jedi-academy/codemp/renderer/tr_bsp_xbox.cpp

1766 lines
42 KiB
C++
Raw Permalink Normal View History

2013-04-19 02:52:48 +00:00
// tr_map.c
// leave this as first line for PCH reasons...
//
#include "../server/exe_headers.h"
#include "tr_local.h"
#include "../qcommon/cm_local.h"
/*
Loads and prepares a map file for scene rendering.
A single entry point:
void RE_LoadWorldMap( const char *name );
*/
static world_t s_worldData;
byte *fileBase;
int c_subdivisions;
int c_gridVerts;
void R_RMGInit(void);
//===============================================================================
// We use a special hack to prevent slight differences in channels
// from exploding into big differences, as it causes lighting problems
// later on. This is the maximum channel separation for which we
// enable the hack.
#define MAX_GREYSCALE_CHANNEL_DIFF 15
static void R_ColorShiftLightingBytes16( const byte in[4], byte out[2] ) {
// What's the largest separation between the red, green, and blue
// channels?
int chanDiff = max(in[0],max(in[1],in[2])) -
min(in[0],min(in[1],in[2]));
if (chanDiff <= MAX_GREYSCALE_CHANNEL_DIFF)
{
// Ensure that all color channels compress to the same value
byte channelAvg = (in[0] + in[1] + in[2] + 1) / 3;
out[0] = channelAvg & 0xF0;
out[0] |= (channelAvg & 0xF0) >> 4;
out[1] = channelAvg & 0xF0;
out[1] |= (in[3] & 0xF0) >> 4;
if (channelAvg % 16 >= 8)
{
out[0] |= 0x10;
out[0] |= 0x01;
out[1] |= 0x10;
}
if (in[4] % 16 >= 8)
{
out[1] |= 0x01;
}
return;
}
// Normal case for vertex colors that are not "near" greyscale
out[0] = in[0] & 0xF0;
out[0] |= (in[1] & 0xF0) >> 4;
out[1] = in[2] & 0xF0;
out[1] |= (in[3] & 0xF0) >> 4;
if(in[0] % 16 >= 8) {
out[0] |= 0x10;
}
if(in[1] % 16 >= 8) {
out[0] |= 0x1;
}
if(in[2] % 16 >= 8) {
out[1] |= 0x10;
}
if(in[3] % 16 >= 8) {
out[1] |= 0x1;
}
}
static void HSVtoRGB( float h, float s, float v, float rgb[3] )
{
int i;
float f;
float p, q, t;
h *= 5;
i = floor( h );
f = h - i;
p = v * ( 1 - s );
q = v * ( 1 - s * f );
t = v * ( 1 - s * ( 1 - f ) );
switch ( i )
{
case 0:
rgb[0] = v;
rgb[1] = t;
rgb[2] = p;
break;
case 1:
rgb[0] = q;
rgb[1] = v;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = v;
rgb[2] = t;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = v;
break;
case 4:
rgb[0] = t;
rgb[1] = p;
rgb[2] = v;
break;
case 5:
rgb[0] = v;
rgb[1] = p;
rgb[2] = q;
break;
}
}
/*
===============
R_ColorShiftLightingBytes
===============
*/
void R_ColorShiftLightingBytes( byte in[4], byte out[4] ) {
int shift=0, r, g, b;
// should NOT do it if overbrightBits is 0
if (tr.overbrightBits)
shift = 1 - tr.overbrightBits;
if (!shift)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
return;
}
// shift the data based on overbright range
r = in[0] << shift;
g = in[1] << shift;
b = in[2] << shift;
// normalize by color instead of saturating to white
if ( ( r | g | b ) > 255 ) {
int max;
max = r > g ? r : g;
max = max > b ? max : b;
r = r * 255 / max;
g = g * 255 / max;
b = b * 255 / max;
}
out[0] = r;
out[1] = g;
out[2] = b;
out[3] = in[3];
}
/*
===============
R_ColorShiftLightingBytes
===============
*/
static void R_ColorShiftLightingBytes( byte in[3])
{
int shift=0, r, g, b;
// should NOT do it if overbrightBits is 0
if (tr.overbrightBits)
shift = 1 - tr.overbrightBits;
if (!shift) {
return; //no need if not overbright
}
// shift the data based on overbright range
r = in[0] << shift;
g = in[1] << shift;
b = in[2] << shift;
// normalize by color instead of saturating to white
if ( ( r | g | b ) > 255 ) {
int max;
max = r > g ? r : g;
max = max > b ? max : b;
r = r * 255 / max;
g = g * 255 / max;
b = b * 255 / max;
}
in[0] = r;
in[1] = g;
in[2] = b;
}
/*
===============
R_LoadLightmaps
===============
*/
#define LIGHTMAP_SIZE 128
void R_LoadLightmaps( void *data, int len, const char *psMapName ) {
byte *buf, *buf_p;
int i;
if ( !len ) {
return;
}
buf = (byte *)data + sizeof(int);
tr.numLightmaps = 0;
// we are about to upload textures
R_SyncRenderThread();
// create all the lightmaps
int size = *(int*)data;
tr.numLightmaps = len / size;
byte* image = (byte*)Z_Malloc(size, TAG_BSP, qfalse, 32);
char sMapName[MAX_QPATH];
COM_StripExtension(psMapName,sMapName); // will already by MAX_QPATH legal, so no length check
for ( i = 0 ; i < tr.numLightmaps ; i++ ) {
buf_p = buf + i * size;
memcpy(image, buf_p, size);
char lmapName[MAX_QPATH + 32];
Com_sprintf(lmapName, MAX_QPATH + 32, "*%s/lightmap%d",sMapName,i);
tr.lightmaps[i] = R_CreateImage( lmapName, image,
LIGHTMAP_SIZE, LIGHTMAP_SIZE,
GL_DDS_RGB16_EXT,
qfalse, 0, GL_CLAMP);
}
Z_Free(image);
}
/*
=================
RE_SetWorldVisData
This is called by the clipmodel subsystem so we can share the 1.8 megs of
space in big maps...
