTable[lng];
normal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
VectorMA( direction, factor, normal, direction );
#if ACCURATE_LIGHTGRID_SAMPLING
#ifndef _XBOX
if ( r_debugLight->integer && ent->e.hModel == -1 )
{
//draw
refEntity_t refEnt;
refEnt.hModel = 0;
refEnt.ghoul2 = NULL;
refEnt.renderfx = 0;
VectorCopy( gridOrg, refEnt.origin );
vectoangles( normal, refEnt.angles );
AnglesToAxis( refEnt.angles, refEnt.axis );
refEnt.reType = RT_MODEL;
RE_AddRefEntityToScene( &refEnt );
refEnt.renderfx = RF_DEPTHHACK;
refEnt.reType = RT_SPRITE;
refEnt.customShader = RE_RegisterShader( "gfx/misc/debugAmbient" );
refEnt.shaderRGBA[0] = data->ambientLight[0][0];
refEnt.shaderRGBA[1] = data->ambientLight[0][1];
refEnt.shaderRGBA[2] = data->ambientLight[0][2];
refEnt.shaderRGBA[3] = 255;
refEnt.radius = factor*50+2.0f; // maybe always give it a minimum size?
refEnt.rotation = 0; // don't let the sprite wobble around
RE_AddRefEntityToScene( &refEnt );
refEnt.reType = RT_LINE;
refEnt.customShader = RE_RegisterShader( "gfx/misc/debugArrow" );
refEnt.shaderRGBA[0] = data->directLight[0][0];
refEnt.shaderRGBA[1] = data->directLight[0][1];
refEnt.shaderRGBA[2] = data->directLight[0][2];
refEnt.shaderRGBA[3] = 255;
VectorCopy( refEnt.origin, refEnt.oldorigin );
VectorMA( gridOrg, (factor*-255) - 2.0f, normal, refEnt.origin ); // maybe always give it a minimum length
refEnt.radius = 1.5f;
RE_AddRefEntityToScene( &refEnt );
}
#endif // _XBOX
#endif
}
if ( totalFactor > 0 && totalFactor < 0.99 )
{
totalFactor = 1.0 / totalFactor;
VectorScale( ent->ambientLight, totalFactor, ent->ambientLight );
VectorScale( ent->directedLight, totalFactor, ent->directedLight );
}
VectorScale( ent->ambientLight, r_ambientScale->value, ent->ambientLight );
VectorScale( ent->directedLight, r_directedScale->value, ent->directedLight );
VectorNormalize2( direction, ent->lightDir );
}
/*
===============
LogLight
===============
*/
static void LogLight( trRefEntity_t *ent ) {
int max1, max2;
/*
if ( !(ent->e.renderfx & RF_FIRST_PERSON ) ) {
return;
}
*/
max1 = VectorLength( ent->ambientLight );
/*
max1 = ent->ambientLight[0];
if ( ent->ambientLight[1] > max1 ) {
max1 = ent->ambientLight[1];
} else if ( ent->ambientLight[2] > max1 ) {
max1 = ent->ambientLight[2];
}
*/
max2 = VectorLength( ent->directedLight );
/*
max2 = ent->directedLight[0];
if ( ent->directedLight[1] > max2 ) {
max2 = ent->directedLight[1];
} else if ( ent->directedLight[2] > max2 ) {
max2 = ent->directedLight[2];
}
*/
VID_Printf( PRINT_ALL, "amb:%i dir:%i direction: (%4.2f, %4.2f, %4.2f)\n", max1, max2, ent->lightDir[0], ent->lightDir[1], ent->lightDir[2] );
}
/*
=================
R_SetupEntityLighting
Calculates all the lighting values that will be used
by the Calc_* functions
=================
*/
void R_SetupEntityLighting( const trRefdef_t *refdef, trRefEntity_t *ent ) {
#ifndef VV_LIGHTING
int i;
dlight_t *dl;
float power;
vec3_t dir;
float d;
vec3_t lightDir;
vec3_t lightOrigin;
// lighting calculations
if ( ent->lightingCalculated ) {
return;
}
ent->lightingCalculated = qtrue;
//
// trace a sample point down to find ambient light
//
if ( ent->e.renderfx & RF_LIGHTING_ORIGIN ) {
// seperate lightOrigins are needed so an object that is
// sinking into the ground can still be lit, and so
// multi-part models can be lit identically
VectorCopy( ent->e.lightingOrigin, lightOrigin );
} else {
