gtkradiant/tools/quake2/qdata_heretic2/fmodels.c

3312 lines
79 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "qd_fmodel.h"
#include "animcomp.h"
#include "qd_skeletons.h"
#include "skeletons.h"
#include "qdata.h"
#include "flex.h"
#include "reference.h"
#include <assert.h>
/*
========================================================================
.FM triangle flexible model file format
========================================================================
*/
//=================================================================
#define NUMVERTEXNORMALS 162
extern float avertexnormals[NUMVERTEXNORMALS][3];
#define MAX_GROUPS 128
typedef struct
{
triangle_t triangle;
int group;
} trigroup_t;
#define TRIVERT_DIST .1
typedef struct
{
int start_frame;
int num_frames;
int degrees;
char *mat;
char *ccomp;
char *cbase;
float *cscale;
float *coffset;
float trans[3];
float scale[3];
float bmin[3];
float bmax[3];
} fmgroup_t;
//================================================================
// Initial
fmheader_t fmheader;
// Skin
extern char g_skins[MAX_FM_SKINS][64];
// ST Coord
extern fmstvert_t base_st[MAX_FM_VERTS];
// Triangles
extern fmtriangle_t triangles[MAX_FM_TRIANGLES];
// Frames
fmframe_t g_frames[MAX_FM_FRAMES];
//fmframe_t *g_FMframes;
// GL Commands
extern int commands[16384];
extern int numcommands;
//
// varibles set by commands
//
extern float scale_up; // set by $scale
extern vec3_t adjust; // set by $origin
extern int g_fixedwidth, g_fixedheight; // set by $skinsize
extern char modelname[64]; // set by $modelname
extern char *g_outputDir;
// Mesh Nodes
mesh_node_t *pmnodes = NULL;
fmmeshnode_t mesh_nodes[MAX_FM_MESH_NODES];
fmgroup_t groups[MAX_GROUPS];
int num_groups;
int frame_to_group[MAX_FM_FRAMES];
//
// variables set by command line arguments
//
qboolean g_no_opimizations = false;
//
// base frame info
//
static int triangle_st[MAX_FM_TRIANGLES][3][2];
// number of gl vertices
extern int numglverts;
// indicates if a triangle has already been used in a glcmd
extern int used[MAX_FM_TRIANGLES];
// indicates if a triangle has translucency in it or not
static qboolean translucent[MAX_FM_TRIANGLES];
// main output file handle
extern FILE *headerouthandle;
// output sizes of buildst()
static int skin_width, skin_height;
// statistics
static int total_skin_pixels;
static int skin_pixels_used;
int ShareVertex( trigroup_t trione, trigroup_t tritwo );
float DistBetween( vec3_t point1, vec3_t point2 );
int GetNumTris( trigroup_t *tris, int group );
void GetOneGroup( trigroup_t *tris, int grp, triangle_t* triangles );
void ScaleTris( vec3_t min, vec3_t max, int Width, int Height, float* u, float* v, int verts );
void NewDrawLine( int x1, int y1, int x2, int y2, unsigned char* picture, int width, int height );
#ifndef _WIN32
void strupr( char *string ){
int i;
for ( i = 0 ; i < strlen( string ); i++ )
toupper( string[i] );
return;
}
#endif
//==============================================================
/*
===============
ClearModel
===============
*/
static void ClearModel( void ){
memset( &fmheader, 0, sizeof( fmheader ) );
modelname[0] = 0;
scale_up = 1.0;
VectorCopy( vec3_origin, adjust );
g_fixedwidth = g_fixedheight = 0;
g_skipmodel = false;
num_groups = 0;
if ( pmnodes ) {
free( pmnodes );
pmnodes = NULL;
}
ClearSkeletalModel();
}
extern void H_printf( char *fmt, ... );
void WriteHeader( FILE *FH, char *Ident, int Version, int Size, void *Data ){
header_t header;
static long pos = -1;
long CurrentPos;
if ( Size == 0 ) { // Don't write out empty packets
return;
}
if ( pos != -1 ) {
CurrentPos = ftell( FH );
Size = CurrentPos - pos + sizeof( header_t );
fseek( FH, pos, SEEK_SET );
pos = -2;
}
else if ( Size == -1 ) {
pos = ftell( FH );
}
memset( &header,0,sizeof( header ) );
strcpy( header.ident,Ident );
header.version = Version;
header.size = Size;
SafeWrite( FH, &header, sizeof( header ) );
if ( Data ) {
SafeWrite( FH, Data, Size );
}
if ( pos == -2 ) {
pos = -1;
fseek( FH, 0, SEEK_END );
}
}
/*
============
WriteModelFile
============
*/