=================
*/
void RE_SetWorldVisData( SPARC<byte> *vis ) {
tr.externalVisData = vis;
}
/*
=================
R_LoadVisibility
=================
*/
static void R_LoadVisibility( void *data, int len ) {
int length;
char *buf;
length = ( s_worldData.numClusters + 63 ) & ~63;
s_worldData.novis = ( unsigned char *) Hunk_Alloc( length, h_low );
memset( s_worldData.novis, 0xff, length );
if ( !len ) {
s_worldData.vis = NULL;
return;
}
buf = (char*)data;
s_worldData.numClusters = ((int *)buf)[0];
s_worldData.clusterBytes = ((int *)buf)[1];
// CM_Load should have given us the vis data to share, so
// we don't need to allocate another copy
if ( tr.externalVisData ) {
s_worldData.vis = tr.externalVisData;
} else {
assert(0);
}
}
//===============================================================================
qhandle_t R_GetShaderByNum(int shaderNum, world_t &worldData)
{
qhandle_t shader;
if ( (shaderNum < 0) || (shaderNum >= worldData.numShaders) )
{
Com_Printf( "Warning: Bad index for R_GetShaderByNum - %i", shaderNum );
return(0);
}
shader = RE_RegisterShader(worldData.shaders[ shaderNum ].shader);
return(shader);
}
/*
===============
ShaderForShaderNum
===============
*/
static shader_t *ShaderForShaderNum( int shaderNum, const int *lightmapNum, const byte *lightmapStyles ) {
shader_t *shader;
dshader_t *dsh;
shaderNum = shaderNum;
if ( shaderNum < 0 || shaderNum >= s_worldData.numShaders ) {
Com_Error( ERR_DROP, "ShaderForShaderNum: bad num %i", shaderNum );
}
dsh = &s_worldData.shaders[ shaderNum ];
shader = R_FindShader( dsh->shader, lightmapNum, lightmapStyles, qtrue );
// if the shader had errors, just use default shader
if ( shader->defaultShader ) {
return tr.defaultShader;
}
return shader;
}
bool NeedVertexColors(shader_t *shader)
{
int i;
shaderStage_t *stage;
for(i=0; i<shader->numUnfoggedPasses; i++) {
stage = &shader->stages[i];
switch(stage->rgbGen) {
case CGEN_EXACT_VERTEX:
case CGEN_VERTEX:
case CGEN_ONE_MINUS_VERTEX:
return true;
}
switch(stage->alphaGen) {
case AGEN_VERTEX:
case AGEN_ONE_MINUS_VERTEX:
return true;
}
}
return false;
}
int NumLightMaps(shader_t *shader)
{
int count = 0;
int i;
for(i=0; i<MAXLIGHTMAPS; i++) {
if(shader->lightmapIndex[i] >= 0) {
count++;
} else {
return count;
}
}
return count;
}
int SurfaceFaceSize(int numVerts, int numLightMaps, bool needVertexColors,
int numIndexes)
{
int sfaceSize = ( int ) &((srfSurfaceFace_t *)0)->srfPoints +
4 /*sizeof srfPoints*/ +
(numVerts * sizeof(unsigned short) *
(VERTEX_LM + numLightMaps * 2 +
(int)needVertexColors * 4));
// Add in tangent size
sfaceSize += sizeof(vec3_t) * numVerts;
//Indices stored in 8 bits now.
sfaceSize += numIndexes;
return sfaceSize;
}
void BuildDrawVertTangents( drawVert_t *verts, int *indexes, int numIndexes, int numVertexes )
{
int i = 0;
for(i = 0; i < numVertexes; i++)
{
verts[i].tangent[0] = 0.0f;
verts[i].tangent[1] = 0.0f;
verts[i].tangent[2] = 0.0f;
}
for(i = 0; i < numIndexes; i += 3)
{
vec3_t vec1, vec2, du, dv, cp;
float st0[2], st1[2], st2[2];
Q_CastShort2FloatScale(&st0[0], &verts[indexes[i]].dvst[0], 1.f / DRAWVERT_ST_SCALE);
Q_CastShort2FloatScale(&st0[1], &verts[indexes[i]].dvst[1], 1.f / DRAWVERT_ST_SCALE);
Q_CastShort2FloatScale(&st1[0], &verts[indexes[i+1]].dvst[0], 1.f / DRAWVERT_ST_SCALE);
Q_CastShort2FloatScale(&st1[1], &verts[indexes[i+1]].dvst[1], 1.f / DRAWVERT_ST_SCALE);
Q_CastShort2FloatScale(&st2[0], &verts[indexes[i+2]].dvst[0], 1.f / DRAWVERT_ST_SCALE);
Q_CastShort2FloatScale(&st2[1], &verts[indexes[i+2]].dvst[1], 1.f / DRAWVERT_ST_SCALE);
vec1[0] = verts[indexes[i+1]].xyz[0] - verts[indexes[i]].xyz[0];
vec1[1] = st1[0] - st0[0];
vec1[2] = st1[1] - st0[1];
vec2[0] = verts[indexes[i+2]].xyz[0] - verts[indexes[i]].xyz[0];
vec2[1] = st2[0] - st0[0];
vec2[2] = st2[1] - st0[1];
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[0] = -cp[1] / cp[0];
dv[0] = -cp[2] / cp[0];
vec1[0] = verts[indexes[i+1]].xyz[1] - verts[indexes[i]].xyz[1];
vec2[0] = verts[indexes[i+2]].xyz[1] - verts[indexes[i]].xyz[1];
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[1] = -cp[1] / cp[0];
