mirror of
https://github.com/ioquake/jedi-academy.git
synced 2024-11-23 04:33:12 +00:00
1726 lines
47 KiB
C++
1726 lines
47 KiB
C++
|
// tr_main.c -- main control flow for each frame
|
||
|
|
||
|
// leave this as first line for PCH reasons...
|
||
|
//
|
||
|
#include "../server/exe_headers.h"
|
||
|
|
||
|
|
||
|
#include "tr_local.h"
|
||
|
|
||
|
#if !defined(G2_H_INC)
|
||
|
#include "../ghoul2/G2.h"
|
||
|
#endif
|
||
|
|
||
|
void R_AddTerrainSurfaces(void);
|
||
|
|
||
|
trGlobals_t tr;
|
||
|
|
||
|
static float s_flipMatrix[16] = {
|
||
|
// convert from our coordinate system (looking down X)
|
||
|
// to OpenGL's coordinate system (looking down -Z)
|
||
|
#if defined (_XBOX)
|
||
|
0, 0, 1, 0,
|
||
|
-1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 0, 1
|
||
|
#else
|
||
|
0, 0, -1, 0,
|
||
|
-1, 0, 0, 0,
|
||
|
0, 1, 0, 0,
|
||
|
0, 0, 0, 1
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
// entities that will have procedurally generated surfaces will just
|
||
|
// point at this for their sorting surface
|
||
|
surfaceType_t entitySurface = SF_ENTITY;
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_CullLocalBox
|
||
|
|
||
|
Returns CULL_IN, CULL_CLIP, or CULL_OUT
|
||
|
=================
|
||
|
*/
|
||
|
int R_CullLocalBox (const vec3_t bounds[2]) {
|
||
|
int i, j;
|
||
|
vec3_t transformed[8];
|
||
|
float dists[8];
|
||
|
vec3_t v;
|
||
|
cplane_t *frust;
|
||
|
int anyBack;
|
||
|
int front, back;
|
||
|
|
||
|
if ( r_nocull->integer==1 ) {
|
||
|
return CULL_CLIP;
|
||
|
}
|
||
|
|
||
|
// transform into world space
|
||
|
for (i = 0 ; i < 8 ; i++) {
|
||
|
v[0] = bounds[i&1][0];
|
||
|
v[1] = bounds[(i>>1)&1][1];
|
||
|
v[2] = bounds[(i>>2)&1][2];
|
||
|
|
||
|
VectorCopy( tr.or.origin, transformed[i] );
|
||
|
VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] );
|
||
|
VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] );
|
||
|
VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] );
|
||
|
}
|
||
|
|
||
|
// check against frustum planes
|
||
|
anyBack = 0;
|
||
|
for (i = 0 ; i < 5 ; i++) {
|
||
|
frust = &tr.viewParms.frustum[i];
|
||
|
|
||
|
front = back = 0;
|
||
|
for (j = 0 ; j < 8 ; j++) {
|
||
|
dists[j] = DotProduct(transformed[j], frust->normal);
|
||
|
if ( dists[j] > frust->dist ) {
|
||
|
front = 1;
|
||
|
if ( back ) {
|
||
|
break; // a point is in front
|
||
|
}
|
||
|
} else {
|
||
|
back = 1;
|
||
|
}
|
||
|
}
|
||
|
if ( !front ) {
|
||
|
// all points were behind one of the planes
|
||
|
return CULL_OUT;
|
||
|
}
|
||
|
anyBack |= back;
|
||
|
}
|
||
|
|
||
|
if ( !anyBack ) {
|
||
|
return CULL_IN; // completely inside frustum
|
||
|
}
|
||
|
|
||
|
return CULL_CLIP; // partially clipped
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** R_CullLocalPointAndRadius
|
||
|
*/
|
||
|
int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
|
||
|
{
|
||
|
vec3_t transformed;
|
||
|
|
||
|
R_LocalPointToWorld( pt, transformed );
|
||
|
|
||
|
return R_CullPointAndRadius( transformed, radius );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** R_CullPointAndRadius
|
||
|
*/
|
||
|
int R_CullPointAndRadius( const vec3_t pt, float radius )
|
||
|
{
|
||
|
int i;
|
||
|
float dist;
|
||
|
cplane_t *frust;
|
||
|
qboolean mightBeClipped = qfalse;
|
||
|
|
||
|
if ( r_nocull->integer==1 ) {
|
||
|
return CULL_CLIP;
|
||
|
}
|
||
|
|
||
|
// check against frustum planes
|
||
|
for (i = 0 ; i < 5 ; i++)
|
||
|
{
|
||
|
frust = &tr.viewParms.frustum[i];
|
||
|
|
||
|
dist = DotProduct( pt, frust->normal) - frust->dist;
|
||
|
if ( dist < -radius )
|
||
|
{
|
||
|
return CULL_OUT;
|
||
|
}
|
||
|
else if ( dist <= radius )
|
||
|
{
|
||
|
mightBeClipped = qtrue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( mightBeClipped )
|
||
|
{
|
||
|
return CULL_CLIP;
|
||
|
}
|
||
|
|
||
|
return CULL_IN; // completely inside frustum
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_LocalNormalToWorld
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
void R_LocalNormalToWorld (const vec3_t local, vec3_t world) {
|
||
|
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0];
|
||
|
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1];
|
||
|
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_LocalPointToWorld
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
void R_LocalPointToWorld (const vec3_t local, vec3_t world) {
|
||
|
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0];
|
||
|
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1];
|
||
|
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2];
|
||
|
}
|
||
|
|
||
|
float preTransEntMatrix[16];
|
||
|
|
||
|
void R_InvertMatrix(float *sourcemat, float *destmat)
|
||
|
{
|
||
|
int i, j, temp=0;
|
||
|
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
for (j = 0; j < 3; j++)
|
||
|
{
|
||
|
destmat[j*4 + i] = sourcemat[temp++];
|
||
|
}
|
||
|
}
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
temp = i*4;
|
||
|
destmat[temp+3]=0; // destmat[destmat[i][3]=0;
|
||
|
for (j = 0; j < 3; j++)
|
||
|
{
|
||
|
destmat[temp+3]-=destmat[temp+j]*sourcemat[j*4+3]; // dest->matrix[i][3]-=dest->matrix[i][j]*src->matrix[j][3];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_WorldNormalToEntity
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
void R_WorldNormalToEntity (const vec3_t worldvec, vec3_t entvec)
|
||
|
{
|
||
|
entvec[0] = -worldvec[0] * preTransEntMatrix[0] - worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8];
|
||
|
entvec[1] = -worldvec[0] * preTransEntMatrix[1] - worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9];
|
||
|
entvec[2] = -worldvec[0] * preTransEntMatrix[2] - worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_WorldPointToEntity
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
/*void R_WorldPointToEntity (vec3_t worldvec, vec3_t entvec)
|
||
|
{
|
||
|
entvec[0] = worldvec[0] * preTransEntMatrix[0] + worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8]+preTransEntMatrix[12];
|
||
|
entvec[1] = worldvec[0] * preTransEntMatrix[1] + worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9]+preTransEntMatrix[13];