static void WriteModelFile( FILE *modelouthandle ){
int i;
int j, k;
fmframe_t *in;
fmaliasframe_t *out;
byte buffer[MAX_FM_VERTS * 4 + 128];
float v;
int c_on, c_off;
IntListNode_t *current, *toFree;
qboolean framesWritten = false;
size_t temp,size = 0;
// probably should do this dynamically one of these days
struct
{
float scale[3]; // multiply byte verts by this
float translate[3]; // then add this
} outFrames[MAX_FM_FRAMES];
#define DATA_SIZE 0x60000 // 384K had better be enough, particularly for the reference points
byte data[DATA_SIZE];
byte data2[DATA_SIZE];
fmheader.num_glcmds = numcommands;
fmheader.framesize = (int)&( (fmaliasframe_t *)0 )->verts[fmheader.num_xyz];
WriteHeader( modelouthandle, FM_HEADER_NAME, FM_HEADER_VER, sizeof( fmheader ), &fmheader );
//
// write out the skin names
//
WriteHeader( modelouthandle, FM_SKIN_NAME, FM_SKIN_VER, fmheader.num_skins * MAX_FM_SKINNAME, g_skins );
//
// write out the texture coordinates
//
c_on = c_off = 0;
for ( i = 0 ; i < fmheader.num_st ; i++ )
{
base_st[i].s = LittleShort( base_st[i].s );
base_st[i].t = LittleShort( base_st[i].t );
}
WriteHeader( modelouthandle, FM_ST_NAME, FM_ST_VER, fmheader.num_st * sizeof( base_st[0] ), base_st );
//
// write out the triangles
//
WriteHeader( modelouthandle, FM_TRI_NAME, FM_TRI_VER, fmheader.num_tris * sizeof( fmtriangle_t ), NULL );
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
int j;
fmtriangle_t tri;
for ( j = 0 ; j < 3 ; j++ )
{
tri.index_xyz[j] = LittleShort( triangles[i].index_xyz[j] );
tri.index_st[j] = LittleShort( triangles[i].index_st[j] );
}
SafeWrite( modelouthandle, &tri, sizeof( tri ) );
}
if ( !num_groups ) {
//
// write out the frames
//
WriteHeader( modelouthandle, FM_FRAME_NAME, FM_FRAME_VER, fmheader.num_frames * fmheader.framesize, NULL );
// WriteHeader(modelouthandle, FM_FRAME_NAME, FM_FRAME_VER, -1, NULL);
for ( i = 0 ; i < fmheader.num_frames ; i++ )
{
in = &g_frames[i];
out = (fmaliasframe_t *)buffer;
strcpy( out->name, in->name );
for ( j = 0 ; j < 3 ; j++ )
{
out->scale[j] = ( in->maxs[j] - in->mins[j] ) / 255;
out->translate[j] = in->mins[j];
outFrames[i].scale[j] = out->scale[j];
outFrames[i].translate[j] = out->translate[j];
}
for ( j = 0 ; j < fmheader.num_xyz ; j++ )
{
// all of these are byte values, so no need to deal with endianness
out->verts[j].lightnormalindex = in->v[j].lightnormalindex;
for ( k = 0 ; k < 3 ; k++ )
{
// scale to byte values & min/max check
v = Q_rint( ( in->v[j].v[k] - out->translate[k] ) / out->scale[k] );
// clamp, so rounding doesn't wrap from 255.6 to 0
if ( v > 255.0 ) {
v = 255.0;
}
if ( v < 0 ) {
v = 0;
}
out->verts[j].v[k] = v;
}
}
for ( j = 0 ; j < 3 ; j++ )
{
out->scale[j] = LittleFloat( out->scale[j] );
out->translate[j] = LittleFloat( out->translate[j] );
}
SafeWrite( modelouthandle, out, fmheader.framesize );
}
// Go back and finish the header
// WriteHeader(modelouthandle, FM_FRAME_NAME, FM_FRAME_VER, -1, NULL);
}
else
{
WriteHeader( modelouthandle, FM_SHORT_FRAME_NAME, FM_SHORT_FRAME_VER,FRAME_NAME_LEN * fmheader.num_frames, NULL );
for ( i = 0 ; i < fmheader.num_frames ; i++ )
{
in = &g_frames[i];
SafeWrite( modelouthandle,in->name,FRAME_NAME_LEN );
}
WriteHeader( modelouthandle, FM_NORMAL_NAME, FM_NORMAL_VER,fmheader.num_xyz, NULL );
in = &g_frames[0];
for ( j = 0 ; j < fmheader.num_xyz ; j++ )
SafeWrite( modelouthandle,&in->v[j].lightnormalindex,1 );
}
//
// write out glcmds
//
WriteHeader( modelouthandle, FM_GLCMDS_NAME, FM_GLCMDS_VER, numcommands * 4, commands );
//
// write out mesh nodes
//
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{
memcpy( mesh_nodes[i].tris, pmnodes[i].tris, sizeof( mesh_nodes[i].tris ) );
memcpy( mesh_nodes[i].verts, pmnodes[i].verts, sizeof( mesh_nodes[i].verts ) );
mesh_nodes[i].start_glcmds = LittleShort( (short)pmnodes[i].start_glcmds );
mesh_nodes[i].num_glcmds = LittleShort( (short)pmnodes[i].num_glcmds );
}
WriteHeader( modelouthandle, FM_MESH_NAME, FM_MESH_VER, sizeof( fmmeshnode_t ) * fmheader.num_mesh_nodes, mesh_nodes );
if ( num_groups ) {
/*
typedef struct
{
int start_frame;
