gtkradiant/tools/quake3/q3map2/minimap.c

779 lines
20 KiB
C

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* dependencies */
#include "q3map2.h"
/* minimap stuff */
typedef struct minimap_s
{
bspModel_t *model;
int width;
int height;
int samples;
float *sample_offsets;
float sharpen_boxmult;
float sharpen_centermult;
float boost, brightness, contrast;
float *data1f;
float *sharpendata1f;
vec3_t mins, size;
}
minimap_t;
static minimap_t minimap;
qboolean BrushIntersectionWithLine( bspBrush_t *brush, vec3_t start, vec3_t dir, float *t_in, float *t_out ){
int i;
qboolean in = qfalse, out = qfalse;
bspBrushSide_t *sides = &bspBrushSides[brush->firstSide];
for ( i = 0; i < brush->numSides; ++i )
{
bspPlane_t *p = &bspPlanes[sides[i].planeNum];
float sn = DotProduct( start, p->normal );
float dn = DotProduct( dir, p->normal );
if ( dn == 0 ) {
if ( sn > p->dist ) {
return qfalse; // outside!
}
}
else
{
float t = ( p->dist - sn ) / dn;
if ( dn < 0 ) {
if ( !in || t > *t_in ) {
*t_in = t;
in = qtrue;
// as t_in can only increase, and t_out can only decrease, early out
if ( out && *t_in >= *t_out ) {
return qfalse;
}
}
}
else
{
if ( !out || t < *t_out ) {
*t_out = t;
out = qtrue;
// as t_in can only increase, and t_out can only decrease, early out
if ( in && *t_in >= *t_out ) {
return qfalse;
}
}
}
}
}
return in && out;
}
static float MiniMapSample( float x, float y ){
vec3_t org, dir;
int i, bi;
float t0, t1;
float samp;
bspBrush_t *b;
bspBrushSide_t *s;
int cnt;
org[0] = x;
org[1] = y;
org[2] = 0;
dir[0] = 0;
dir[1] = 0;
dir[2] = 1;
cnt = 0;
samp = 0;
for ( i = 0; i < minimap.model->numBSPBrushes; ++i )
{
bi = minimap.model->firstBSPBrush + i;
if ( opaqueBrushes[bi >> 3] & ( 1 << ( bi & 7 ) ) ) {
b = &bspBrushes[bi];
// sort out mins/maxs of the brush
s = &bspBrushSides[b->firstSide];
if ( x < -bspPlanes[s[0].planeNum].dist ) {
continue;
}
if ( x > +bspPlanes[s[1].planeNum].dist ) {
continue;
}
if ( y < -bspPlanes[s[2].planeNum].dist ) {
continue;
}
if ( y > +bspPlanes[s[3].planeNum].dist ) {
continue;
}
if ( BrushIntersectionWithLine( b, org, dir, &t0, &t1 ) ) {
samp += t1 - t0;
++cnt;
}
}
}
return samp;
}
void RandomVector2f( float v[2] ){
do
{
v[0] = 2 * Random() - 1;
v[1] = 2 * Random() - 1;
}
while ( v[0] * v[0] + v[1] * v[1] > 1 );
}
static void MiniMapRandomlySupersampled( int y ){
int x, i;
float *p = &minimap.data1f[y * minimap.width];
float ymin = minimap.mins[1] + minimap.size[1] * ( y / (float) minimap.height );
float dx = minimap.size[0] / (float) minimap.width;
float dy = minimap.size[1] / (float) minimap.height;
float uv[2];
float thisval;
for ( x = 0; x < minimap.width; ++x )
{
float xmin = minimap.mins[0] + minimap.size[0] * ( x / (float) minimap.width );
float val = 0;
for ( i = 0; i < minimap.samples; ++i )
{
RandomVector2f( uv );
thisval = MiniMapSample(
xmin + ( uv[0] + 0.5 ) * dx, /* exaggerated random pattern for better results */
ymin + ( uv[1] + 0.5 ) * dy /* exaggerated random pattern for better results */
);
val += thisval;
}
val /= minimap.samples * minimap.size[2];
*p++ = val;
}
}