dv[1] = -cp[2] / cp[0];
vec1[0] = verts[indexes[i+1]].xyz[2] - verts[indexes[i]].xyz[2];
vec2[0] = verts[indexes[i+2]].xyz[2] - verts[indexes[i]].xyz[2];
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[2] = -cp[1] / cp[0];
dv[2] = -cp[2] / cp[0];
verts[indexes[i]].tangent[0] += du[0];
verts[indexes[i]].tangent[1] += du[1];
verts[indexes[i]].tangent[2] += du[2];
verts[indexes[i+1]].tangent[0] += du[0];
verts[indexes[i+1]].tangent[1] += du[1];
verts[indexes[i+1]].tangent[2] += du[2];
verts[indexes[i+2]].tangent[0] += du[0];
verts[indexes[i+2]].tangent[1] += du[1];
verts[indexes[i+2]].tangent[2] += du[2];
}
for(i = 0; i < numVertexes; i++)
{
VectorNormalizeFast(verts[i].tangent);
}
}
void BuildMapVertTangents( mapVert_t *verts, vec3_t *tangents, short *indexes, int numIndexes, int numVertexes )
{
int i = 0;
for(i = 0; i < numVertexes; i++)
{
tangents[i][0] = 0.0f;
tangents[i][1] = 0.0f;
tangents[i][2] = 0.0f;
}
for(i = 0; i < numIndexes; i += 3)
{
vec3_t vec1, vec2, du, dv, cp;
vec1[0] = verts[indexes[i+1]].xyz[0] - verts[indexes[i]].xyz[0];
vec1[1] = (verts[indexes[i+1]].st[0] * POINTS_ST_SCALE) -
(verts[indexes[i]].st[0] * POINTS_ST_SCALE);
vec1[2] = (verts[indexes[i+1]].st[1] * POINTS_ST_SCALE) -
(verts[indexes[i]].st[1] * POINTS_ST_SCALE);
vec2[0] = verts[indexes[i+2]].xyz[0] - verts[indexes[i]].xyz[0];
vec2[1] = (verts[indexes[i+2]].st[0] * POINTS_ST_SCALE) -
(verts[indexes[i]].st[0] * POINTS_ST_SCALE);
vec2[2] = (verts[indexes[i+2]].st[1]* POINTS_ST_SCALE) -
(verts[indexes[i]].st[1] * POINTS_ST_SCALE);
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[0] = -cp[1] / cp[0];
dv[0] = -cp[2] / cp[0];
vec1[0] = verts[indexes[i+1]].xyz[1] - verts[indexes[i]].xyz[1];
vec2[0] = verts[indexes[i+2]].xyz[1] - verts[indexes[i]].xyz[1];
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[1] = -cp[1] / cp[0];
dv[1] = -cp[2] / cp[0];
vec1[0] = verts[indexes[i+1]].xyz[2] - verts[indexes[i]].xyz[2];
vec2[0] = verts[indexes[i+2]].xyz[2] - verts[indexes[i]].xyz[2];
CrossProduct(vec1, vec2, cp);
if(cp[0] == 0.0f)
cp[0] = 0.001f;
du[2] = -cp[1] / cp[0];
dv[2] = -cp[2] / cp[0];
tangents[indexes[i]][0] += du[0];
tangents[indexes[i]][1] += du[1];
tangents[indexes[i]][2] += du[2];
tangents[indexes[i+1]][0] += du[0];
tangents[indexes[i+1]][1] += du[1];
tangents[indexes[i+1]][2] += du[2];
tangents[indexes[i+2]][0] += du[0];
tangents[indexes[i+2]][1] += du[1];
tangents[indexes[i+2]][2] += du[2];
}
for(i = 0; i < numVertexes; i++)
{
VectorNormalizeFast(tangents[i]);
}
}
/*
===============
ParseFace
===============
*/
static void ParseFace( dface_t *ds, mapVert_t *verts, msurface_t *surf, short *indexes, byte *&pFaceDataBuffer)
{
int i, j, k;
srfSurfaceFace_t *cv;
int numPoints, numIndexes;
int lightmapNum[MAXLIGHTMAPS];
int sfaceSize, ofsIndexes;
vec3_t tangents[1000];
for(i=0;i<MAXLIGHTMAPS;i++)
{
lightmapNum[i] = (int)ds->lightmapNum[i] - 4;
}
// get fog volume
surf->fogIndex = ds->fogNum + 1;
// get shader value
surf->shader = ShaderForShaderNum( ds->shaderNum, lightmapNum, ds->lightmapStyles );
if ( r_singleShader->integer && !surf->shader->sky ) {
surf->shader = tr.defaultShader;
}
bool needVertexColors = NeedVertexColors(surf->shader);
int numLightMaps = NumLightMaps(surf->shader);
assert(numLightMaps <= 0x7F);
numPoints = ds->verts & 0xFFF;
if (numPoints > MAX_FACE_POINTS) {
Com_Printf (S_COLOR_YELLOW "WARNING: MAX_FACE_POINTS exceeded: %i\n", numPoints);
}
numIndexes = ds->indexes & 0xFFF;
// create the srfSurfaceFace_t
sfaceSize = SurfaceFaceSize(numPoints,
numLightMaps, needVertexColors, numIndexes);
ofsIndexes = sfaceSize - numIndexes;
cv = (srfSurfaceFace_t *) pFaceDataBuffer;//ri.Hunk_Alloc( sfaceSize );
pFaceDataBuffer += sfaceSize; // :-)
cv->surfaceType = SF_FACE;
cv->numPoints = numPoints;
cv->numIndices = numIndexes;
cv->ofsIndices = ofsIndexes;
cv->srfPoints = (unsigned short *)(((byte*)cv) + ( int ) &((srfSurfaceFace_t *)0)->srfPoints + 4);
if(needVertexColors) {
cv->flags = 1 << 7;
} else {
cv->flags = 0;
}
cv->flags |= (numLightMaps & 0x7F);
//Make sure we don't overflow storage.