|
||
|
entvec[2] = worldvec[0] * preTransEntMatrix[2] + worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10]+preTransEntMatrix[14];
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_WorldToLocal
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
void R_WorldToLocal (vec3_t world, vec3_t local) {
|
||
|
local[0] = DotProduct(world, tr.or.axis[0]);
|
||
|
local[1] = DotProduct(world, tr.or.axis[1]);
|
||
|
local[2] = DotProduct(world, tr.or.axis[2]);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
==========================
|
||
|
R_TransformModelToClip
|
||
|
|
||
|
==========================
|
||
|
*/
|
||
|
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
|
||
|
vec4_t eye, vec4_t dst ) {
|
||
|
int i;
|
||
|
|
||
|
for ( i = 0 ; i < 4 ; i++ ) {
|
||
|
eye[i] =
|
||
|
src[0] * modelMatrix[ i + 0 * 4 ] +
|
||
|
src[1] * modelMatrix[ i + 1 * 4 ] +
|
||
|
src[2] * modelMatrix[ i + 2 * 4 ] +
|
||
|
1 * modelMatrix[ i + 3 * 4 ];
|
||
|
}
|
||
|
|
||
|
for ( i = 0 ; i < 4 ; i++ ) {
|
||
|
dst[i] =
|
||
|
eye[0] * projectionMatrix[ i + 0 * 4 ] +
|
||
|
eye[1] * projectionMatrix[ i + 1 * 4 ] +
|
||
|
eye[2] * projectionMatrix[ i + 2 * 4 ] +
|
||
|
eye[3] * projectionMatrix[ i + 3 * 4 ];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
==========================
|
||
|
R_TransformClipToWindow
|
||
|
|
||
|
==========================
|
||
|
*/
|
||
|
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
|
||
|
normalized[0] = clip[0] / clip[3];
|
||
|
normalized[1] = clip[1] / clip[3];
|
||
|
normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
|
||
|
|
||
|
window[0] = 0.5 * ( 1.0 + normalized[0] ) * view->viewportWidth;
|
||
|
window[1] = 0.5 * ( 1.0 + normalized[1] ) * view->viewportHeight;
|
||
|
window[2] = normalized[2];
|
||
|
|
||
|
window[0] = (int) ( window[0] + 0.5 );
|
||
|
window[1] = (int) ( window[1] + 0.5 );
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
==========================
|
||
|
myGlMultMatrix
|
||
|
|
||
|
==========================
|
||
|
*/
|
||
|
void myGlMultMatrix( const float *a, const float *b, float *out ) {
|
||
|
int i, j;
|
||
|
|
||
|
for ( i = 0 ; i < 4 ; i++ ) {
|
||
|
for ( j = 0 ; j < 4 ; j++ ) {
|
||
|
out[ i * 4 + j ] =
|
||
|
a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
|
||
|
+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
|
||
|
+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
|
||
|
+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_RotateForEntity
|
||
|
|
||
|
Generates an orientation for an entity and viewParms
|
||
|
Does NOT produce any GL calls
|
||
|
Called by both the front end and the back end
|
||
|
=================
|
||
|
*/
|
||
|
void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
|
||
|
orientationr_t *or ) {
|
||
|
// float glMatrix[16];
|
||
|
vec3_t delta;
|
||
|
float axisLength;
|
||
|
|
||
|
if ( ent->e.reType != RT_MODEL ) {
|
||
|
*or = viewParms->world;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
VectorCopy( ent->e.origin, or->origin );
|
||
|
|
||
|
VectorCopy( ent->e.axis[0], or->axis[0] );
|
||
|
VectorCopy( ent->e.axis[1], or->axis[1] );
|
||
|
VectorCopy( ent->e.axis[2], or->axis[2] );
|
||
|
|
||
|
preTransEntMatrix[0] = or->axis[0][0];
|
||
|
preTransEntMatrix[4] = or->axis[1][0];
|
||
|
preTransEntMatrix[8] = or->axis[2][0];
|
||
|
preTransEntMatrix[12] = or->origin[0];
|
||
|
|
||
|
preTransEntMatrix[1] = or->axis[0][1];
|
||
|
preTransEntMatrix[5] = or->axis[1][1];
|
||
|
preTransEntMatrix[9] = or->axis[2][1];
|
||
|
preTransEntMatrix[13] = or->origin[1];
|
||
|
|
||
|
preTransEntMatrix[2] = or->axis[0][2];
|
||
|
preTransEntMatrix[6] = or->axis[1][2];
|
||
|
preTransEntMatrix[10] = or->axis[2][2];
|
||
|
preTransEntMatrix[14] = or->origin[2];
|
||
|
|
||
|
preTransEntMatrix[3] = 0;
|
||
|
preTransEntMatrix[7] = 0;
|
||
|
preTransEntMatrix[11] = 0;
|
||
|
preTransEntMatrix[15] = 1;
|
||
|
|
||
|
myGlMultMatrix( preTransEntMatrix, viewParms->world.modelMatrix, or->modelMatrix );
|
||
|
|
||
|
// calculate the viewer origin in the model's space
|
||
|
// needed for fog, specular, and environment mapping
|
||
|
VectorSubtract( viewParms->or.origin, or->origin, delta );
|
||
|
|
||
|
// compensate for scale in the axes if necessary
|
||
|
if ( ent->e.nonNormalizedAxes ) {
|
||
|
axisLength = VectorLength( ent->e.axis[0] );
|
||
|
if ( !axisLength ) {
|
||
|
axisLength = 0;
|
||
|
} else {
|
||
|
axisLength = 1.0 / axisLength;
|
||
|
}
|
||
|
} else {
|
||
|
axisLength = 1.0;
|
||
|
}
|
||
|
|
||
|
or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength;
|
||
|
or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength;
|
||
|
or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_RotateForViewer
|
||
|
|
||
|
Sets up the modelview matrix for a given viewParm
|
||
|
=================
|
||
|
*/
|
||
|
void R_RotateForViewer (void)
|
||
|
{
|
||
|
float viewerMatrix[16];
|
||
|
vec3_t origin;
|
||
|
|
||
|
memset (&tr.or, 0, sizeof(tr.or));
|
||
|
tr.or.axis[0][0] = 1;
|
||
|
tr.or.axis[1][1] = 1;
|
||
|
tr.or.axis[2][2] = 1;
|
||
|
VectorCopy (tr.viewParms.or.origin, tr.or.viewOrigin);
|
||
|
|
||
|
// transform by the camera placement
|
||
|
VectorCopy( tr.viewParms.or.origin, origin );
|
||
|
|
||
|
viewerMatrix[0] = tr.viewParms.or.axis[0][0];
|
||
|
viewerMatrix[4] = tr.viewParms.or.axis[0][1];
|
||
|
viewerMatrix[8] = tr.viewParms.or.axis[0][2];
|
||
|
viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
|
||
|
|
||
|
viewerMatrix[1] = tr.viewParms.or.axis[1][0];
|
||
|
viewerMatrix[5] = tr.viewParms.or.axis[1][1];
|
||
|
viewerMatrix[9] = tr.viewParms.or.axis[1][2];
|
||
|
viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
|
||
|
|
||
|
viewerMatrix[2] = tr.viewParms.or.axis[2][0];
|
||
|
viewerMatrix[6] = tr.viewParms.or.axis[2][1];
|
||
|
viewerMatrix[10] = tr.viewParms.or.axis[2][2];
|
||
|
viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
|
||
|
|
||
|
viewerMatrix[3] = 0;
|
||
|
viewerMatrix[7] = 0;
|
||
|
viewerMatrix[11] = 0;
|
||
|
viewerMatrix[15] = 1;