static void MiniMapSupersampled( int y ){
int x, i;
float *p = &minimap.data1f[y * minimap.width];
float ymin = minimap.mins[1] + minimap.size[1] * ( y / (float) minimap.height );
float dx = minimap.size[0] / (float) minimap.width;
float dy = minimap.size[1] / (float) minimap.height;
for ( x = 0; x < minimap.width; ++x )
{
float xmin = minimap.mins[0] + minimap.size[0] * ( x / (float) minimap.width );
float val = 0;
for ( i = 0; i < minimap.samples; ++i )
{
float thisval = MiniMapSample(
xmin + minimap.sample_offsets[2 * i + 0] * dx,
ymin + minimap.sample_offsets[2 * i + 1] * dy
);
val += thisval;
}
val /= minimap.samples * minimap.size[2];
*p++ = val;
}
}
static void MiniMapNoSupersampling( int y ){
int x;
float *p = &minimap.data1f[y * minimap.width];
float ymin = minimap.mins[1] + minimap.size[1] * ( ( y + 0.5 ) / (float) minimap.height );
for ( x = 0; x < minimap.width; ++x )
{
float xmin = minimap.mins[0] + minimap.size[0] * ( ( x + 0.5 ) / (float) minimap.width );
*p++ = MiniMapSample( xmin, ymin ) / minimap.size[2];
}
}
static void MiniMapSharpen( int y ){
int x;
qboolean up = ( y > 0 );
qboolean down = ( y < minimap.height - 1 );
float *p = &minimap.data1f[y * minimap.width];
float *q = &minimap.sharpendata1f[y * minimap.width];
for ( x = 0; x < minimap.width; ++x )
{
qboolean left = ( x > 0 );
qboolean right = ( x < minimap.width - 1 );
float val = p[0] * minimap.sharpen_centermult;
if ( left && up ) {
val += p[-1 - minimap.width] * minimap.sharpen_boxmult;
}
if ( left && down ) {
val += p[-1 + minimap.width] * minimap.sharpen_boxmult;
}
if ( right && up ) {
val += p[+1 - minimap.width] * minimap.sharpen_boxmult;
}
if ( right && down ) {
val += p[+1 + minimap.width] * minimap.sharpen_boxmult;
}
if ( left ) {
val += p[-1] * minimap.sharpen_boxmult;
}
if ( right ) {
val += p[+1] * minimap.sharpen_boxmult;
}
if ( up ) {
val += p[-minimap.width] * minimap.sharpen_boxmult;
}
if ( down ) {
val += p[+minimap.width] * minimap.sharpen_boxmult;
}
++p;
*q++ = val;
}
}
static void MiniMapContrastBoost( int y ){
int x;
float *q = &minimap.data1f[y * minimap.width];
for ( x = 0; x < minimap.width; ++x )
{
*q = *q * minimap.boost / ( ( minimap.boost - 1 ) * *q + 1 );
++q;
}
}
static void MiniMapBrightnessContrast( int y ){
int x;
float *q = &minimap.data1f[y * minimap.width];
for ( x = 0; x < minimap.width; ++x )
{
*q = *q * minimap.contrast + minimap.brightness;
++q;
}
}
void MiniMapMakeMinsMaxs( vec3_t mins_in, vec3_t maxs_in, float border, qboolean keepaspect ){
vec3_t mins, maxs, extend;
VectorCopy( mins_in, mins );
VectorCopy( maxs_in, maxs );
// line compatible to nexuiz mapinfo
Sys_Printf( "size %f %f %f %f %f %f\n", mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2] );
if ( keepaspect ) {
VectorSubtract( maxs, mins, extend );
if ( extend[1] > extend[0] ) {
mins[0] -= ( extend[1] - extend[0] ) * 0.5;
maxs[0] += ( extend[1] - extend[0] ) * 0.5;
}
else
{
mins[1] -= ( extend[0] - extend[1] ) * 0.5;
maxs[1] += ( extend[0] - extend[1] ) * 0.5;
}
}
/* border: amount of black area around the image */