assert(numPoints < 256);
assert(numIndexes < 65536);
assert(ofsIndexes < 65536);
int nextSurfPoint = NEXT_SURFPOINT(cv->flags);
verts += ds->verts >> 12;
indexes += ds->indexes >> 12;
BuildMapVertTangents(verts, tangents, indexes, numIndexes, numPoints);
for ( i = 0 ; i < numPoints ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
*(cv->srfPoints + i * nextSurfPoint + j) = verts[i].xyz[j];
}
for ( j = 0; j < 3 ; j++ ) {
assert(tangents[i][j] >= -1 && tangents[i][j] <= 1);
*(cv->srfPoints + i * nextSurfPoint + 3 + j) = (short)(tangents[i][j] * 32767.0f);
}
for ( j = 0 ; j < 2 ; j++ ) {
*(cv->srfPoints + i * nextSurfPoint + 6 + j) =
(short)(verts[i].st[j] * POINTS_ST_SCALE);
for(k=0;k<numLightMaps;k++)
{
*(cv->srfPoints + i * nextSurfPoint + VERTEX_LM+j+(k*2)) =
verts[i].lightmap[k][j];
}
}
if(needVertexColors) {
for(k=0;k<MAXLIGHTMAPS;k++)
{
R_ColorShiftLightingBytes16(
verts[i].color[k],
(byte*)(cv->srfPoints + i * nextSurfPoint +
VERTEX_COLOR(cv->flags) + k));
}
}
}
unsigned char *indexStorage = ((unsigned char*)cv) + cv->ofsIndices;
for ( i = 0 ; i < numIndexes ; i++ ) {
indexStorage[i] = indexes[ i ];
}
// take the plane information from the lightmap vector
for ( i = 0 ; i < 3 ; i++ ) {
cv->plane.normal[i] = (float)ds->lightmapVecs[i] / 32767.f;
}
vec3_t fVec;
fVec[0] = (float)((short)cv->srfPoints[0]);
fVec[1] = (float)((short)cv->srfPoints[1]);
fVec[2] = (float)((short)cv->srfPoints[2]);
cv->plane.dist = DotProduct( fVec, cv->plane.normal );
SetPlaneSignbits( &cv->plane );
cv->plane.type = PlaneTypeForNormal( cv->plane.normal );
surf->data = (surfaceType_t *)cv;
}
/*
===============
ParseMesh
===============
*/
static void ParseMesh ( dpatch_t *ds, mapVert_t *verts, msurface_t *surf,
drawVert_t* points, drawVert_t* ctrl, float* errorTable ) {
srfGridMesh_t *grid;
int i, j, k;
int width, height, numPoints;
int lightmapNum[MAXLIGHTMAPS];
vec3_t bounds[2];
vec3_t tmpVec;
static surfaceType_t skipData = SF_SKIP;
for(i=0;i<MAXLIGHTMAPS;i++)
{
lightmapNum[i] = (int)ds->lightmapNum[i] - 4;
}
// get fog volume
surf->fogIndex = ds->fogNum + 1;
// get shader value
surf->shader = ShaderForShaderNum( ds->shaderNum, lightmapNum, ds->lightmapStyles );
if ( r_singleShader->integer && !surf->shader->sky ) {
surf->shader = tr.defaultShader;
}
// we may have a nodraw surface, because they might still need to
// be around for movement clipping
if ( s_worldData.shaders[ ds->shaderNum ].surfaceFlags & SURF_NODRAW ) {
surf->data = &skipData;
return;
}
width = ds->patchWidth;
height = ds->patchHeight;
verts += ds->verts >> 12;
numPoints = width * height;
for ( i = 0 ; i < numPoints ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
points[i].xyz[j] = (float)verts[i].xyz[j];
points[i].normal[j] = (float)verts[i].normal[j] / 32767.f;
}
for ( j = 0 ; j < 2 ; j++ ) {
// Sanity check that alternate fixed point representation
// is good enough
assert( verts[i].st[j] * GRID_DRAWVERT_ST_SCALE < 32767 &&
verts[i].st[j] * GRID_DRAWVERT_ST_SCALE >= -32768 );
points[i].dvst[j] = verts[i].st[j] * GRID_DRAWVERT_ST_SCALE;
for(k=0;k<MAXLIGHTMAPS;k++)
{
points[i].dvlightmap[k][j] =
((float)verts[i].lightmap[k][j] / POINTS_LIGHT_SCALE) *
DRAWVERT_LIGHTMAP_SCALE;
}
}
for(k=0;k<MAXLIGHTMAPS;k++)
{
R_ColorShiftLightingBytes16(verts[i].color[k],
points[i].dvcolor[k]);
}
}
// pre-tesseleate
grid = R_SubdividePatchToGrid( width, height, points, ctrl, errorTable );
surf->data = (surfaceType_t *)grid;
// copy the level of detail origin, which is the center
// of the group of all curves that must subdivide the same
// to avoid cracking
for ( i = 0 ; i < 3 ; i++ ) {
bounds[0][i] = ds->lightmapVecs[0][i];
bounds[1][i] = ds->lightmapVecs[1][i];
}
VectorAdd( bounds[0], bounds[1], bounds[1] );
VectorScale( bounds[1], 0.5f, grid->lodOrigin );
VectorSubtract( bounds[0], grid->lodOrigin, tmpVec );
grid->lodRadius = VectorLength( tmpVec );
}
/*
===============
ParseTriSurf
===============
*/
static void ParseTriSurf( dtrisurf_t *ds, mapVert_t *verts, msurface_t *surf, short *indexes ) {
srfTriangles_t *tri;
int i, j, k;
int numVerts, numIndexes;
// get fog volume
surf->fogIndex = ds->fogNum + 1;
// get shader
surf->shader = ShaderForShaderNum( ds->shaderNum, lightmapsVertex, ds->lightmapStyles );
if ( r_singleShader->integer && !surf->shader->sky ) {
surf->shader = tr.defaultShader;
}
numVerts = ds->verts & 0xFFF;
numIndexes = ds->indexes & 0xFFF;
tri = (srfTriangles_t *) Hunk_Alloc( sizeof( *tri ) + numVerts * sizeof( tri->verts[0] )
+ numIndexes * sizeof( tri->indexes[0] ), h_low );
tri->surfaceType = SF_TRIANGLES;
tri->numVerts = numVerts;
tri->numIndexes = numIndexes;
tri->verts = (drawVert_t *)(tri + 1);
tri->indexes = (int *)(tri->verts + tri->numVerts );
surf->data = (surfaceType_t *)tri;
// copy vertexes
verts += ds->verts >> 12;
ClearBounds( tri->bounds[0], tri->bounds[1] );
for ( i = 0 ; i < numVerts ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
tri->verts[i].xyz[j] = (float)verts[i].xyz[j];
tri->verts[i].normal[j] = (float)verts[i].normal[j] / 32767.f;
}
AddPointToBounds( tri->verts[i].xyz, tri->bounds[0], tri->bounds[1] );
for ( j = 0 ; j < 2 ; j++ ) {
// Sanity check that alternate fixed point representation
// is good enough
// MATT! - double check this!