int num_frames;
int degrees;
char *mat; fmheader.num_xyz*3*g->degrees*sizeof(char)
char *ccomp; g->num_frames*g->degrees*sizeof(char)
char *cbase; fmheader.num_xyz*3*sizeof(unsigned char)
float *cscale; g->degrees*sizeof(float)
float *coffset; g->degrees*sizeof(float)
float trans[3]; 3*sizeof(float)
float scale[3]; 3*sizeof(float)
} fmgroup_t;
*/
int tmp,k;
fmgroup_t *g;
size = sizeof( int ) + fmheader.num_frames * sizeof( int );
for ( k = 0; k < num_groups; k++ )
{
g = &groups[k];
size += sizeof( int ) * 3;
size += fmheader.num_xyz * 3 * g->degrees * sizeof( char );
size += g->num_frames * g->degrees * sizeof( char );
size += fmheader.num_xyz * 3 * sizeof( unsigned char );
size += g->degrees * sizeof( float );
size += g->degrees * sizeof( float );
size += 12 * sizeof( float );
}
WriteHeader( modelouthandle, FM_COMP_NAME, FM_COMP_VER,size, NULL );
SafeWrite( modelouthandle,&num_groups,sizeof( int ) );
SafeWrite( modelouthandle,frame_to_group,sizeof( int ) * fmheader.num_frames );
for ( k = 0; k < num_groups; k++ )
{
g = &groups[k];
tmp = LittleLong( g->start_frame );
SafeWrite( modelouthandle,&tmp,sizeof( int ) );
tmp = LittleLong( g->num_frames );
SafeWrite( modelouthandle,&tmp,sizeof( int ) );
tmp = LittleLong( g->degrees );
SafeWrite( modelouthandle,&tmp,sizeof( int ) );
SafeWrite( modelouthandle,g->mat,fmheader.num_xyz * 3 * g->degrees * sizeof( char ) );
SafeWrite( modelouthandle,g->ccomp,g->num_frames * g->degrees * sizeof( char ) );
SafeWrite( modelouthandle,g->cbase,fmheader.num_xyz * 3 * sizeof( unsigned char ) );
SafeWrite( modelouthandle,g->cscale,g->degrees * sizeof( float ) );
SafeWrite( modelouthandle,g->coffset,g->degrees * sizeof( float ) );
SafeWrite( modelouthandle,g->trans,3 * sizeof( float ) );
SafeWrite( modelouthandle,g->scale,3 * sizeof( float ) );
SafeWrite( modelouthandle,g->bmin,3 * sizeof( float ) );
SafeWrite( modelouthandle,g->bmax,3 * sizeof( float ) );
free( g->mat );
free( g->ccomp );
free( g->cbase );
free( g->cscale );
free( g->coffset );
}
}
// write the skeletal info
if ( g_skelModel.type != SKEL_NULL ) {
size = 0;
temp = sizeof( int ); // change this to a byte
memcpy( data + size, &g_skelModel.type, temp );
size += temp;
// number of joints
temp = sizeof( int ); // change this to a byte
memcpy( data + size, &numJointsInSkeleton[g_skelModel.type], temp );
size += temp;
// number of verts in each joint cluster
temp = sizeof( int ) * numJointsInSkeleton[g_skelModel.type]; // change this to shorts
memcpy( data + size, &g_skelModel.new_num_verts[1], temp );
size += temp;
// cluster verts
for ( i = 0; i < numJointsInSkeleton[g_skelModel.type]; ++i )
{
current = g_skelModel.vertLists[i];
while ( current )
{
temp = sizeof( int ); // change this to a short
memcpy( data + size, &current->data, temp );
size += temp;
toFree = current;
current = current->next;
free( toFree ); // freeing of memory allocated in ReplaceClusterIndex called in Cmd_Base
}
}
if ( !num_groups ) { // joints are stored with regular verts for compressed models
framesWritten = true;
temp = sizeof( int ); // change this to a byte
memcpy( data + size, &framesWritten, temp );
size += temp;
for ( i = 0; i < fmheader.num_frames; ++i )
{
in = &g_frames[i];
for ( j = 0 ; j < numJointsInSkeleton[g_skelModel.type]; ++j )
{
for ( k = 0 ; k < 3 ; k++ )
{
// scale to byte values & min/max check
v = Q_rint( ( in->joints[j].placement.origin[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data + size, &v, temp );
size += temp;
}
for ( k = 0 ; k < 3 ; k++ )
{
v = Q_rint( ( in->joints[j].placement.direction[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data + size, &v, temp );
size += temp;
}
for ( k = 0 ; k < 3 ; k++ )
{
v = Q_rint( ( in->joints[j].placement.up[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data + size, &v, temp );
size += temp;
}
}
}
}
else
{
temp = sizeof( int ); // change this to a byte
memcpy( data + size, &framesWritten, temp );
size += temp;
}
WriteHeader( modelouthandle, FM_SKELETON_NAME, FM_SKELETON_VER, size, data );
}
if ( g_skelModel.references != REF_NULL ) {