/* input: border, 1-2*border, border but we need border/(1-2*border) */
VectorSubtract( maxs, mins, extend );
VectorScale( extend, border / ( 1 - 2 * border ), extend );
VectorSubtract( mins, extend, mins );
VectorAdd( maxs, extend, maxs );
VectorCopy( mins, minimap.mins );
VectorSubtract( maxs, mins, minimap.size );
// line compatible to nexuiz mapinfo
Sys_Printf( "size_texcoords %f %f %f %f %f %f\n", mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2] );
}
/*
MiniMapSetupBrushes()
determines solid non-sky brushes in the world
*/
void MiniMapSetupBrushes( void ){
SetupBrushesFlags( C_SOLID | C_SKY, C_SOLID, 0, 0 );
// at least one must be solid
// none may be sky
// not all may be nodraw
}
qboolean MiniMapEvaluateSampleOffsets( int *bestj, int *bestk, float *bestval ){
float val, dx, dy;
int j, k;
*bestj = *bestk = -1;
*bestval = 3; /* max possible val is 2 */
for ( j = 0; j < minimap.samples; ++j )
for ( k = j + 1; k < minimap.samples; ++k )
{
dx = minimap.sample_offsets[2 * j + 0] - minimap.sample_offsets[2 * k + 0];
dy = minimap.sample_offsets[2 * j + 1] - minimap.sample_offsets[2 * k + 1];
if ( dx > +0.5 ) {
dx -= 1;
}
if ( dx < -0.5 ) {
dx += 1;
}
if ( dy > +0.5 ) {
dy -= 1;
}
if ( dy < -0.5 ) {
dy += 1;
}
val = dx * dx + dy * dy;
if ( val < *bestval ) {
*bestj = j;
*bestk = k;
*bestval = val;
}
}
return *bestval < 3;
}
void MiniMapMakeSampleOffsets(){
int i, j, k, jj, kk;
float val, valj, valk, sx, sy, rx, ry;
Sys_Printf( "Generating good sample offsets (this may take a while)...\n" );
/* start with entirely random samples */
for ( i = 0; i < minimap.samples; ++i )
{
minimap.sample_offsets[2 * i + 0] = Random();
minimap.sample_offsets[2 * i + 1] = Random();
}
for ( i = 0; i < 1000; ++i )
{
if ( MiniMapEvaluateSampleOffsets( &j, &k, &val ) ) {
sx = minimap.sample_offsets[2 * j + 0];
sy = minimap.sample_offsets[2 * j + 1];
minimap.sample_offsets[2 * j + 0] = rx = Random();
minimap.sample_offsets[2 * j + 1] = ry = Random();
if ( !MiniMapEvaluateSampleOffsets( &jj, &kk, &valj ) ) {
valj = -1;
}
minimap.sample_offsets[2 * j + 0] = sx;
minimap.sample_offsets[2 * j + 1] = sy;
sx = minimap.sample_offsets[2 * k + 0];
sy = minimap.sample_offsets[2 * k + 1];
minimap.sample_offsets[2 * k + 0] = rx;
minimap.sample_offsets[2 * k + 1] = ry;
if ( !MiniMapEvaluateSampleOffsets( &jj, &kk, &valk ) ) {
valk = -1;
}
minimap.sample_offsets[2 * k + 0] = sx;
minimap.sample_offsets[2 * k + 1] = sy;
if ( valj > valk ) {
if ( valj > val ) {
/* valj is the greatest */
minimap.sample_offsets[2 * j + 0] = rx;
minimap.sample_offsets[2 * j + 1] = ry;
i = -1;
}
else
{
/* valj is the greater and it is useless - forget it */
}
}
else
{
if ( valk > val ) {
/* valk is the greatest */
minimap.sample_offsets[2 * k + 0] = rx;
minimap.sample_offsets[2 * k + 1] = ry;
i = -1;
}
else
{
/* valk is the greater and it is useless - forget it */
}
}
}
else{
break;
}
}
}
void MergeRelativePath( char *out, const char *absolute, const char *relative ){
const char *endpos = absolute + strlen( absolute );
while ( endpos != absolute && ( endpos[-1] == '/' || endpos[-1] == '\\' ) )