assert( verts[i].st[j] * DRAWVERT_ST_SCALE <= 32767 &&
verts[i].st[j] * DRAWVERT_ST_SCALE >= -32768 );
tri->verts[i].dvst[j] = verts[i].st[j] * DRAWVERT_ST_SCALE;
for(k=0;k<MAXLIGHTMAPS;k++)
{
tri->verts[i].dvlightmap[k][j] =
((float)verts[i].lightmap[k][j] / POINTS_LIGHT_SCALE) *
DRAWVERT_LIGHTMAP_SCALE;
}
}
for(k=0;k<MAXLIGHTMAPS;k++)
{
R_ColorShiftLightingBytes16(verts[i].color[k],
tri->verts[i].dvcolor[k]);
}
}
// copy indexes
indexes += ds->indexes >> 12;
for ( i = 0 ; i < numIndexes ; i++ ) {
tri->indexes[i] = indexes[i];
if ( tri->indexes[i] < 0 || tri->indexes[i] >= numVerts ) {
Com_Error( ERR_DROP, "Bad index in triangle surface" );
}
}
// Build the tangent vectors
BuildDrawVertTangents(tri->verts, tri->indexes, numIndexes, numVerts);
}
/*
===============
ParseFlare
===============
*/
static void ParseFlare( dflare_t *df, msurface_t *surf )
{
srfFlare_t *flare;
int i;
surf->fogIndex = df->fogNum + 1;
// get shader
surf->shader = ShaderForShaderNum( df->shaderNum, lightmapsVertex, stylesDefault );
flare = (srfFlare_t *) Hunk_Alloc( sizeof( *flare ), h_low );
flare->surfaceType = SF_FLARE;
for ( i = 0 ; i < 3 ; i++ ) {
flare->origin[i] = df->origin[i];
flare->color[i] = df->color[i];
flare->normal[i] = df->normal[i];
}
surf->data = (surfaceType_t *)flare;
}
void R_LoadFlares( void *surfaces, int surfacelen ) {
int count, i;
dflare_t *in = NULL;
msurface_t *out;
count = surfacelen / sizeof(*in);
for ( i = 0 ; i < count ; i++ ) {
in = (dflare_t *)surfaces + i;
out = s_worldData.surfaces + in->code;
ParseFlare( in, out );
}
}
/*
===============
R_LoadSurfaces
===============
*/
void R_LoadSurfaces( int count ) {
s_worldData.surfaces = (struct msurface_s *)
Hunk_Alloc ( count * sizeof(msurface_s), h_low );
s_worldData.numsurfaces = count;
}
/*
===============
R_LoadPatches
===============
*/
void R_LoadPatches( void *verts, int vertlen,
void *surfaces, int surfacelen ) {
dpatch_t *in = NULL;
msurface_t *out;
mapVert_t *dv;
int count;
int i;
if (surfacelen == 0) {
return;
}
count = surfacelen / sizeof(*in);
dv = (mapVert_t *)(verts);
if (vertlen % sizeof(*dv))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
drawVert_t* points = (drawVert_t*)Z_Malloc(
MAX_PATCH_SIZE*MAX_PATCH_SIZE*sizeof(drawVert_t),
TAG_TEMP_WORKSPACE, qfalse);
drawVert_t* ctrl = (drawVert_t*)Z_Malloc(
MAX_GRID_SIZE*MAX_GRID_SIZE*sizeof(drawVert_t),
TAG_TEMP_WORKSPACE, qfalse);
float* errorTable = (float*)Z_Malloc(
2*MAX_GRID_SIZE*sizeof(float),
TAG_TEMP_WORKSPACE, qfalse);
for ( i = 0 ; i < count ; i++ ) {
in = (dpatch_t *)surfaces + i;
out = s_worldData.surfaces + in->code;
ParseMesh ( in, dv, out, points, ctrl, errorTable );
}
Z_Free(errorTable);
Z_Free(ctrl);
Z_Free(points);
Com_Printf( "...loaded %i meshes\n", count );
}
/*
===============
R_LoadTriSurfs
===============
*/
void R_LoadTriSurfs( void *indexdata, int indexlen,
void *verts, int vertlen,
void *surfaces, int surfacelen ) {
dtrisurf_t *in = NULL;
msurface_t *out;
mapVert_t *dv;
short *indexes;
int count;
int i;
if (surfacelen == 0) {
return;
}
count = surfacelen / sizeof(*in);
dv = (mapVert_t *)(verts);
if (vertlen % sizeof(*dv))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
indexes = (short *)(indexdata);
if ( indexlen % sizeof(*indexes))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
for ( i = 0 ; i < count ; i++ ) {
in = (dtrisurf_t *)surfaces + i;
out = s_worldData.surfaces + in->code;
ParseTriSurf( in, dv, out, indexes );
}
Com_Printf( "...loaded %i trisurfs\n", count );
}
/*
===============
R_LoadFaces
===============
*/
void R_LoadFaces( void *indexdata, int indexlen,
void *verts, int vertlen,
void *surfaces, int surfacelen ) {
dface_t *in = NULL;
msurface_t *out;
mapVert_t *dv;
short *indexes;
int count;
int i;
if (surfacelen == 0) {
return;
}
count = surfacelen / sizeof(*in);
dv = (mapVert_t *)(verts);
if (vertlen % sizeof(*dv))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
indexes = (short *)(indexdata);
if ( indexlen % sizeof(*indexes))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
// new bit, the face code on our biggest map requires over 15,000 mallocs, which was no problem on the hunk,
// bit hits the zone pretty bad (even the tagFree takes about 9 seconds for that many memblocks),
// so special-case pre-alloc enough space for this data (the patches etc can stay as they are)...
//
int nTimes = count / 100;
int nToGo = nTimes;
int iFaceDataSizeRequired = 0;
for ( i = 0 ; i < count ; i++)
{
in = (dface_t *)surfaces + i;
int lightmapNum[MAXLIGHTMAPS];
for(int j=0; j<4; j++) {
lightmapNum[j] = (int)in->lightmapNum[j] - 4;
}
shader_t *shader = ShaderForShaderNum( in->shaderNum, lightmapNum, in->lightmapStyles );
bool needVertexColors = NeedVertexColors(shader);
int numLightMaps = NumLightMaps(shader);
int sfaceSize = SurfaceFaceSize(in->verts & 0xFFF,
numLightMaps, needVertexColors,
in->indexes & 0xFFF);
iFaceDataSizeRequired += sfaceSize;
assert(sfaceSize < 100 * 1024);
if (--nToGo <= 0)
{
nToGo = nTimes;
}
}
in -= count; // back it up, ready for loop-proper
// since this ptr is to hunk data, I can pass it in and have it advanced without worrying about losing
// the original alloc ptr...
//
byte *orgFaceData;
byte *pFaceDataBuffer = (byte *)Hunk_Alloc( iFaceDataSizeRequired, h_low );
orgFaceData = pFaceDataBuffer;
// now do regular loop...