|
||
|
|
||
|
// convert from our coordinate system (looking down X)
|
||
|
// to OpenGL's coordinate system (looking down -Z)
|
||
|
myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix );
|
||
|
|
||
|
tr.viewParms.world = tr.or;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** SetFarClip
|
||
|
*/
|
||
|
static void SetFarClip( void )
|
||
|
{
|
||
|
float farthestCornerDistance = 0;
|
||
|
int i;
|
||
|
|
||
|
// if not rendering the world (icons, menus, etc)
|
||
|
// set a 2k far clip plane
|
||
|
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
|
||
|
tr.viewParms.zFar = 2048;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// set far clipping planes dynamically
|
||
|
//
|
||
|
for ( i = 0; i < 8; i++ )
|
||
|
{
|
||
|
vec3_t v;
|
||
|
float distance;
|
||
|
|
||
|
if ( i & 1 )
|
||
|
{
|
||
|
v[0] = tr.viewParms.visBounds[0][0];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
v[0] = tr.viewParms.visBounds[1][0];
|
||
|
}
|
||
|
|
||
|
if ( i & 2 )
|
||
|
{
|
||
|
v[1] = tr.viewParms.visBounds[0][1];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
v[1] = tr.viewParms.visBounds[1][1];
|
||
|
}
|
||
|
|
||
|
if ( i & 4 )
|
||
|
{
|
||
|
v[2] = tr.viewParms.visBounds[0][2];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
v[2] = tr.viewParms.visBounds[1][2];
|
||
|
}
|
||
|
|
||
|
distance = DistanceSquared(tr.viewParms.or.origin, v);
|
||
|
|
||
|
if ( distance > farthestCornerDistance )
|
||
|
{
|
||
|
farthestCornerDistance = distance;
|
||
|
}
|
||
|
}
|
||
|
// Bring in the zFar to the distanceCull distance
|
||
|
// The sky renders at zFar so need to move it out a little
|
||
|
// ...and make sure there is a minimum zfar to prevent problems
|
||
|
tr.viewParms.zFar = Com_Clamp(2048.0f, tr.distanceCull * (1.732), sqrtf( farthestCornerDistance ));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
===============
|
||
|
R_SetupProjection
|
||
|
===============
|
||
|
*/
|
||
|
void R_SetupProjection( void ) {
|
||
|
float xmin, xmax, ymin, ymax;
|
||
|
float width, height, depth;
|
||
|
float zNear, zFar;
|
||
|
|
||
|
// dynamically compute far clip plane distance
|
||
|
SetFarClip();
|
||
|
|
||
|
//
|
||
|
// set up projection matrix
|
||
|
//
|
||
|
zNear = r_znear->value;
|
||
|
zFar = tr.viewParms.zFar;
|
||
|
|
||
|
ymax = zNear * tan( tr.refdef.fov_y * M_PI / 360.0f );
|
||
|
ymin = -ymax;
|
||
|
|
||
|
xmax = zNear * tan( tr.refdef.fov_x * M_PI / 360.0f );
|
||
|
xmin = -xmax;
|
||
|
|
||
|
width = xmax - xmin;
|
||
|
height = ymax - ymin;
|
||
|
depth = zFar - zNear;
|
||
|
|
||
|
#if defined (_XBOX)
|
||
|
tr.viewParms.projectionMatrix[0] = 2 * zNear / width;
|
||
|
tr.viewParms.projectionMatrix[4] = 0;
|
||
|
tr.viewParms.projectionMatrix[8] = ( xmax + xmin ) / width; // normally 0
|
||
|
tr.viewParms.projectionMatrix[12] = 0;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[1] = 0;
|
||
|
tr.viewParms.projectionMatrix[5] = 2 * zNear / height;
|
||
|
tr.viewParms.projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
|
||
|
tr.viewParms.projectionMatrix[13] = 0;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[2] = 0;
|
||
|
tr.viewParms.projectionMatrix[6] = 0;
|
||
|
tr.viewParms.projectionMatrix[10] = ( zFar + zNear ) / depth;
|
||
|
tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[3] = 0;
|
||
|
tr.viewParms.projectionMatrix[7] = 0;
|
||
|
tr.viewParms.projectionMatrix[11] = 1;
|
||
|
tr.viewParms.projectionMatrix[15] = 0;
|
||
|
#else
|
||
|
tr.viewParms.projectionMatrix[0] = 2 * zNear / width;
|
||
|
tr.viewParms.projectionMatrix[4] = 0;
|
||
|
tr.viewParms.projectionMatrix[8] = ( xmax + xmin ) / width; // normally 0
|
||
|
tr.viewParms.projectionMatrix[12] = 0;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[1] = 0;
|
||
|
tr.viewParms.projectionMatrix[5] = 2 * zNear / height;
|
||
|
tr.viewParms.projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
|
||
|
tr.viewParms.projectionMatrix[13] = 0;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[2] = 0;
|
||
|
tr.viewParms.projectionMatrix[6] = 0;
|
||
|
tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth;
|
||
|
tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth;
|
||
|
|
||
|
tr.viewParms.projectionMatrix[3] = 0;
|
||
|
tr.viewParms.projectionMatrix[7] = 0;
|
||
|
tr.viewParms.projectionMatrix[11] = -1;
|
||
|
tr.viewParms.projectionMatrix[15] = 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_SetupFrustum
|
||
|
|
||
|
Setup that culling frustum planes for the current view
|
||
|
=================
|
||
|
*/
|
||
|
void R_SetupFrustum (void) {
|
||
|
int i;
|
||
|
float xs, xc;
|
||
|
float ang;
|
||
|
|
||
|
ang = tr.viewParms.fovX / 180 * M_PI * 0.5;
|
||
|
xs = sin( ang );
|
||
|
xc = cos( ang );
|
||
|
|
||
|
VectorScale( tr.viewParms.or.axis[0], xs, tr.viewParms.frustum[0].normal );
|
||
|
VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.or.axis[1], tr.viewParms.frustum[0].normal );
|
||
|
|
||
|
VectorScale( tr.viewParms.or.axis[0], xs, tr.viewParms.frustum[1].normal );
|
||
|
VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.or.axis[1], tr.viewParms.frustum[1].normal );
|
||
|
|
||
|
ang = tr.viewParms.fovY / 180 * M_PI * 0.5;
|
||
|
xs = sin( ang );
|
||
|
xc = cos( ang );
|
||
|
|
||
|
VectorScale( tr.viewParms.or.axis[0], xs, tr.viewParms.frustum[2].normal );
|
||
|
VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.or.axis[2], tr.viewParms.frustum[2].normal );
|
||
|
|
||
|
VectorScale( tr.viewParms.or.axis[0], xs, tr.viewParms.frustum[3].normal );
|
||
|
VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.or.axis[2], tr.viewParms.frustum[3].normal );
|
||
|
|
||
|
|
||
|
// this is the far plane
|
||
|
VectorScale( tr.viewParms.or.axis[0],-1.0f, tr.viewParms.frustum[4].normal );
|
||
|
|
||
|
for (i=0 ; i<5 ; i++) {
|
||
|
tr.viewParms.frustum[i].type = PLANE_NON_AXIAL;
|
||
|
tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.or.origin, tr.viewParms.frustum[i].normal);
|
||
|
if (i==4)
|
||
|
{
|
||
|
// far plane does not go through the view point, it goes alot farther..