--endpos;
while ( relative[0] == '.' && relative[1] == '.' && ( relative[2] == '/' || relative[2] == '\\' ) )
{
relative += 3;
while ( endpos != absolute )
{
--endpos;
if ( *endpos == '/' || *endpos == '\\' ) {
break;
}
}
while ( endpos != absolute && ( endpos[-1] == '/' || endpos[-1] == '\\' ) )
--endpos;
}
memcpy( out, absolute, endpos - absolute );
out[endpos - absolute] = '/';
strcpy( out + ( endpos - absolute + 1 ), relative );
}
int MiniMapBSPMain( int argc, char **argv ){
char minimapFilename[1024];
char basename[1024];
char path[1024];
char relativeMinimapFilename[1024];
qboolean autolevel;
float minimapSharpen;
float border;
byte *data4b, *p;
float *q;
int x, y;
int i;
miniMapMode_t mode;
vec3_t mins, maxs;
qboolean keepaspect;
/* arg checking */
if ( argc < 2 ) {
Sys_Printf( "Usage: q3map [-v] -minimap [-size n] [-sharpen f] [-samples n | -random n] [-o filename.tga] [-minmax Xmin Ymin Zmin Xmax Ymax Zmax] <mapname>\n" );
return 0;
}
/* load the BSP first */
strcpy( source, ExpandArg( argv[ argc - 1 ] ) );
StripExtension( source );
DefaultExtension( source, ".bsp" );
Sys_Printf( "Loading %s\n", source );
LoadShaderInfo();
LoadBSPFile( source );
minimap.model = &bspModels[0];
VectorCopy( minimap.model->mins, mins );
VectorCopy( minimap.model->maxs, maxs );
*minimapFilename = 0;
minimapSharpen = game->miniMapSharpen;
minimap.width = minimap.height = game->miniMapSize;
border = game->miniMapBorder;
keepaspect = game->miniMapKeepAspect;
mode = game->miniMapMode;
autolevel = qfalse;
minimap.samples = 1;
minimap.sample_offsets = NULL;
minimap.boost = 1.0;
minimap.brightness = 0.0;
minimap.contrast = 1.0;
/* process arguments */
for ( i = 1; i < ( argc - 1 ); i++ )
{
if ( !strcmp( argv[ i ], "-size" ) ) {
minimap.width = minimap.height = atoi( argv[i + 1] );
i++;
Sys_Printf( "Image size set to %i\n", minimap.width );
}
else if ( !strcmp( argv[ i ], "-sharpen" ) ) {
minimapSharpen = atof( argv[i + 1] );
i++;
Sys_Printf( "Sharpening coefficient set to %f\n", minimapSharpen );
}
else if ( !strcmp( argv[ i ], "-samples" ) ) {
minimap.samples = atoi( argv[i + 1] );
i++;
Sys_Printf( "Samples set to %i\n", minimap.samples );
if ( minimap.sample_offsets ) {
free( minimap.sample_offsets );
}
minimap.sample_offsets = malloc( 2 * sizeof( *minimap.sample_offsets ) * minimap.samples );
MiniMapMakeSampleOffsets();
}
else if ( !strcmp( argv[ i ], "-random" ) ) {
minimap.samples = atoi( argv[i + 1] );
i++;
Sys_Printf( "Random samples set to %i\n", minimap.samples );
if ( minimap.sample_offsets ) {
free( minimap.sample_offsets );
}
minimap.sample_offsets = NULL;
}
else if ( !strcmp( argv[ i ], "-border" ) ) {
border = atof( argv[i + 1] );
i++;
Sys_Printf( "Border set to %f\n", border );
}
else if ( !strcmp( argv[ i ], "-keepaspect" ) ) {
keepaspect = qtrue;
Sys_Printf( "Keeping aspect ratio by letterboxing\n", border );
}
else if ( !strcmp( argv[ i ], "-nokeepaspect" ) ) {
keepaspect = qfalse;
Sys_Printf( "Not keeping aspect ratio\n", border );
}
else if ( !strcmp( argv[ i ], "-o" ) ) {
strcpy( minimapFilename, argv[i + 1] );
i++;