int refnum;
size = 0;
if ( RefPointNum <= 0 ) { // Hard-coded labels
refnum = numReferences[g_skelModel.references];
}
else
{ // Labels indicated in QDT
refnum = RefPointNum;
}
temp = sizeof( int ); // change this to a byte
memcpy( data2 + size, &g_skelModel.references, temp );
size += temp;
if ( !num_groups ) {
framesWritten = true;
temp = sizeof( int ); // change this to a byte
memcpy( data2 + size, &framesWritten, temp );
size += temp;
for ( i = 0; i < fmheader.num_frames; ++i )
{
in = &g_frames[i];
for ( j = 0 ; j < refnum; ++j )
{
for ( k = 0 ; k < 3 ; k++ )
{
// scale to byte values & min/max check
v = Q_rint( ( in->references[j].placement.origin[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data2 + size, &v, temp );
size += temp;
}
for ( k = 0 ; k < 3 ; k++ )
{
v = Q_rint( ( in->references[j].placement.direction[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data2 + size, &v, temp );
size += temp;
}
for ( k = 0 ; k < 3 ; k++ )
{
v = Q_rint( ( in->references[j].placement.up[k] - outFrames[i].translate[k] ) / outFrames[i].scale[k] );
// write out origin as a float since they arn't clamped
temp = sizeof( float ); // change this to a short
assert( size + temp < DATA_SIZE );
memcpy( data2 + size, &v, temp );
size += temp;
}
}
}
}
else // FINISH ME: references need to be stored with regular verts for compressed models
{
framesWritten = false;
temp = sizeof( int ); // change this to a byte
memcpy( data2 + size, &framesWritten, temp );
size += temp;
}
WriteHeader( modelouthandle, FM_REFERENCES_NAME, FM_REFERENCES_VER, size, data2 );
}
}
static void CompressFrames(){
fmgroup_t *g;
int i,j,k;
fmframe_t *in;
j = 0;
for ( i = 0; i < fmheader.num_frames; i++ )
{
while ( i >= groups[j].start_frame + groups[j].num_frames && j < num_groups - 1 )
j++;
frame_to_group[i] = j;
}
for ( k = 0; k < num_groups; k++ )
{
g = &groups[k];
printf( "\nCompressing Frames for group %i...\n", k );
AnimCompressInit( g->num_frames,fmheader.num_xyz,g->degrees );
for ( i = 0; i < g->num_frames; i++ )
{
in = &g_frames[i + g->start_frame];
for ( j = 0; j < fmheader.num_xyz; j++ )
AnimSetFrame( i,j,in->v[j].v[0],in->v[j].v[1],in->v[j].v[2] );
}
AnimCompressDoit();
g->mat = (char *) SafeMalloc( fmheader.num_xyz * 3 * g->degrees * sizeof( char ), "CompressFrames" );
g->ccomp = (char *) SafeMalloc( g->num_frames * g->degrees * sizeof( char ), "CompressFrames" );
g->cbase = (char *) SafeMalloc( fmheader.num_xyz * 3 * sizeof( unsigned char ), "CompressFrames" );
g->cscale = (float *) SafeMalloc( g->degrees * sizeof( float ), "CompressFrames" );
g->coffset = (float *) SafeMalloc( g->degrees * sizeof( float ), "CompressFrames" );
AnimCompressToBytes( g->trans,g->scale,g->mat,g->ccomp,g->cbase,g->cscale,g->coffset,g->bmin,g->bmax );
AnimCompressEnd();
}
}
static void OptimizeVertices( void ){
qboolean vert_used[MAX_FM_VERTS];
short vert_replacement[MAX_FM_VERTS];
int i,j,k,l,pos,bit,set_pos,set_bit;
fmframe_t *in;
qboolean Found;
int num_unique;
static IntListNode_t *newVertLists[NUM_CLUSTERS];
static int newNum_verts[NUM_CLUSTERS];
IntListNode_t *current, *next;
printf( "Optimizing vertices..." );
memset( vert_used, 0, sizeof( vert_used ) );
if ( g_skelModel.clustered == true ) {
memset( newNum_verts, 0, sizeof( newNum_verts ) );
memset( newVertLists, 0, sizeof( newVertLists ) );
}
num_unique = 0;
// search for common points among all the frames
for ( i = 0 ; i < fmheader.num_frames ; i++ )
{
in = &g_frames[i];
for ( j = 0; j < fmheader.num_xyz; j++ )
{
for ( k = 0,Found = false; k < j; k++ )
{ // starting from the beginning always ensures vert_replacement points to the first point in the array
if ( in->v[j].v[0] == in->v[k].v[0] &&
in->v[j].v[1] == in->v[k].v[1] &&
in->v[j].v[2] == in->v[k].v[2] ) {
Found = true;
vert_replacement[j] = k;
break;
}
}
if ( !Found ) {
if ( !vert_used[j] ) {
num_unique++;
}
vert_used[j] = true;
}
}
}
// recompute the light normals
for ( i = 0 ; i < fmheader.num_frames ; i++ )
{
in = &g_frames[i];
for ( j = 0; j < fmheader.num_xyz; j++ )
{
if ( !vert_used[j] ) {
k = vert_replacement[j];