|
||
|
tr.viewParms.frustum[i].dist -= tr.distanceCull*1.02f; // a little slack so we don't cull stuff
|
||
|
}
|
||
|
SetPlaneSignbits( &tr.viewParms.frustum[i] );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_MirrorPoint
|
||
|
=================
|
||
|
*/
|
||
|
void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
|
||
|
int i;
|
||
|
vec3_t local;
|
||
|
vec3_t transformed;
|
||
|
float d;
|
||
|
|
||
|
VectorSubtract( in, surface->origin, local );
|
||
|
|
||
|
VectorClear( transformed );
|
||
|
for ( i = 0 ; i < 3 ; i++ ) {
|
||
|
d = DotProduct(local, surface->axis[i]);
|
||
|
VectorMA( transformed, d, camera->axis[i], transformed );
|
||
|
}
|
||
|
|
||
|
VectorAdd( transformed, camera->origin, out );
|
||
|
}
|
||
|
|
||
|
void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
|
||
|
int i;
|
||
|
float d;
|
||
|
|
||
|
VectorClear( out );
|
||
|
for ( i = 0 ; i < 3 ; i++ ) {
|
||
|
d = DotProduct(in, surface->axis[i]);
|
||
|
VectorMA( out, d, camera->axis[i], out );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
=============
|
||
|
R_PlaneForSurface
|
||
|
=============
|
||
|
*/
|
||
|
void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) {
|
||
|
srfTriangles_t *tri;
|
||
|
srfGridMesh_t *grid;
|
||
|
srfPoly_t *poly;
|
||
|
drawVert_t *v1, *v2, *v3;
|
||
|
vec4_t plane4;
|
||
|
|
||
|
if (!surfType) {
|
||
|
memset (plane, 0, sizeof(*plane));
|
||
|
plane->normal[0] = 1;
|
||
|
return;
|
||
|
}
|
||
|
switch (*surfType) {
|
||
|
case SF_FACE:
|
||
|
*plane = ((srfSurfaceFace_t *)surfType)->plane;
|
||
|
return;
|
||
|
case SF_TRIANGLES:
|
||
|
tri = (srfTriangles_t *)surfType;
|
||
|
v1 = tri->verts + tri->indexes[0];
|
||
|
v2 = tri->verts + tri->indexes[1];
|
||
|
v3 = tri->verts + tri->indexes[2];
|
||
|
PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
|
||
|
VectorCopy( plane4, plane->normal );
|
||
|
plane->dist = plane4[3];
|
||
|
return;
|
||
|
case SF_POLY:
|
||
|
poly = (srfPoly_t *)surfType;
|
||
|
PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
|
||
|
VectorCopy( plane4, plane->normal );
|
||
|
plane->dist = plane4[3];
|
||
|
return;
|
||
|
case SF_GRID:
|
||
|
grid = (srfGridMesh_t *)surfType;
|
||
|
v1 = &grid->verts[0];
|
||
|
v2 = &grid->verts[1];
|
||
|
v3 = &grid->verts[2];
|
||
|
PlaneFromPoints( plane4, v3->xyz, v2->xyz, v1->xyz );
|
||
|
VectorCopy( plane4, plane->normal );
|
||
|
plane->dist = plane4[3];
|
||
|
return;
|
||
|
default:
|
||
|
memset (plane, 0, sizeof(*plane));
|
||
|
plane->normal[0] = 1;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_GetPortalOrientation
|
||
|
|
||
|
entityNum is the entity that the portal surface is a part of, which may
|
||
|
be moving and rotating.
|
||
|
|
||
|
Returns qtrue if it should be mirrored
|
||
|
=================
|
||
|
*/
|
||
|
qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
|
||
|
orientation_t *surface, orientation_t *camera,
|
||
|
vec3_t pvsOrigin, qboolean *mirror ) {
|
||
|
int i;
|
||
|
cplane_t originalPlane, plane;
|
||
|
trRefEntity_t *e;
|
||
|
float d;
|
||
|
vec3_t transformed;
|
||
|
|
||
|
// create plane axis for the portal we are seeing
|
||
|
R_PlaneForSurface( drawSurf->surface, &originalPlane );
|
||
|
|
||
|
// rotate the plane if necessary
|
||
|
if ( entityNum != TR_WORLDENT ) {
|
||
|
tr.currentEntityNum = entityNum;
|
||
|
tr.currentEntity = &tr.refdef.entities[entityNum];
|
||
|
|
||
|
// get the orientation of the entity
|
||
|
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
|
||
|
|
||
|
// rotate the plane, but keep the non-rotated version for matching
|
||
|
// against the portalSurface entities
|
||
|
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
|
||
|
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
|
||
|
|
||
|
// translate the original plane
|
||
|
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
|
||
|
} else {
|
||
|
plane = originalPlane;
|
||
|
}
|
||
|
|
||
|
VectorCopy( plane.normal, surface->axis[0] );
|
||
|
PerpendicularVector( surface->axis[1], surface->axis[0] );
|
||
|
CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
|
||
|
|
||
|
// locate the portal entity closest to this plane.
|
||
|
// origin will be the origin of the portal, origin2 will be
|
||
|
// the origin of the camera
|
||
|
for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
|
||
|
e = &tr.refdef.entities[i];
|
||
|
if ( e->e.reType != RT_PORTALSURFACE ) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
|
||
|
if ( d > 64 || d < -64) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// get the pvsOrigin from the entity
|
||
|
VectorCopy( e->e.oldorigin, pvsOrigin );
|
||
|
|
||
|
// if the entity is just a mirror, don't use as a camera point
|
||
|
if ( e->e.oldorigin[0] == e->e.origin[0] &&
|
||
|
e->e.oldorigin[1] == e->e.origin[1] &&
|
||
|
e->e.oldorigin[2] == e->e.origin[2] ) {
|
||
|
VectorScale( plane.normal, plane.dist, surface->origin );
|
||
|
VectorCopy( surface->origin, camera->origin );
|
||
|
VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
|
||
|
VectorCopy( surface->axis[1], camera->axis[1] );
|
||
|
VectorCopy( surface->axis[2], camera->axis[2] );
|
||
|
|
||
|
*mirror = qtrue;
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
// project the origin onto the surface plane to get
|
||
|
// an origin point we can rotate around
|
||
|
d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
|
||
|
VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
|
||
|
|
||
|
// now get the camera origin and orientation
|
||
|
VectorCopy( e->e.oldorigin, camera->origin );
|
||
|
AxisCopy( e->e.axis, camera->axis );
|
||
|
VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
|
||
|
VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
|
||
|
|
||
|
// optionally rotate
|
||
|
if ( e->e.frame ) {
|
||
|
// continuous rotate
|
||
|
d = (tr.refdef.time/1000.0f) * e->e.frame;
|
||
|
VectorCopy( camera->axis[1], transformed );
|
||
|
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
|
||
|
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
|
||
|
} else if (e->e.skinNum){
|
||
|
// bobbing rotate
|
||
|
//d = 4 * sin( tr.refdef.time * 0.003 );
|
||
|
d = e->e.skinNum;
|
||
|
VectorCopy( camera->axis[1], transformed );
|
||
|
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
|
||
|
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
|
||
|
}
|
||
|
*mirror = qfalse;
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
// if we didn't locate a portal entity, don't render anything.
|
||
|
// We don't want to just treat it as a mirror, because without a
|
||
|
// portal entity the server won't have communicated a proper entity set
|
||
|
// in the snapshot
|
||
|
|
||
|
// unfortunately, with local movement prediction it is easily possible
|
||
|
// to see a surface before the server has communicated the matching
|
||
|
// portal surface entity, so we don't want to print anything here...
|
||
|
|
||
|
//VID_Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
|
||
|
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum )
|
||
|
{
|
||
|
int i;
|
||
|
cplane_t originalPlane, plane;
|
||
|
trRefEntity_t *e;
|
||
|
float d;
|
||
|
|
||
|
// create plane axis for the portal we are seeing
|
||
|
R_PlaneForSurface( drawSurf->surface, &originalPlane );
|
||
|
|
||
|
// rotate the plane if necessary
|
||
|
if ( entityNum != TR_WORLDENT )
|
||
|
{
|
||
|
tr.currentEntityNum = entityNum;
|
||
|
tr.currentEntity = &tr.refdef.entities[entityNum];
|
||
|
|
||
|
// get the orientation of the entity
|
||
|
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
|
||
|
|
||
|
// rotate the plane, but keep the non-rotated version for matching
|
||
|
// against the portalSurface entities
|
||
|
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
|
||
|
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
|
||
|
|
||
|
// translate the original plane
|
||
|
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
plane = originalPlane;
|
||
|
}
|
||
|
|
||
|
// locate the portal entity closest to this plane.