VectorCopy( ent->e.origin, lightOrigin );
}
// if NOWORLDMODEL, only use dynamic lights (menu system, etc)
if ( !(refdef->rdflags & RDF_NOWORLDMODEL )
&& tr.world->lightGridData ) {
R_SetupEntityLightingGrid( ent );
} else {
ent->ambientLight[0] = ent->ambientLight[1] =
ent->ambientLight[2] = tr.identityLight * 150;
ent->directedLight[0] = ent->directedLight[1] =
ent->directedLight[2] = tr.identityLight * 150;
VectorCopy( tr.sunDirection, ent->lightDir );
}
// bonus items and view weapons have a fixed minimum add
if ( ent->e.renderfx & RF_MORELIGHT ) {
ent->ambientLight[0] += tr.identityLight * 96;
ent->ambientLight[1] += tr.identityLight * 96;
ent->ambientLight[2] += tr.identityLight * 96;
}
else {
// give everything a minimum light add
ent->ambientLight[0] += tr.identityLight * 32;
ent->ambientLight[1] += tr.identityLight * 32;
ent->ambientLight[2] += tr.identityLight * 32;
}
//
// modify the light by dynamic lights
//
d = VectorLength( ent->directedLight );
VectorScale( ent->lightDir, d, lightDir );
for ( i = 0 ; i < refdef->num_dlights ; i++ ) {
dl = &refdef->dlights[i];
VectorSubtract( dl->origin, lightOrigin, dir );
d = VectorNormalize( dir );
power = DLIGHT_AT_RADIUS * ( dl->radius * dl->radius );
if ( d < DLIGHT_MINIMUM_RADIUS ) {
d = DLIGHT_MINIMUM_RADIUS;
}
d = power / ( d * d );
VectorMA( ent->directedLight, d, dl->color, ent->directedLight );
VectorMA( lightDir, d, dir, lightDir );
}
// clamp ambient
for ( i = 0 ; i < 3 ; i++ ) {
if ( ent->ambientLight[i] > tr.identityLightByte ) {
ent->ambientLight[i] = tr.identityLightByte;
}
}
if ( r_debugLight->integer ) {
LogLight( ent );
}
// save out the byte packet version
((byte *)&ent->ambientLightInt)[0] = myftol( ent->ambientLight[0] );
((byte *)&ent->ambientLightInt)[1] = myftol( ent->ambientLight[1] );
((byte *)&ent->ambientLightInt)[2] = myftol( ent->ambientLight[2] );
((byte *)&ent->ambientLightInt)[3] = 0xff;
// transform the direction to local space
VectorNormalize( lightDir );
ent->lightDir[0] = DotProduct( lightDir, ent->e.axis[0] );
ent->lightDir[1] = DotProduct( lightDir, ent->e.axis[1] );
ent->lightDir[2] = DotProduct( lightDir, ent->e.axis[2] );
#endif // VV_LIGHTING
}
//pass in origin
qboolean RE_GetLighting( const vec3_t origin, vec3_t ambientLight, vec3_t directedLight, vec3_t lightDir) {
trRefEntity_t tr_ent;
if ( !tr.world || !tr.world->lightGridData) {
ambientLight[0] = ambientLight[1] = ambientLight[2] = 255.0;
directedLight[0] = directedLight[1] = directedLight[2] = 255.0;
VectorCopy( tr.sunDirection, lightDir );
return qfalse;
}
memset (&tr_ent, 0, sizeof(tr_ent) );
if ( ambientLight[0] == 666 )
{//HAX0R
tr_ent.e.hModel = -1;
}
VectorCopy (origin, tr_ent.e.origin);
R_SetupEntityLightingGrid( &tr_ent );
VectorCopy ( tr_ent.ambientLight, ambientLight);
VectorCopy ( tr_ent.directedLight, directedLight);
VectorCopy ( tr_ent.lightDir, lightDir);
return qtrue;
}
/*
=================
R_LightForPoint
=================
*/
int R_LightForPoint( vec3_t point, vec3_t ambientLight, vec3_t directedLight, vec3_t lightDir )
{
trRefEntity_t ent;
// bk010103 - this segfaults with -nolight maps
if ( tr.world->lightGridData == NULL )
return qfalse;
memset(&ent, 0, sizeof(ent));
VectorCopy( point, ent.e.origin );
R_SetupEntityLightingGrid( &ent );
VectorCopy(ent.ambientLight, ambientLight);
VectorCopy(ent.directedLight, directedLight);
VectorCopy(ent.lightDir, lightDir);
return qtrue;
}