VectorAdd( in->v[j].vnorm.normalsum, in->v[k].vnorm.normalsum, in->v[k].vnorm.normalsum );
in->v[k].vnorm.numnormals += in->v[j].vnorm.numnormals++;
}
}
for ( j = 0 ; j < fmheader.num_xyz ; j++ )
{
vec3_t v;
float maxdot;
int maxdotindex;
int c;
c = in->v[j].vnorm.numnormals;
if ( !c ) {
Error( "Vertex with no triangles attached" );
}
VectorScale( in->v[j].vnorm.normalsum, 1.0 / c, v );
VectorNormalize( v, v );
maxdot = -999999.0;
maxdotindex = -1;
for ( k = 0 ; k < NUMVERTEXNORMALS ; k++ )
{
float dot;
dot = DotProduct( v, avertexnormals[k] );
if ( dot > maxdot ) {
maxdot = dot;
maxdotindex = k;
}
}
in->v[j].lightnormalindex = maxdotindex;
}
}
// create substitution list
num_unique = 0;
for ( i = 0; i < fmheader.num_xyz; i++ )
{
if ( vert_used[i] ) {
vert_replacement[i] = num_unique;
num_unique++;
}
else
{
vert_replacement[i] = vert_replacement[vert_replacement[i]];
}
// vert_replacement[i] is the new index, i is the old index
// need to add the new index to the cluster list if old index was in it
if ( g_skelModel.clustered == true ) {
for ( k = 0; k < numJointsInSkeleton[g_skelModel.type]; ++k )
{
for ( l = 0, current = g_skelModel.vertLists[k];
l < g_skelModel.new_num_verts[k + 1]; ++l, current = current->next )
{
if ( current->data == i ) {
IntListNode_t *current2;
int m;
qboolean added = false;
for ( m = 0, current2 = newVertLists[k]; m < newNum_verts[k + 1];
++m, current2 = current2->next )
{
if ( current2->data == vert_replacement[i] ) {
added = true;
break;
}
}
if ( !added ) {
++newNum_verts[k + 1];
next = newVertLists[k];
newVertLists[k] = (IntListNode_t *) SafeMalloc( sizeof( IntListNode_t ), "OptimizeVertices" );
// freed after model write out
newVertLists[k]->data = vert_replacement[i];
newVertLists[k]->next = next;
}
break;
}
}
}
}
}
// substitute
for ( i = 0 ; i < fmheader.num_frames ; i++ )
{
in = &g_frames[i];
for ( j = 0; j < fmheader.num_xyz; j++ )
{
in->v[vert_replacement[j]] = in->v[j];
}
}
for ( i = 0; i < numJointsInSkeleton[g_skelModel.type]; ++i )
{
IntListNode_t *toFree;
current = g_skelModel.vertLists[i];
while ( current )
{
toFree = current;
current = current->next;
free( toFree ); // freeing of memory allocated in ReplaceClusterIndex called in Cmd_Base
}
g_skelModel.vertLists[i] = newVertLists[i];
g_skelModel.new_num_verts[i + 1] = newNum_verts[i + 1];
}
#ifndef NDEBUG
for ( k = 0; k < numJointsInSkeleton[g_skelModel.type]; ++k )
{
for ( l = 0, current = g_skelModel.vertLists[k];
l < g_skelModel.new_num_verts[k + 1]; ++l, current = current->next )
{
IntListNode_t *current2;
int m;
for ( m = l + 1, current2 = current->next; m < newNum_verts[k + 1];
++m, current2 = current2->next )
{
if ( current->data == current2->data ) {
printf( "Warning duplicate vertex: %d\n", current->data );
break;
}
}
}
}
#endif
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{ // reset the vert bits
memset( pmnodes[i].verts,0,sizeof( pmnodes[i].verts ) );
}
// repleace the master triangle list vertex indexes and update the vert bits for each mesh node
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
pos = i >> 3;
bit = 1 << ( i & 7 );
for ( j = 0 ; j < 3 ; j++ )
{
set_bit = set_pos = triangles[i].index_xyz[j] = vert_replacement[triangles[i].index_xyz[j]];
set_pos >>= 3;
set_bit = 1 << ( set_bit & 7 );
for ( k = 0; k < fmheader.num_mesh_nodes; k++ )
{
if ( !( pmnodes[k].tris[pos] & bit ) ) {
continue;
}
pmnodes[k].verts[set_pos] |= set_bit;
}
}
}
for ( i = 0; i < numcommands; i++ )
{
j = commands[i];
if ( !j ) {
continue;
}
j = abs( j );
for ( i++; j; j--,i += 3 )
{
commands[i + 2] = vert_replacement[commands[i + 2]];
}
i--;
}
printf( "Reduced by %d\n",fmheader.num_xyz - num_unique );
fmheader.num_xyz = num_unique;
if ( num_groups ) {
// tack on the reference verts to the regular verts
if ( g_skelModel.references != REF_NULL ) {
fmframe_t *in;
int index;
int refnum;
if ( RefPointNum <= 0 ) { // Hard-coded labels
refnum = numReferences[g_skelModel.references];
}
else
{ // Labels indicated in QDT
refnum = RefPointNum;
}
for ( i = 0; i < fmheader.num_frames; ++i )