|
||
|
// origin will be the origin of the portal, origin2 will be
|
||
|
// the origin of the camera
|
||
|
for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
|
||
|
{
|
||
|
e = &tr.refdef.entities[i];
|
||
|
if ( e->e.reType != RT_PORTALSURFACE ) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
|
||
|
if ( d > 64 || d < -64) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// if the entity is just a mirror, don't use as a camera point
|
||
|
if ( e->e.oldorigin[0] == e->e.origin[0] &&
|
||
|
e->e.oldorigin[1] == e->e.origin[1] &&
|
||
|
e->e.oldorigin[2] == e->e.origin[2] )
|
||
|
{
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
return qfalse;
|
||
|
}
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** SurfIsOffscreen
|
||
|
**
|
||
|
** Determines if a surface is completely offscreen.
|
||
|
*/
|
||
|
static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) {
|
||
|
float shortest = 1000000000;
|
||
|
int entityNum;
|
||
|
int numTriangles;
|
||
|
shader_t *shader;
|
||
|
int fogNum;
|
||
|
int dlighted;
|
||
|
vec4_t clip, eye;
|
||
|
int i;
|
||
|
unsigned int pointOr = 0;
|
||
|
unsigned int pointAnd = (unsigned int)~0;
|
||
|
|
||
|
R_RotateForViewer();
|
||
|
|
||
|
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted );
|
||
|
RB_BeginSurface( shader, fogNum );
|
||
|
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
|
||
|
|
||
|
assert( tess.numVertexes < 128 );
|
||
|
|
||
|
for ( i = 0; i < tess.numVertexes; i++ )
|
||
|
{
|
||
|
int j;
|
||
|
unsigned int pointFlags = 0;
|
||
|
|
||
|
R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
|
||
|
|
||
|
for ( j = 0; j < 3; j++ )
|
||
|
{
|
||
|
if ( clip[j] >= clip[3] )
|
||
|
{
|
||
|
pointFlags |= (1 << (j*2));
|
||
|
}
|
||
|
else if ( clip[j] <= -clip[3] )
|
||
|
{
|
||
|
pointFlags |= ( 1 << (j*2+1));
|
||
|
}
|
||
|
}
|
||
|
pointAnd &= pointFlags;
|
||
|
pointOr |= pointFlags;
|
||
|
}
|
||
|
|
||
|
// trivially reject
|
||
|
if ( pointAnd )
|
||
|
{
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
// determine if this surface is backfaced and also determine the distance
|
||
|
// to the nearest vertex so we can cull based on portal range. Culling
|
||
|
// based on vertex distance isn't 100% correct (we should be checking for
|
||
|
// range to the surface), but it's good enough for the types of portals
|
||
|
// we have in the game right now.
|
||
|
numTriangles = tess.numIndexes / 3;
|
||
|
|
||
|
for ( i = 0; i < tess.numIndexes; i += 3 )
|
||
|
{
|
||
|
vec3_t normal;
|
||
|
float dot;
|
||
|
float len;
|
||
|
|
||
|
VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal );
|
||
|
|
||
|
len = VectorLengthSquared( normal ); // lose the sqrt
|
||
|
if ( len < shortest )
|
||
|
{
|
||
|
shortest = len;
|
||
|
}
|
||
|
|
||
|
if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 )
|
||
|
{
|
||
|
numTriangles--;
|
||
|
}
|
||
|
}
|
||
|
if ( !numTriangles )
|
||
|
{
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
// mirrors can early out at this point, since we don't do a fade over distance
|
||
|
// with them (although we could)
|
||
|
if ( IsMirror( drawSurf, entityNum ) )
|
||
|
{
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
if ( shortest > (tess.shader->portalRange * tess.shader->portalRange))
|
||
|
{
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
========================
|
||
|
R_MirrorViewBySurface
|
||
|
|
||
|
Returns qtrue if another view has been rendered
|
||
|
========================
|
||
|
*/
|
||
|
int recursivePortalCount;
|
||
|
qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
|
||
|
vec4_t clipDest[128];
|
||
|
viewParms_t newParms;
|
||
|
viewParms_t oldParms;
|
||
|
orientation_t surface, camera;
|
||
|
|
||
|
// don't recursively mirror
|
||
|
if (tr.viewParms.isPortal)
|
||
|
{
|
||
|
VID_Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
if ( r_noportals->integer || r_fastsky->integer ) {
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
// trivially reject portal/mirror
|
||
|
if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
|
||
|
return qfalse;
|
||
|
}
|
||
|
|
||
|
// save old viewParms so we can return to it after the mirror view
|
||
|
oldParms = tr.viewParms;
|
||
|
|
||
|
newParms = tr.viewParms;
|
||
|
newParms.isPortal = qtrue;
|
||
|
if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
|
||
|
newParms.pvsOrigin, &newParms.isMirror ) ) {
|
||
|
return qfalse; // bad portal, no portalentity
|
||
|
}
|
||
|
|
||
|
R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin );
|
||
|
|
||
|
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
|
||
|
newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
|
||
|
|
||
|
R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]);
|
||
|
R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]);
|
||
|
R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]);
|
||
|
|
||
|
// OPTIMIZE: restrict the viewport on the mirrored view
|
||
|
|
||
|
// render the mirror view
|
||
|
R_RenderView (&newParms);
|
||
|
|
||
|
tr.viewParms = oldParms;
|
||
|
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_SpriteFogNum
|
||
|
|
||
|
See if a sprite is inside a fog volume
|
||
|
=================
|
||
|
*/
|
||
|
int R_SpriteFogNum( trRefEntity_t *ent ) {
|
||
|
int i;
|
||
|
fog_t *fog;
|
||
|
|
||
|
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if ( tr.refdef.rdflags & RDF_doLAGoggles )
|
||
|
{
|
||
|
return tr.world->numfogs;
|
||
|
}
|
||
|
|
||
|
int partialFog = 0;
|
||
|
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
|
||
|
fog = &tr.world->fogs[i];
|
||
|
if ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0]
|
||
|
&& ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0]
|
||
|
&& ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1]
|
||
|
&& ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1]
|
||
|
&& ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2]
|
||
|
&& ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] )
|
||
|
{//totally inside it
|
||
|
return i;
|
||
|
break;
|
||
|
}
|
||
|
if ( ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2] &&
|
||
|
ent->e.origin[0] - ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] - ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] - ent->e.radius <= fog->bounds[1][2] ) ||
|
||
|
( ent->e.origin[0] + ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] + ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] + ent->e.radius >= fog->bounds[0][2] &&
|
||
|
ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] ) )
|
||
|
{//partially inside it
|
||
|
if ( tr.refdef.fogIndex == i || R_FogParmsMatch( tr.refdef.fogIndex, i ) )
|
||
|
{//take new one only if it's the same one that the viewpoint is in
|
||
|
return i;
|
||
|
break;
|
||
|
}
|
||
|
else if ( !partialFog )
|
||
|
{//first partialFog
|
||
|
partialFog = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return partialFog;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
==========================================================================================
|
||
|
|
||
|
DRAWSURF SORTING
|
||
|
|
||
|
==========================================================================================
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
qsort replacement
|
||
|
|
||
|
=================
|
||
|
*/
|
||
|
#define SWAP_DRAW_SURF(a,b) temp=((int *)a)[0];((int *)a)[0]=((int *)b)[0];((int *)b)[0]=temp; temp=((int *)a)[1];((int *)a)[1]=((int *)b)[1];((int *)b)[1]=temp;
|
||
|
|
||
|
/* this parameter defines the cutoff between using quick sort and
|
||
|
insertion sort for arrays; arrays with lengths shorter or equal to the
|
||
|
below value use insertion sort */
|
||
|
|
||
|
#define CUTOFF 8 /* testing shows that this is good value */
|
||
|
|
||
|
static void shortsort( drawSurf_t *lo, drawSurf_t *hi ) {
|
||
|
drawSurf_t *p, *max;
|
||
|
int temp;
|
||
|
|
||
|
while (hi > lo) {
|
||
|
max = lo;
|
||
|
for (p = lo + 1; p <= hi; p++ ) {
|
||
|
if ( p->sort > max->sort ) {
|
||
|
max = p;
|
||
|
}
|
||
|
}
|
||
|
SWAP_DRAW_SURF(max, hi);
|
||
|
hi--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* sort the array between lo and hi (inclusive)
|
||
|
FIXME: this was lifted and modified from the microsoft lib source...