//
for ( i = 0 ; i < count ; i++ ) {
in = (dface_t *)surfaces + i;
out = s_worldData.surfaces + in->code;
ParseFace( in, dv, out, indexes, pFaceDataBuffer );
if (--nToGo <= 0)
{
nToGo = nTimes;
}
}
Com_Printf( "...loaded %d faces\n", count );
}
/*
=================
R_LoadSubmodels
=================
*/
static void R_LoadSubmodels( void *data, int len ) {
dmodel_t *in;
bmodel_t *out;
int i, j, count;
in = (dmodel_t *)(data);
if (len % sizeof(*in))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = len / sizeof(*in);
s_worldData.bmodels = out = (bmodel_t *) Hunk_Alloc( count * sizeof(*out), h_low );
for ( i=0 ; i<count ; i++, in++, out++ ) {
model_t *model;
model = R_AllocModel();
assert( model != NULL ); // this should never happen
model->type = MOD_BRUSH;
model->bmodel = out;
Com_sprintf( model->name, sizeof( model->name ), "*%d", i );
for (j=0 ; j<3 ; j++) {
out->bounds[0][j] = in->mins[j];
out->bounds[1][j] = in->maxs[j];
}
RE_InsertModelIntoHash(model->name, model);
out->firstSurface = s_worldData.surfaces + in->firstSurface;
out->numSurfaces = in->numSurfaces;
}
}
//==================================================================
/*
=================
R_SetParent
=================
*/
static void R_SetParent (mnode_t *node, mnode_t *parent)
{
node->parent = parent;
if (node->contents != -1)
return;
R_SetParent (node->children[0], node);
R_SetParent (node->children[1], node);
}
/*
=================
R_LoadNodesAndLeafs
=================
*/
static void R_LoadNodesAndLeafs (void *nodes, int nodelen, void *leafs, int leaflen) {
int i, j, p;
dnode_t *in;
dleaf_t *inLeaf;
mnode_t *outNode;
mleaf_s *outLeaf;
int numNodes, numLeafs;
in = (dnode_t *)(nodes);
if (nodelen % sizeof(dnode_t) ||
leaflen % sizeof(dleaf_t) ) {
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
numNodes = nodelen / sizeof(dnode_t);
numLeafs = leaflen / sizeof(dleaf_t);
outNode = (struct mnode_s *) Hunk_Alloc ( (numNodes) * sizeof(*outNode), h_low );
outLeaf = (struct mleaf_s *) Hunk_Alloc ( (numLeafs) * sizeof(*outLeaf), h_low );
s_worldData.nodes = outNode;
s_worldData.leafs = outLeaf;
s_worldData.numnodes = numNodes;
s_worldData.numleafs = numLeafs;
// load nodes
for ( i=0 ; i<numNodes; i++, in++, outNode++)
{
for (j=0 ; j<3 ; j++)
{
outNode->mins[j] = in->mins[j];
outNode->maxs[j] = in->maxs[j];
}
outNode->planeNum = in->planeNum;
outNode->contents = CONTENTS_NODE; // differentiate from leafs
for (j=0 ; j<2 ; j++)
{
p = in->children[j];
if (p >= 0) {
if(p < numNodes) {
outNode->children[j] = s_worldData.nodes + p;
} else {
outNode->children[j] = (mnode_s*)
(s_worldData.leafs + (p - numNodes));
}
} else {
if(numNodes + (-1 - p) < numNodes) {
outNode->children[j] = s_worldData.nodes + numNodes + (-1 - p);
} else {
outNode->children[j] = (mnode_s*)
(s_worldData.leafs + (-1 - p));
}
}
}
}
// load leafs
inLeaf = (dleaf_t *)(leafs);
for ( i=0 ; i<numLeafs ; i++, inLeaf++, outLeaf++)
{
for (j=0 ; j<3 ; j++)
{
outLeaf->mins[j] = inLeaf->mins[j];
outLeaf->maxs[j] = inLeaf->maxs[j];
}
outLeaf->cluster = inLeaf->cluster;
outLeaf->area = inLeaf->area;
if ( outLeaf->cluster >= s_worldData.numClusters ) {
s_worldData.numClusters = outLeaf->cluster + 1;
}
outLeaf->firstMarkSurfNum = inLeaf->firstLeafSurface;
outLeaf->nummarksurfaces = inLeaf->numLeafSurfaces;
}
// chain decendants
R_SetParent (s_worldData.nodes, NULL);
}
//=============================================================================
/*
=================
R_LoadShaders
=================
*/
void R_LoadShaders( void *data, int len) {
dshader_t *in, *out;
int i, count;
in = (dshader_t *)(data);
if (len % sizeof(*in)) {
Com_Error (ERR_DROP, "CMod_LoadShaders: funny lump size");
}
count = len / sizeof(*in);
if (count < 1) {
Com_Error (ERR_DROP, "Map with no shaders");
}
out = (dshader_t *)Hunk_Alloc( count*sizeof(*out), h_low);
s_worldData.shaders = out;
s_worldData.numShaders = count;
Com_Memcpy( out, in, count*sizeof(*out) );
for ( i = 0; i < count; i++, in++, out++ )
{
// Q_strncpyz(out->shader, in->shader, MAX_QPATH);
out->contentFlags = in->contentFlags;
out->surfaceFlags = in->surfaceFlags;
}
}
/*
=================
R_LoadMarksurfaces
=================
*/
static void R_LoadMarksurfaces (void *data, int len)
{
int i, count;
int *in;
msurface_t **out;
in = (int *)(data);
if (len % sizeof(*in))
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = len / sizeof(*in);
out = (struct msurface_s **) Hunk_Alloc ( count*sizeof(*out), h_low );
s_worldData.marksurfaces = out;
s_worldData.nummarksurfaces = count;
for ( i=0 ; i<count ; i++)
{
if(in[i] > s_worldData.numsurfaces)
assert(0);
out[i] = s_worldData.surfaces + in[i];
if (out[i]->shader && out[i]->shader->sort == SS_PORTAL)
{
s_worldData.portalPresent = qtrue;
}
}
}
/*
=================
R_LoadPlanes
=================
*/
static void R_LoadPlanes( void *data, int len ) {
int i, j;
cplane_t *out;
dplane_t *in;
int count;
int bits;
in = (dplane_t *)(data);
if (len % sizeof(*in))
Com_Error (ERR_DROP, "LoadMap: funny lump size");
count = len / sizeof(*in);
if (count < 1)
Com_Error (ERR_DROP, "Map with no planes");
out = (struct cplane_s *) Hunk_Alloc( count * 2 * sizeof( *out ), h_low);
s_worldData.planes = out;
s_worldData.numplanes = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
bits = 0;
for (j=0 ; j<3 ; j++)
{
out->normal[j] = in->normal[j];
if (out->normal[j] < 0)
bits |= 1<<j;
}
out->dist = in->dist;
out->type = PlaneTypeForNormal( out->normal );
out->signbits = bits;
}
}
/*
=================
R_LoadFogs