{
in = &g_frames[i];
index = fmheader.num_xyz;
for ( j = 0 ; j < refnum; ++j )
{
VectorCopy( in->references[j].placement.origin, in->v[index].v );
index++;
VectorCopy( in->references[j].placement.direction, in->v[index].v );
index++;
VectorCopy( in->references[j].placement.up, in->v[index].v );
index++;
}
}
fmheader.num_xyz += refnum * 3;
}
// tack on the skeletal joint verts to the regular verts
if ( g_skelModel.type != SKEL_NULL ) {
fmframe_t *in;
int index;
for ( i = 0; i < fmheader.num_frames; ++i )
{
in = &g_frames[i];
index = fmheader.num_xyz;
for ( j = 0 ; j < numJointsInSkeleton[g_skelModel.type]; ++j )
{
VectorCopy( in->joints[j].placement.origin, in->v[index].v );
index++;
VectorCopy( in->joints[j].placement.direction, in->v[index].v );
index++;
VectorCopy( in->joints[j].placement.up, in->v[index].v );
index++;
}
}
fmheader.num_xyz += numJointsInSkeleton[g_skelModel.type] * 3;
}
CompressFrames();
}
}
/*
===============
FinishModel
===============
*/
void FMFinishModel( void ){
FILE *modelouthandle;
int i,j,length,tris,verts,bit,pos,total_tris,total_verts;
char name[1024];
int trans_count;
if ( !fmheader.num_frames ) {
return;
}
//
// copy to release directory tree if doing a release build
//
if ( g_release ) {
if ( modelname[0] ) {
sprintf( name, "%s", modelname );
}
else{
sprintf( name, "%s/tris.fm", cdpartial );
}
ReleaseFile( name );
for ( i = 0 ; i < fmheader.num_skins ; i++ )
{
ReleaseFile( g_skins[i] );
}
fmheader.num_frames = 0;
return;
}
printf( "\n" );
trans_count = 0;
for ( i = 0; i < fmheader.num_tris; i++ )
if ( translucent[i] ) {
trans_count++;
}
if ( !g_no_opimizations ) {
OptimizeVertices();
}
//
// write the model output file
//
if ( modelname[0] ) {
sprintf( name, "%s%s", g_outputDir, modelname );
}
else{
sprintf( name, "%s/tris.fm", g_outputDir );
}
printf( "saving to %s\n", name );
CreatePath( name );
modelouthandle = SafeOpenWrite( name );
WriteModelFile( modelouthandle );
printf( "%3dx%3d skin\n", fmheader.skinwidth, fmheader.skinheight );
printf( "First frame boundaries:\n" );
printf( " minimum x: %3f\n", g_frames[0].mins[0] );
printf( " maximum x: %3f\n", g_frames[0].maxs[0] );
printf( " minimum y: %3f\n", g_frames[0].mins[1] );
printf( " maximum y: %3f\n", g_frames[0].maxs[1] );
printf( " minimum z: %3f\n", g_frames[0].mins[2] );
printf( " maximum z: %3f\n", g_frames[0].maxs[2] );
printf( "%4d vertices\n", fmheader.num_xyz );
printf( "%4d triangles, %4d of them translucent\n", fmheader.num_tris, trans_count );
printf( "%4d frame\n", fmheader.num_frames );
printf( "%4d glverts\n", numglverts );
printf( "%4d glcmd\n", fmheader.num_glcmds );
printf( "%4d skins\n", fmheader.num_skins );
printf( "%4d mesh nodes\n", fmheader.num_mesh_nodes );
printf( "wasted pixels: %d / %d (%5.2f Percent)\n",total_skin_pixels - skin_pixels_used,
total_skin_pixels, (double)( total_skin_pixels - skin_pixels_used ) / (double)total_skin_pixels * 100.0 );
printf( "file size: %d\n", (int)ftell( modelouthandle ) );
printf( "---------------------\n" );
if ( g_verbose ) {
if ( fmheader.num_mesh_nodes ) {
total_tris = total_verts = 0;
printf( "Node Name Tris Verts\n" );
printf( "--------------------------------- ---- -----\n" );
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{
tris = 0;
verts = 0;
for ( j = 0; j < MAXTRIANGLES; j++ )
{
pos = ( j ) >> 3;
bit = 1 << ( ( j ) & 7 );
if ( pmnodes[i].tris[pos] & bit ) {
tris++;
}
}
for ( j = 0; j < MAX_FM_VERTS; j++ )
{
pos = ( j ) >> 3;
bit = 1 << ( ( j ) & 7 );
if ( pmnodes[i].verts[pos] & bit ) {
verts++;
}
}
printf( "%-33s %4d %5d\n",pmnodes[i].name,tris,verts );
total_tris += tris;
total_verts += verts;
}
printf( "--------------------------------- ---- -----\n" );
printf( "%-33s %4d %5d\n","TOTALS",total_tris,total_verts );
}
}
fclose( modelouthandle );
// finish writing header file
H_printf( "\n" );
// scale_up is usefull to allow step distances to be adjusted
H_printf( "#define MODEL_SCALE\t\t%f\n", scale_up );
// mesh nodes
if ( fmheader.num_mesh_nodes ) {
H_printf( "\n" );
H_printf( "#define NUM_MESH_NODES\t\t%d\n\n",fmheader.num_mesh_nodes );