|
||
|
*/
|
||
|
|
||
|
void qsortFast (
|
||
|
void *base,
|
||
|
unsigned num,
|
||
|
unsigned width
|
||
|
)
|
||
|
{
|
||
|
char *lo, *hi; /* ends of sub-array currently sorting */
|
||
|
char *mid; /* points to middle of subarray */
|
||
|
char *loguy, *higuy; /* traveling pointers for partition step */
|
||
|
unsigned size; /* size of the sub-array */
|
||
|
char *lostk[30], *histk[30];
|
||
|
int stkptr; /* stack for saving sub-array to be processed */
|
||
|
int temp;
|
||
|
|
||
|
if ( sizeof(drawSurf_t) != 8 ) {
|
||
|
Com_Error( ERR_DROP, "change SWAP_DRAW_SURF macro" );
|
||
|
}
|
||
|
|
||
|
/* Note: the number of stack entries required is no more than
|
||
|
1 + log2(size), so 30 is sufficient for any array */
|
||
|
|
||
|
if (num < 2 || width == 0)
|
||
|
return; /* nothing to do */
|
||
|
|
||
|
stkptr = 0; /* initialize stack */
|
||
|
|
||
|
lo = (char *) base;
|
||
|
hi = (char *) base + width * (num-1); /* initialize limits */
|
||
|
|
||
|
/* this entry point is for pseudo-recursion calling: setting
|
||
|
lo and hi and jumping to here is like recursion, but stkptr is
|
||
|
prserved, locals aren't, so we preserve stuff on the stack */
|
||
|
recurse:
|
||
|
|
||
|
size = (hi - lo) / width + 1; /* number of el's to sort */
|
||
|
|
||
|
/* below a certain size, it is faster to use a O(n^2) sorting method */
|
||
|
if (size <= CUTOFF) {
|
||
|
shortsort((drawSurf_t *)lo, (drawSurf_t *)hi);
|
||
|
}
|
||
|
else {
|
||
|
/* First we pick a partititioning element. The efficiency of the
|
||
|
algorithm demands that we find one that is approximately the
|
||
|
median of the values, but also that we select one fast. Using
|
||
|
the first one produces bad performace if the array is already
|
||
|
sorted, so we use the middle one, which would require a very
|
||
|
wierdly arranged array for worst case performance. Testing shows
|
||
|
that a median-of-three algorithm does not, in general, increase
|
||
|
performance. */
|
||
|
|
||
|
mid = lo + (size / 2) * width; /* find middle element */
|
||
|
SWAP_DRAW_SURF(mid, lo); /* swap it to beginning of array */
|
||
|
|
||
|
/* We now wish to partition the array into three pieces, one
|
||
|
consisiting of elements <= partition element, one of elements
|
||
|
equal to the parition element, and one of element >= to it. This
|
||
|
is done below; comments indicate conditions established at every
|
||
|
step. */
|
||
|
|
||
|
loguy = lo;
|
||
|
higuy = hi + width;
|
||
|
|
||
|
/* Note that higuy decreases and loguy increases on every iteration,
|
||
|
so loop must terminate. */
|
||
|
for (;;) {
|
||
|
/* lo <= loguy < hi, lo < higuy <= hi + 1,
|
||
|
A[i] <= A[lo] for lo <= i <= loguy,
|
||
|
A[i] >= A[lo] for higuy <= i <= hi */
|
||
|
|
||
|
do {
|
||
|
loguy += width;
|
||
|
} while (loguy <= hi &&
|
||
|
( ((drawSurf_t *)loguy)->sort <= ((drawSurf_t *)lo)->sort ) );
|
||
|
|
||
|
/* lo < loguy <= hi+1, A[i] <= A[lo] for lo <= i < loguy,
|
||
|
either loguy > hi or A[loguy] > A[lo] */
|
||
|
|
||
|
do {
|
||
|
higuy -= width;
|
||
|
} while (higuy > lo &&
|
||
|
( ((drawSurf_t *)higuy)->sort >= ((drawSurf_t *)lo)->sort ) );
|
||
|
|
||
|
/* lo-1 <= higuy <= hi, A[i] >= A[lo] for higuy < i <= hi,
|
||
|
either higuy <= lo or A[higuy] < A[lo] */
|
||
|
|
||
|
if (higuy < loguy)
|
||
|
break;
|
||
|
|
||
|
/* if loguy > hi or higuy <= lo, then we would have exited, so
|
||
|
A[loguy] > A[lo], A[higuy] < A[lo],
|
||
|
loguy < hi, highy > lo */
|
||
|
|
||
|
SWAP_DRAW_SURF(loguy, higuy);
|
||
|
|
||
|
/* A[loguy] < A[lo], A[higuy] > A[lo]; so condition at top
|
||
|
of loop is re-established */
|
||
|
}
|
||
|
|
||
|
/* A[i] >= A[lo] for higuy < i <= hi,
|
||
|
A[i] <= A[lo] for lo <= i < loguy,
|
||
|
higuy < loguy, lo <= higuy <= hi
|
||
|
implying:
|
||
|
A[i] >= A[lo] for loguy <= i <= hi,
|
||
|
A[i] <= A[lo] for lo <= i <= higuy,
|
||
|
A[i] = A[lo] for higuy < i < loguy */
|
||
|
|
||
|
SWAP_DRAW_SURF(lo, higuy); /* put partition element in place */
|
||
|
|
||
|
/* OK, now we have the following:
|
||
|
A[i] >= A[higuy] for loguy <= i <= hi,
|
||
|
A[i] <= A[higuy] for lo <= i < higuy
|
||
|
A[i] = A[lo] for higuy <= i < loguy */
|
||
|
|
||
|
/* We've finished the partition, now we want to sort the subarrays
|
||
|
[lo, higuy-1] and [loguy, hi].
|
||
|
We do the smaller one first to minimize stack usage.
|
||
|
We only sort arrays of length 2 or more.*/
|
||
|
|
||
|
if ( higuy - 1 - lo >= hi - loguy ) {
|
||
|
if (lo + width < higuy) {
|
||
|
lostk[stkptr] = lo;
|
||
|
histk[stkptr] = higuy - width;
|
||
|
++stkptr;
|
||
|
} /* save big recursion for later */
|
||
|
|
||
|
if (loguy < hi) {
|
||
|
lo = loguy;
|
||
|
goto recurse; /* do small recursion */
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (loguy < hi) {
|
||
|
lostk[stkptr] = loguy;
|
||
|
histk[stkptr] = hi;
|
||
|
++stkptr; /* save big recursion for later */
|
||
|
}
|
||
|
|
||
|
if (lo + width < higuy) {
|
||
|
hi = higuy - width;
|
||
|
goto recurse; /* do small recursion */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* We have sorted the array, except for any pending sorts on the stack.