=================
*/
static void R_LoadFogs( void *fogdata, int foglen,
void *brushdata, int brushlen,
void *sidedata, int sidelen ) {
int i;
fog_t *out;
dfog_t *fogs;
dbrush_t *brushes, *brush;
dbrushside_t *sides;
int count, brushesCount, sidesCount;
int sideNum;
int planeNum;
shader_t *shader;
float d;
int firstSide=0;
int lightmaps[MAXLIGHTMAPS] = { LIGHTMAP_NONE } ;
fogs = (dfog_t *)(fogdata);
if (foglen % sizeof(*fogs)) {
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
count = foglen / sizeof(*fogs);
// create fog structres for them
// NOTE: we allocate memory for an extra one so that the LA goggles can turn on their own fog
s_worldData.numfogs = count + 1;
s_worldData.fogs = (fog_t *)Hunk_Alloc (( s_worldData.numfogs + 1)*sizeof(*out), h_low );
s_worldData.globalFog = -1;
out = s_worldData.fogs + 1;
if ( !count ) {
return;
}
brushes = (dbrush_t *)(brushdata);
if (brushlen % sizeof(*brushes)) {
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
brushesCount = brushlen / sizeof(*brushes);
sides = (dbrushside_t *)(sidedata);
if (sidelen % sizeof(*sides)) {
Com_Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
sidesCount = sidelen / sizeof(*sides);
for ( i=0 ; i<count ; i++, fogs++) {
out->originalBrushNumber = fogs->brushNum;
if (out->originalBrushNumber == -1)
{
out->bounds[0][0] = out->bounds[0][1] = out->bounds[0][2] = MIN_WORLD_COORD;
out->bounds[1][0] = out->bounds[1][1] = out->bounds[1][2] = MAX_WORLD_COORD;
s_worldData.globalFog = i+1;
}
else
{
if ( (unsigned)out->originalBrushNumber >= brushesCount ) {
Com_Error( ERR_DROP, "fog brushNumber out of range" );
}
brush = brushes + out->originalBrushNumber;
firstSide = brush->firstSide;
if ( (unsigned)firstSide > sidesCount - 6 ) {
Com_Error( ERR_DROP, "fog brush sideNumber out of range" );
}
// brushes are always sorted with the axial sides first
sideNum = firstSide + 0;
planeNum = sides[ sideNum ].planeNum;
out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 1;
planeNum = sides[ sideNum ].planeNum;
out->bounds[1][0] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 2;
planeNum = sides[ sideNum ].planeNum;
out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 3;
planeNum = sides[ sideNum ].planeNum;
out->bounds[1][1] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 4;
planeNum = sides[ sideNum ].planeNum;
out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 5;
planeNum = sides[ sideNum ].planeNum;
out->bounds[1][2] = s_worldData.planes[ planeNum ].dist;
}
// get information from the shader for fog parameters
shader = R_FindShader( fogs->shader, lightmaps, stylesDefault, qtrue );
if (!shader->fogParms)
{//bad shader!!
assert(shader->fogParms);
out->parms.color[0] = 1.0f;
out->parms.color[1] = 0.0f;
out->parms.color[2] = 0.0f;
out->parms.color[3] = 0.0f;
out->parms.depthForOpaque = 250.0f;
}
else
{
out->parms = *shader->fogParms;
}
out->colorInt = ColorBytes4 ( out->parms.color[0] * tr.identityLight,
out->parms.color[1] * tr.identityLight,
out->parms.color[2] * tr.identityLight, 1.0 );
d = out->parms.depthForOpaque < 1 ? 1 : out->parms.depthForOpaque;
out->tcScale = 1.0 / ( d * 8 );
// set the gradient vector
sideNum = fogs->visibleSide;
if ( sideNum == -1 ) {
out->hasSurface = qfalse;
} else {
out->hasSurface = qtrue;
planeNum = sides[ firstSide + sideNum ].planeNum;
VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface );
out->surface[3] = -s_worldData.planes[ planeNum ].dist;
}
out++;
}
// Initialise the last fog so we can use it with the LA Goggles
// NOTE: We are might appear to be off the end of the array, but we allocated an extra memory slot above but [purposely] didn't
// increment the total world numFogs to match our array size
VectorSet(out->bounds[0], MIN_WORLD_COORD, MIN_WORLD_COORD, MIN_WORLD_COORD);
VectorSet(out->bounds[1], MAX_WORLD_COORD, MAX_WORLD_COORD, MAX_WORLD_COORD);
out->originalBrushNumber = -1;
out->parms.color[0] = 0.0f;
out->parms.color[1] = 0.0f;
out->parms.color[2] = 0.0f;
out->parms.color[3] = 0.0f;
out->parms.depthForOpaque = 0.0f;
out->colorInt = 0x00000000;
out->tcScale = 0.0f;
out->hasSurface = false;
}
/*
================
R_LoadLightGrid
================
*/
void R_LoadLightGrid( void *data, int len ) {
vec3_t maxs;
world_t *w;
int i;
float *wMins, *wMaxs;
w = &s_worldData;
w->lightGridInverseSize[0] = 1.0 / w->lightGridSize[0];
w->lightGridInverseSize[1] = 1.0 / w->lightGridSize[1];
w->lightGridInverseSize[2] = 1.0 / w->lightGridSize[2];
wMins = w->bmodels[0].bounds[0];
wMaxs = w->bmodels[0].bounds[1];
for ( i = 0 ; i < 3 ; i++ ) {
w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] );
maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] );
w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1;
}
w->lightGridData = (mgrid_t *)Hunk_Alloc( len, h_low );
memcpy( w->lightGridData, data, len );
}
/*
================
R_LoadLightGridArray
================
*/
void R_LoadLightGridArray( void *data, int len ) {
world_t *w;
w = &s_worldData;
w->numGridArrayElements = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2];
if ( len != w->numGridArrayElements * sizeof(*w->lightGridArray) ) {
if (len>0)//don't warn if not even lit
Com_Printf( "WARNING: light grid array mismatch\n" );
w->lightGridData = NULL;
return;
}
w->lightGridArray = (unsigned short *)Hunk_Alloc( len, h_low );
memcpy( w->lightGridArray, data, len );
}
/*
================
R_LoadEntities
================
*/
void R_LoadEntities( void *data, int len ) {
const char *p, *token;