Sys_Printf( "Output file name set to %s\n", minimapFilename );
}
else if ( !strcmp( argv[ i ], "-minmax" ) && i < ( argc - 7 ) ) {
mins[0] = atof( argv[i + 1] );
mins[1] = atof( argv[i + 2] );
mins[2] = atof( argv[i + 3] );
maxs[0] = atof( argv[i + 4] );
maxs[1] = atof( argv[i + 5] );
maxs[2] = atof( argv[i + 6] );
i += 6;
Sys_Printf( "Map mins/maxs overridden\n" );
}
else if ( !strcmp( argv[ i ], "-gray" ) ) {
mode = MINIMAP_MODE_GRAY;
Sys_Printf( "Writing as white-on-black image\n" );
}
else if ( !strcmp( argv[ i ], "-black" ) ) {
mode = MINIMAP_MODE_BLACK;
Sys_Printf( "Writing as black alpha image\n" );
}
else if ( !strcmp( argv[ i ], "-white" ) ) {
mode = MINIMAP_MODE_WHITE;
Sys_Printf( "Writing as white alpha image\n" );
}
else if ( !strcmp( argv[ i ], "-boost" ) && i < ( argc - 2 ) ) {
minimap.boost = atof( argv[i + 1] );
i++;
Sys_Printf( "Contrast boost set to %f\n", minimap.boost );
}
else if ( !strcmp( argv[ i ], "-brightness" ) && i < ( argc - 2 ) ) {
minimap.brightness = atof( argv[i + 1] );
i++;
Sys_Printf( "Brightness set to %f\n", minimap.brightness );
}
else if ( !strcmp( argv[ i ], "-contrast" ) && i < ( argc - 2 ) ) {
minimap.contrast = atof( argv[i + 1] );
i++;
Sys_Printf( "Contrast set to %f\n", minimap.contrast );
}
else if ( !strcmp( argv[ i ], "-autolevel" ) ) {
autolevel = qtrue;
Sys_Printf( "Auto level enabled\n", border );
}
else if ( !strcmp( argv[ i ], "-noautolevel" ) ) {
autolevel = qfalse;
Sys_Printf( "Auto level disabled\n", border );
}
}
MiniMapMakeMinsMaxs( mins, maxs, border, keepaspect );
if ( !*minimapFilename ) {
ExtractFileBase( source, basename );
ExtractFilePath( source, path );
sprintf( relativeMinimapFilename, game->miniMapNameFormat, basename );
MergeRelativePath( minimapFilename, path, relativeMinimapFilename );
Sys_Printf( "Output file name automatically set to %s\n", minimapFilename );
}
ExtractFilePath( minimapFilename, path );
Q_mkdir( path );
if ( minimapSharpen >= 0 ) {
minimap.sharpen_centermult = 8 * minimapSharpen + 1;
minimap.sharpen_boxmult = -minimapSharpen;
}
minimap.data1f = safe_malloc( minimap.width * minimap.height * sizeof( *minimap.data1f ) );
data4b = safe_malloc( minimap.width * minimap.height * 4 );
if ( minimapSharpen >= 0 ) {
minimap.sharpendata1f = safe_malloc( minimap.width * minimap.height * sizeof( *minimap.data1f ) );
}
MiniMapSetupBrushes();
if ( minimap.samples <= 1 ) {
Sys_Printf( "\n--- MiniMapNoSupersampling (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapNoSupersampling );
}
else
{
if ( minimap.sample_offsets ) {
Sys_Printf( "\n--- MiniMapSupersampled (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapSupersampled );
}
else
{
Sys_Printf( "\n--- MiniMapRandomlySupersampled (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapRandomlySupersampled );
}
}
if ( minimap.boost != 1.0 ) {
Sys_Printf( "\n--- MiniMapContrastBoost (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapContrastBoost );
}
if ( autolevel ) {
Sys_Printf( "\n--- MiniMapAutoLevel (%d) ---\n", minimap.height );
float mi = 1, ma = 0;
float s, o;
// TODO threads!