|
||
|
Check if there are any, and do them. */
|
||
|
|
||
|
--stkptr;
|
||
|
if (stkptr >= 0) {
|
||
|
lo = lostk[stkptr];
|
||
|
hi = histk[stkptr];
|
||
|
goto recurse; /* pop subarray from stack */
|
||
|
}
|
||
|
else
|
||
|
return; /* all subarrays done */
|
||
|
}
|
||
|
|
||
|
|
||
|
//==========================================================================================
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_AddDrawSurf
|
||
|
=================
|
||
|
*/
|
||
|
void R_AddDrawSurf( const surfaceType_t *surface, const shader_t *shader, int fogIndex, int dlightMap )
|
||
|
{
|
||
|
int index;
|
||
|
|
||
|
// instead of checking for overflow, we just mask the index
|
||
|
// so it wraps around
|
||
|
index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
|
||
|
|
||
|
if ( tr.refdef.rdflags & RDF_doLAGoggles )
|
||
|
{
|
||
|
fogIndex = tr.world->numfogs;
|
||
|
}
|
||
|
|
||
|
if ( (shader->surfaceFlags & SURF_FORCESIGHT) && !(tr.refdef.rdflags & RDF_ForceSightOn) )
|
||
|
{ //if shader is only seen with ForceSight and we don't have ForceSight on, then don't draw
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// the sort data is packed into a single 32 bit value so it can be
|
||
|
// compared quickly during the qsorting process
|
||
|
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
|
||
|
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | (int)dlightMap;
|
||
|
tr.refdef.drawSurfs[index].surface = (surfaceType_t *)surface;
|
||
|
tr.refdef.numDrawSurfs++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_DecomposeSort
|
||
|
=================
|
||
|
*/
|
||
|
void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
|
||
|
int *fogNum, int *dlightMap ) {
|
||
|
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
|
||
|
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ];
|
||
|
*entityNum = ( sort >> QSORT_ENTITYNUM_SHIFT ) & (MAX_ENTITIES-1);
|
||
|
*dlightMap = sort & 3;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
R_SortDrawSurfs
|
||
|
=================
|
||
|
*/
|
||
|
void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
|
||
|
shader_t *shader;
|
||
|
int fogNum;
|
||
|
int entityNum;
|
||
|
int dlighted;
|
||
|
|
||
|
// it is possible for some views to not have any surfaces
|
||
|
if ( numDrawSurfs < 1 ) {
|
||
|
// we still need to add it for hyperspace cases
|
||
|
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// if we overflowed MAX_DRAWSURFS, the drawsurfs
|
||
|
// wrapped around in the buffer and we will be missing
|
||
|
// the first surfaces, not the last ones
|
||
|
if ( numDrawSurfs > MAX_DRAWSURFS ) {
|
||
|
numDrawSurfs = MAX_DRAWSURFS;
|
||
|
#if defined(_DEBUG) && defined(_XBOX)
|
||
|
Com_Printf(S_COLOR_RED"Draw surface overflow! Tell Brian.\n");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifndef _XBOX
|
||
|
// sort the drawsurfs by sort type, then orientation, then shader
|
||
|
qsortFast (drawSurfs, numDrawSurfs, sizeof(drawSurf_t) );
|
||
|
#endif
|
||
|
|
||
|
// check for any pass through drawing, which
|
||
|
// may cause another view to be rendered first
|
||
|
for ( int i = 0 ; i < numDrawSurfs ; i++ ) {
|
||
|
R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted );
|
||
|
|
||
|
if ( shader->sort > SS_PORTAL ) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// no shader should ever have this sort type
|
||
|
if ( shader->sort == SS_BAD ) {
|
||
|
Com_Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
|
||
|
}
|
||
|
|
||
|
// if the mirror was completely clipped away, we may need to check another surface
|
||
|
if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
|
||
|
// this is a debug option to see exactly what is being mirrored
|
||
|
if ( r_portalOnly->integer ) {
|
||
|
return;
|
||
|
}
|
||
|
break; // only one mirror view at a time
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef _XBOX
|
||
|
qsortFast (drawSurfs, numDrawSurfs, sizeof(drawSurf_t) );
|
||
|
#endif
|
||
|
|
||
|
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=============
|
||
|
R_AddEntitySurfaces
|
||
|
=============
|
||
|
*/
|
||
|
void R_AddEntitySurfaces (void) {
|
||
|
trRefEntity_t *ent;
|
||
|
shader_t *shader;
|
||
|
|
||
|
if ( !r_drawentities->integer ) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for ( tr.currentEntityNum = 0;
|
||
|
tr.currentEntityNum < tr.refdef.num_entities;
|
||
|
tr.currentEntityNum++ ) {
|
||
|
ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
|
||
|
|
||
|
ent->needDlights = qfalse;
|
||
|
|
||
|
// preshift the value we are going to OR into the drawsurf sort
|
||
|
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT;
|
||
|
|
||
|
if ((ent->e.renderfx & RF_ALPHA_FADE))
|
||
|
{
|
||
|
// we need to make sure this is not sorted before the world..in fact we
|
||
|
// want this to be sorted quite late...like how about last.
|
||
|
// I don't want to use the highest bit, since no doubt someone fumbled
|
||
|
// handling that as an unsigned quantity somewhere
|
||
|
tr.shiftedEntityNum |= 0x80000000;
|
||
|
}
|
||
|
//
|
||
|
// the weapon model must be handled special --
|
||
|
// we don't want the hacked weapon position showing in
|
||
|
// mirrors, because the true body position will already be drawn
|
||
|
//
|
||
|
if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
|
||
|
// simple generated models, like sprites and beams, are not culled
|
||
|
switch ( ent->e.reType ) {
|
||
|
case RT_PORTALSURFACE:
|
||
|
break; // don't draw anything
|
||
|
case RT_SPRITE:
|
||
|
case RT_ORIENTED_QUAD:
|
||
|
case RT_BEAM:
|
||
|
case RT_CYLINDER:
|
||
|
case RT_LATHE:
|
||
|
case RT_CLOUDS:
|
||
|
case RT_LINE:
|
||
|
case RT_ELECTRICITY:
|
||
|
case RT_SABER_GLOW:
|
||
|
// self blood sprites, talk balloons, etc should not be drawn in the primary
|
||
|
// view. We can't just do this check for all entities, because md3
|
||
|
// entities may still want to cast shadows from them
|
||
|
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
|
||
|
continue;
|
||
|
}
|
||
|
shader = R_GetShaderByHandle( ent->e.customShader );
|
||
|
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0 );
|
||
|
break;
|
||
|
|
||
|
case RT_MODEL:
|
||
|
// we must set up parts of tr.or for model culling
|
||
|
R_RotateForEntity( ent, &tr.viewParms, &tr.or );
|
||
|
|
||
|
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
|
||
|
if (!tr.currentModel) {
|
||
|
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0 );
|
||
|
} else {
|
||
|
switch ( tr.currentModel->type ) {
|