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{
strcpy( name, pmnodes[i].name );
strupr( name );
length = strlen( name );
for ( j = 0; j < length; j++ )
{
if ( name[j] == ' ' ) {
name[j] = '_';
}
}
H_printf( "#define MESH_%s\t\t%d\n", name, i );
}
}
fclose( headerouthandle );
headerouthandle = NULL;
free( pmnodes );
}
/*
=================================================================
ALIAS MODEL DISPLAY LIST GENERATION
=================================================================
*/
extern int strip_xyz[128];
extern int strip_st[128];
extern int strip_tris[128];
extern int stripcount;
/*
================
StripLength
================
*/
static int StripLength( int starttri, int startv, int num_tris, int node ){
int m1, m2;
int st1, st2;
int j;
fmtriangle_t *last, *check;
int k;
int pos, bit;
used[starttri] = 2;
last = &triangles[starttri];
strip_xyz[0] = last->index_xyz[( startv ) % 3];
strip_xyz[1] = last->index_xyz[( startv + 1 ) % 3];
strip_xyz[2] = last->index_xyz[( startv + 2 ) % 3];
strip_st[0] = last->index_st[( startv ) % 3];
strip_st[1] = last->index_st[( startv + 1 ) % 3];
strip_st[2] = last->index_st[( startv + 2 ) % 3];
strip_tris[0] = starttri;
stripcount = 1;
m1 = last->index_xyz[( startv + 2 ) % 3];
st1 = last->index_st[( startv + 2 ) % 3];
m2 = last->index_xyz[( startv + 1 ) % 3];
st2 = last->index_st[( startv + 1 ) % 3];
// look for a matching triangle
nexttri:
for ( j = starttri + 1, check = &triangles[starttri + 1]
; j < num_tris ; j++, check++ )
{
pos = j >> 3;
bit = 1 << ( j & 7 );
if ( !( pmnodes[node].tris[pos] & bit ) ) {
continue;
}
for ( k = 0 ; k < 3 ; k++ )
{
if ( check->index_xyz[k] != m1 ) {
continue;
}
if ( check->index_st[k] != st1 ) {
continue;
}
if ( check->index_xyz[ ( k + 1 ) % 3 ] != m2 ) {
continue;
}
if ( check->index_st[ ( k + 1 ) % 3 ] != st2 ) {
continue;
}
// this is the next part of the fan
// if we can't use this triangle, this tristrip is done
if ( used[j] || translucent[j] != translucent[starttri] ) {
goto done;
}
// the new edge
if ( stripcount & 1 ) {
m2 = check->index_xyz[ ( k + 2 ) % 3 ];
st2 = check->index_st[ ( k + 2 ) % 3 ];
}
else
{
m1 = check->index_xyz[ ( k + 2 ) % 3 ];
st1 = check->index_st[ ( k + 2 ) % 3 ];
}
strip_xyz[stripcount + 2] = check->index_xyz[ ( k + 2 ) % 3 ];
strip_st[stripcount + 2] = check->index_st[ ( k + 2 ) % 3 ];
strip_tris[stripcount] = j;
stripcount++;
used[j] = 2;
goto nexttri;
}
}
done:
// clear the temp used flags
for ( j = starttri + 1 ; j < num_tris ; j++ )
if ( used[j] == 2 ) {
used[j] = 0;
}
return stripcount;
}
/*
===========
FanLength
===========
*/
static int FanLength( int starttri, int startv, int num_tris, int node ){
int m1, m2;
int st1, st2;
int j;
fmtriangle_t *last, *check;
int k;
int pos, bit;
used[starttri] = 2;
last = &triangles[starttri];
strip_xyz[0] = last->index_xyz[( startv ) % 3];
strip_xyz[1] = last->index_xyz[( startv + 1 ) % 3];
strip_xyz[2] = last->index_xyz[( startv + 2 ) % 3];
strip_st[0] = last->index_st[( startv ) % 3];
strip_st[1] = last->index_st[( startv + 1 ) % 3];
strip_st[2] = last->index_st[( startv + 2 ) % 3];
strip_tris[0] = starttri;
stripcount = 1;
m1 = last->index_xyz[( startv + 0 ) % 3];
st1 = last->index_st[( startv + 0 ) % 3];
m2 = last->index_xyz[( startv + 2 ) % 3];
st2 = last->index_st[( startv + 2 ) % 3];
// look for a matching triangle
nexttri:
for ( j = starttri + 1, check = &triangles[starttri + 1]
; j < num_tris ; j++, check++ )
{
pos = j >> 3;
bit = 1 << ( j & 7 );
if ( !( pmnodes[node].tris[pos] & bit ) ) {
continue;
}
for ( k = 0 ; k < 3 ; k++ )
{
if ( check->index_xyz[k] != m1 ) {
continue;
}
if ( check->index_st[k] != st1 ) {
continue;
}
if ( check->index_xyz[ ( k + 1 ) % 3 ] != m2 ) {
continue;
}
if ( check->index_st[ ( k + 1 ) % 3 ] != st2 ) {
continue;
}
// this is the next part of the fan
// if we can't use this triangle, this tristrip is done
if ( used[j] || translucent[j] != translucent[starttri] ) {
goto done;
}
// the new edge
m2 = check->index_xyz[ ( k + 2 ) % 3 ];
st2 = check->index_st[ ( k + 2 ) % 3 ];