q = minimap.data1f;
for ( y = 0; y < minimap.height; ++y )
for ( x = 0; x < minimap.width; ++x )
{
float v = *q++;
if ( v < mi ) {
mi = v;
}
if ( v > ma ) {
ma = v;
}
}
if ( ma > mi ) {
s = 1 / ( ma - mi );
o = mi / ( ma - mi );
// equations:
// brightness + contrast * v
// after autolevel:
// brightness + contrast * (v * s - o)
// =
// (brightness - contrast * o) + (contrast * s) * v
minimap.brightness = minimap.brightness - minimap.contrast * o;
minimap.contrast *= s;
Sys_Printf( "Auto level: Brightness changed to %f\n", minimap.brightness );
Sys_Printf( "Auto level: Contrast changed to %f\n", minimap.contrast );
}
else{
Sys_Printf( "Auto level: failed because all pixels are the same value\n" );
}
}
if ( minimap.brightness != 0 || minimap.contrast != 1 ) {
Sys_Printf( "\n--- MiniMapBrightnessContrast (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapBrightnessContrast );
}
if ( minimap.sharpendata1f ) {
Sys_Printf( "\n--- MiniMapSharpen (%d) ---\n", minimap.height );
RunThreadsOnIndividual( minimap.height, qtrue, MiniMapSharpen );
q = minimap.sharpendata1f;
}
else
{
q = minimap.data1f;
}
Sys_Printf( "\nConverting..." );
switch ( mode )
{
case MINIMAP_MODE_GRAY:
p = data4b;
for ( y = 0; y < minimap.height; ++y )
for ( x = 0; x < minimap.width; ++x )
{
byte b;
float v = *q++;
if ( v < 0 ) {
v = 0;
}
if ( v > 255.0 / 256.0 ) {
v = 255.0 / 256.0;
}
b = v * 256;
*p++ = b;
}
Sys_Printf( " writing to %s...", minimapFilename );
WriteTGAGray( minimapFilename, data4b, minimap.width, minimap.height );
break;
case MINIMAP_MODE_BLACK:
p = data4b;
for ( y = 0; y < minimap.height; ++y )
for ( x = 0; x < minimap.width; ++x )
{
byte b;
float v = *q++;
if ( v < 0 ) {
v = 0;
}
if ( v > 255.0 / 256.0 ) {
v = 255.0 / 256.0;
}
b = v * 256;
*p++ = 0;
*p++ = 0;
*p++ = 0;
*p++ = b;
}
Sys_Printf( " writing to %s...", minimapFilename );
WriteTGA( minimapFilename, data4b, minimap.width, minimap.height );
break;
case MINIMAP_MODE_WHITE:
p = data4b;
for ( y = 0; y < minimap.height; ++y )
for ( x = 0; x < minimap.width; ++x )
{
byte b;
float v = *q++;
if ( v < 0 ) {
v = 0;
}
if ( v > 255.0 / 256.0 ) {
v = 255.0 / 256.0;
}
b = v * 256;
*p++ = 255;
*p++ = 255;
*p++ = 255;
*p++ = b;
}
Sys_Printf( " writing to %s...", minimapFilename );
WriteTGA( minimapFilename, data4b, minimap.width, minimap.height );
break;
}
Sys_Printf( " done.\n" );
/* return to sender */
return 0;
}