||
|
case MOD_MESH:
|
||
|
R_AddMD3Surfaces( ent );
|
||
|
break;
|
||
|
case MOD_BRUSH:
|
||
|
R_AddBrushModelSurfaces( ent );
|
||
|
break;
|
||
|
/*
|
||
|
Ghoul2 Insert Start
|
||
|
*/
|
||
|
|
||
|
case MOD_MDXM:
|
||
|
R_AddGhoulSurfaces( ent);
|
||
|
break;
|
||
|
case MOD_BAD: // null model axis
|
||
|
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal)
|
||
|
{
|
||
|
if (!(ent->e.renderfx & RF_SHADOW_ONLY))
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ent->e.ghoul2 && G2API_HaveWeGhoul2Models(*((CGhoul2Info_v *)ent->e.ghoul2)))
|
||
|
{
|
||
|
R_AddGhoulSurfaces( ent);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, false );
|
||
|
break;
|
||
|
/*
|
||
|
Ghoul2 Insert End
|
||
|
*/
|
||
|
|
||
|
default:
|
||
|
Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
====================
|
||
|
R_GenerateDrawSurfs
|
||
|
====================
|
||
|
*/
|
||
|
#ifdef _XBOX
|
||
|
extern void R_MarkLeaves(mleaf_s*);
|
||
|
void R_GenerateDrawSurfs( bool isPortal ) {
|
||
|
// determine which leaves are in the PVS / areamask
|
||
|
if ( !(tr.refdef.rdflags & RDF_NOWORLDMODEL) ) {
|
||
|
R_MarkLeaves (NULL);
|
||
|
}
|
||
|
|
||
|
R_AddWorldSurfaces ();
|
||
|
|
||
|
R_AddPolygonSurfaces();
|
||
|
|
||
|
// R_AddTerrainSurfaces();
|
||
|
|
||
|
// set the projection matrix with the minimum zfar
|
||
|
// now that we have the world bounded
|
||
|
// this needs to be done before entities are
|
||
|
// added, because they use the projection
|
||
|
// matrix for lod calculation
|
||
|
R_SetupProjection ();
|
||
|
|
||
|
R_AddEntitySurfaces ();
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
void R_GenerateDrawSurfs( void ) {
|
||
|
R_AddWorldSurfaces ();
|
||
|
|
||
|
R_AddPolygonSurfaces();
|
||
|
|
||
|
R_AddTerrainSurfaces();
|
||
|
|
||
|
// set the projection matrix with the minimum zfar
|
||
|
// now that we have the world bounded
|
||
|
// this needs to be done before entities are
|
||
|
// added, because they use the projection
|
||
|
// matrix for lod calculation
|
||
|
R_SetupProjection ();
|
||
|
|
||
|
R_AddEntitySurfaces ();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
R_DebugPolygon
|
||
|
================
|
||
|
*/
|
||
|
void R_DebugPolygon( int color, int numPoints, float *points ) {
|
||
|
int i;
|
||
|
|
||
|
GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
|
||
|
|
||
|
// draw solid shade
|
||
|
|
||
|
qglColor3f( color&1, (color>>1)&1, (color>>2)&1 );
|
||
|
qglBegin( GL_POLYGON );
|
||
|
for ( i = 0 ; i < numPoints ; i++ ) {
|
||
|
qglVertex3fv( points + i * 3 );
|
||
|
}
|
||
|
qglEnd();
|
||
|
|
||
|
// draw wireframe outline
|
||
|
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
|
||
|
qglDepthRange( 0, 0 );
|
||
|
qglColor3f( 1, 1, 1 );
|
||
|
qglBegin( GL_POLYGON );
|
||
|
for ( i = 0 ; i < numPoints ; i++ ) {
|
||
|
qglVertex3fv( points + i * 3 );
|
||
|
}
|
||
|
qglEnd();
|
||
|
qglDepthRange( 0, 1 );
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
====================
|
||
|
R_DebugGraphics
|
||
|
|
||
|
Visualization aid for movement clipping debugging
|
||
|
====================
|
||
|
*/
|
||
|
void R_DebugGraphics( void ) {
|
||
|
if ( !r_debugSurface->integer ) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// the render thread can't make callbacks to the main thread
|
||
|
//R_SyncRenderThread();
|
||
|
|
||
|
GL_Bind( tr.whiteImage);
|
||
|
GL_Cull( CT_FRONT_SIDED );
|
||
|
CM_DrawDebugSurface( R_DebugPolygon );
|
||
|
}
|
||
|
|
||
|
qboolean R_FogParmsMatch( int fog1, int fog2 )
|
||
|
{
|
||
|
for ( int i = 0; i < 2; i++ )
|
||
|
{
|
||
|
if ( tr.world->fogs[fog1].parms.color[i] != tr.world->fogs[fog2].parms.color[i] )
|
||
|
{
|
||
|
return qfalse;
|
||
|
}
|
||
|
}
|
||
|
return qtrue;
|
||
|
}
|
||
|
|
||
|
void R_SetViewFogIndex (void)
|
||
|
{
|
||
|
if ( tr.world->numfogs > 1 )
|
||
|
{//more than just the LA goggles
|
||
|
fog_t *fog;
|
||
|
int contents = SV_PointContents( tr.refdef.vieworg, 0 );
|
||
|
if ( (contents&CONTENTS_FOG) )
|
||
|
{//only take a tr.refdef.fogIndex if the tr.refdef.vieworg is actually *in* that fog brush (assumption: checks pointcontents for any CONTENTS_FOG, not that particular brush...)
|
||
|
for ( tr.refdef.fogIndex = 1 ; tr.refdef.fogIndex < tr.world->numfogs ; tr.refdef.fogIndex++ )
|
||
|
{
|
||
|
fog = &tr.world->fogs[tr.refdef.fogIndex];
|
||
|
if ( tr.refdef.vieworg[0] >= fog->bounds[0][0]
|
||
|
&& tr.refdef.vieworg[1] >= fog->bounds[0][1]
|
||
|
&& tr.refdef.vieworg[2] >= fog->bounds[0][2]
|
||
|
&& tr.refdef.vieworg[0] <= fog->bounds[1][0]
|
||
|
&& tr.refdef.vieworg[1] <= fog->bounds[1][1]
|
||
|
&& tr.refdef.vieworg[2] <= fog->bounds[1][2] )
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if ( tr.refdef.fogIndex == tr.world->numfogs )
|
||
|
{
|
||
|
tr.refdef.fogIndex = 0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.refdef.fogIndex = 0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.refdef.fogIndex = 0;
|
||
|
}
|
||
|
}
|
||
|
void RE_SetLightStyle(int style, int colors );
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
R_RenderView
|
||
|
|
||
|
A view may be either the actual camera view,
|
||
|
or a mirror / remote location
|
||
|
================
|
||
|
*/
|
||
|
void R_RenderView (viewParms_t *parms) {
|
||
|
int firstDrawSurf;
|
||
|
|
||
|
if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (r_debugStyle->integer >= 0)
|
||
|
{
|
||
|
int i;
|
||
|
color4ub_t whitecolor = {0xff, 0xff, 0xff, 0xff};
|
||
|
color4ub_t blackcolor = {0x00, 0x00, 0x00, 0xff};
|
||
|
|
||
|
for(i=0;i<MAX_LIGHT_STYLES;i++)
|
||
|
{
|
||
|
RE_SetLightStyle(i, *(int*)blackcolor);
|
||
|
}
|
||
|
RE_SetLightStyle(r_debugStyle->integer, *(int*)whitecolor);
|
||
|
}
|
||
|
|
||
|
tr.viewCount++;
|
||
|
|
||
|
tr.viewParms = *parms;
|
||
|
tr.viewParms.frameSceneNum = tr.frameSceneNum;
|
||
|
tr.viewParms.frameCount = tr.frameCount;
|
||
|
|
||
|
firstDrawSurf = tr.refdef.numDrawSurfs;
|
||
|
|
||
|
tr.viewCount++;
|
||
|
|
||
|
// set viewParms.world
|
||
|
R_RotateForViewer ();
|
||
|
|
||
|
R_SetupFrustum ();
|
||
|
|
||
|
if (!(tr.refdef.rdflags & RDF_NOWORLDMODEL))
|
||
|
{ // Trying to do this with no world is not good.
|
||
|
R_SetViewFogIndex ();
|
||
|
}
|
||
|
|
||
|
#ifdef _XBOX
|
||
|
R_GenerateDrawSurfs(parms->isPortal);
|
||
|
#else
|
||
|
R_GenerateDrawSurfs();
|
||
|
#endif
|
||
|
|
||
|
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
|
||
|
|
||
|
// draw main system development information (surface outlines, etc)
|
||
|
R_DebugGraphics();
|
||
|
}
|