char keyname[MAX_TOKEN_CHARS];
char value[MAX_TOKEN_CHARS];
world_t *w;
w = &s_worldData;
w->lightGridSize[0] = 64;
w->lightGridSize[1] = 64;
w->lightGridSize[2] = 128;
VectorSet(tr.sunAmbient, 1, 1, 1);
tr.distanceCull = 6000;//DEFAULT_DISTANCE_CULL;
p = (char *)(data);
// store for reference by the cgame
w->entityString = (char *)Hunk_Alloc( len + 1, h_low );
strcpy( w->entityString, p );
w->entityParsePoint = w->entityString;
token = COM_ParseExt( &p, qtrue );
if (!*token || *token != '{') {
return;
}
// only parse the world spawn
while ( 1 ) {
// parse key
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(keyname, token, sizeof(keyname));
// parse value
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(value, token, sizeof(value));
if (!Q_stricmp(keyname, "distanceCull")) {
sscanf(value, "%f", &tr.distanceCull );
continue;
}
// check for a different grid size
if (!Q_stricmp(keyname, "gridsize")) {
sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] );
continue;
}
// find the optional world ambient for arioche
if (!Q_stricmp(keyname, "_color")) {
sscanf(value, "%f %f %f", &tr.sunAmbient[0], &tr.sunAmbient[1], &tr.sunAmbient[2] );
continue;
}
}
}
/*
=================
R_GetEntityToken
=================
*/
qboolean R_GetEntityToken( char *buffer, int size ) {
const char *s;
if (size == -1)
{ //force reset
s_worldData.entityParsePoint = s_worldData.entityString;
return qtrue;
}
s = COM_Parse( (const char **) &s_worldData.entityParsePoint );
Q_strncpyz( buffer, s, size );
if ( !s_worldData.entityParsePoint || !s[0] ) {
return qfalse;
} else {
return qtrue;
}
}
/*
=================
RE_LoadWorldMap
Called directly from cgame
=================
*/
void RE_LoadWorldMap_Actual( const char *name, world_t &worldData, int index ) {
char stripName[MAX_QPATH];
Lump outputLumps[3];
if ( tr.worldMapLoaded ) {
Com_Error( ERR_DROP, "ERROR: attempted to redundantly load world map\n" );
}
skyboxportal = 0;
// set default sun direction to be used if it isn't
// overridden by a shader
tr.sunDirection[0] = 0.45f;
tr.sunDirection[1] = 0.3f;
tr.sunDirection[2] = 0.9f;
Cvar_SetValue( "r_sundir_x", tr.sunDirection[0] );
Cvar_SetValue( "r_sundir_y", tr.sunDirection[1] );
Cvar_SetValue( "r_sundir_z", tr.sunDirection[2] );
VectorNormalize( tr.sunDirection );
tr.worldMapLoaded = qtrue;
// clear tr.world so if the level fails to load, the next
// try will not look at the partially loaded version
tr.world = NULL;
memset( &s_worldData, 0, sizeof( s_worldData ) );
Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) );
Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) );
COM_StripExtension( s_worldData.baseName, s_worldData.baseName );
COM_StripExtension(name, stripName);
c_gridVerts = 0;
// load into heap
outputLumps[0].load(stripName, "shaders");
R_LoadShaders(outputLumps[0].data, outputLumps[0].len);
outputLumps[0].load(stripName, "lightmaps");
R_LoadLightmaps(outputLumps[0].data, outputLumps[0].len, name);
outputLumps[0].load(stripName, "planes");
R_LoadPlanes(outputLumps[0].data, outputLumps[0].len);
outputLumps[0].load(stripName, "fogs");
outputLumps[1].load(stripName, "brushes");
outputLumps[2].load(stripName, "brushsides");
R_LoadFogs( outputLumps[0].data, outputLumps[0].len,
outputLumps[1].data, outputLumps[1].len,
outputLumps[2].data, outputLumps[2].len );
outputLumps[2].clear();
outputLumps[1].clear();
Lump misc;
misc.load(stripName, "misc");
int num_surfs = *(int*)misc.data;
misc.clear();
R_LoadSurfaces(num_surfs);
Lump verts;
verts.load(stripName, "verts");
Lump patches;
patches.load(stripName, "patches");
R_LoadPatches(verts.data, verts.len, patches.data, patches.len);
patches.clear();
Lump indexes;
indexes.load(stripName, "indexes");
Lump trisurfs;
trisurfs.load(stripName, "trisurfs");
R_LoadTriSurfs(indexes.data, indexes.len, verts.data, verts.len, trisurfs.data, trisurfs.len);
trisurfs.clear();
Lump faces;
faces.load(stripName, "faces");
R_LoadFaces(indexes.data, indexes.len, verts.data, verts.len, faces.data, faces.len);
Lump flares;
flares.load(stripName, "flares");
R_LoadFlares(flares.data, flares.len);
outputLumps[0].load(stripName, "leafsurfaces");
R_LoadMarksurfaces (outputLumps[0].data, outputLumps[0].len);
outputLumps[0].load(stripName, "nodes");
outputLumps[1].load(stripName, "leafs");
R_LoadNodesAndLeafs (outputLumps[0].data, outputLumps[0].len,
outputLumps[1].data, outputLumps[1].len);
outputLumps[1].clear();
outputLumps[0].load(stripName, "models");
R_LoadSubmodels (outputLumps[0].data, outputLumps[0].len);
outputLumps[0].load(stripName, "visibility");
R_LoadVisibility(outputLumps[0].data, outputLumps[0].len);
outputLumps[0].load(stripName, "entities");
R_LoadEntities( outputLumps[0].data, outputLumps[0].len );
outputLumps[0].load(stripName, "lightgrid");
R_LoadLightGrid( outputLumps[0].data, outputLumps[0].len );
outputLumps[0].load(stripName, "lightarray");
R_LoadLightGridArray( outputLumps[0].data, outputLumps[0].len );
// only set tr.world now that we know the entire level has loaded properly
tr.world = &s_worldData;
// Load the light parms for this level
R_LoadLevelLightParms();
R_GetLightParmsForLevel();
}
// new wrapper used for convenience to tell z_malloc()-fail recovery code whether it's safe to dump the cached-bsp or not.
//
extern qboolean gbUsingCachedMapDataRightNow;
void RE_LoadWorldMap( const char *name )
{
gbUsingCachedMapDataRightNow = qtrue; // !!!!!!!!!!!!
RE_LoadWorldMap_Actual( name, s_worldData, 0 );
gbUsingCachedMapDataRightNow = qfalse; // !!!!!!!!!!!!
}