strip_xyz[stripcount + 2] = m2;
strip_st[stripcount + 2] = st2;
strip_tris[stripcount] = j;
stripcount++;
used[j] = 2;
goto nexttri;
}
}
done:
// clear the temp used flags
for ( j = starttri + 1 ; j < num_tris ; j++ )
if ( used[j] == 2 ) {
used[j] = 0;
}
return stripcount;
}
/*
================
BuildGlCmds
Generate a list of trifans or strips
for the model, which holds for all frames
================
*/
static void BuildGlCmds( void ){
int i, j, k, l;
int startv;
float s, t;
int len, bestlen, besttype;
int best_xyz[1024];
int best_st[1024];
int best_tris[1024];
int type;
int trans_check;
int bit,pos;
//
// build tristrips
//
numcommands = 0;
numglverts = 0;
for ( l = 0; l < fmheader.num_mesh_nodes; l++ )
{
memset( used, 0, sizeof( used ) );
pmnodes[l].start_glcmds = numcommands;
for ( trans_check = 0; trans_check < 2; trans_check++ )
{
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
pos = i >> 3;
bit = 1 << ( i & 7 );
if ( !( pmnodes[l].tris[pos] & bit ) ) {
continue;
}
// pick an unused triangle and start the trifan
if ( used[i] || trans_check != translucent[i] ) {
continue;
}
bestlen = 0;
for ( type = 0 ; type < 2 ; type++ )
// type = 1;
{
for ( startv = 0 ; startv < 3 ; startv++ )
{
if ( type == 1 ) {
len = StripLength( i, startv, fmheader.num_tris, l );
}
else{
len = FanLength( i, startv, fmheader.num_tris, l );
}
if ( len > bestlen ) {
besttype = type;
bestlen = len;
for ( j = 0 ; j < bestlen + 2 ; j++ )
{
best_st[j] = strip_st[j];
best_xyz[j] = strip_xyz[j];
}
for ( j = 0 ; j < bestlen ; j++ )
best_tris[j] = strip_tris[j];
}
}
}
// mark the tris on the best strip/fan as used
for ( j = 0 ; j < bestlen ; j++ )
used[best_tris[j]] = 1;
if ( besttype == 1 ) {
commands[numcommands++] = ( bestlen + 2 );
}
else{
commands[numcommands++] = -( bestlen + 2 );
}
numglverts += bestlen + 2;
for ( j = 0 ; j < bestlen + 2 ; j++ )
{
// emit a vertex into the reorder buffer
k = best_st[j];
// emit s/t coords into the commands stream
s = base_st[k].s;
t = base_st[k].t;
s = ( s ) / fmheader.skinwidth;
t = ( t ) / fmheader.skinheight;
*(float *)&commands[numcommands++] = s;
*(float *)&commands[numcommands++] = t;
*(int *)&commands[numcommands++] = best_xyz[j];
}
}
}
commands[numcommands++] = 0; // end of list marker
pmnodes[l].num_glcmds = numcommands - pmnodes[l].start_glcmds;
}
}
/*
===============================================================
BASE FRAME SETUP
===============================================================
*/
#define LINE_NORMAL 1
#define LINE_FAT 2
#define LINE_DOTTED 3
#define ASCII_SPACE 32
int LineType = LINE_NORMAL;
extern unsigned char pic[SKINPAGE_HEIGHT * SKINPAGE_WIDTH], pic_palette[768];
unsigned char LineColor = 255;
int ScaleWidth, ScaleHeight;
static char *CharDefs[] =
{
"-------------------------",
"-------------------------", // !
"-------------------------", // "
"-------------------------", // #
"-------------------------", // $
"-------------------------", // %
"-------------------------", // &
"--*----*-----------------", // '
"-*---*----*----*-----*---", // (
"*-----*----*----*---*----", // )
"-----*--*--**---**--*--*-", // *
"-------------------------", // +
"----------------**--**---", // ,
"-------------------------", // -
"----------------**---**--", // .
"-------------------------", // /
" *** * *** * *** * *** ", // 0
" * ** * * * ",
"**** * *** * *****",
"**** * *** ***** ",
" ** * * * * ***** * ",
"**** * **** ***** ",
" *** * **** * * *** ",
"***** * * * * ",
" *** * * *** * * *** ",
" *** * * **** * *** ", // 9
"-**---**--------**---**--", // :
"-------------------------", // ;
"-------------------------", // <
"-------------------------", // =
"-------------------------", // >
"-------------------------", // ?
"-------------------------", // @
"-***-*---*******---**---*", // A
"****-*---*****-*---*****-",
"-*****----*----*-----****",
"****-*---**---**---*****-",
"******----****-*----*****",
"******----****-*----*----",
"-*****----*--***---*-****",
"*---**---*******---**---*",
"-***---*----*----*---***-",
"----*----*----**---*-***-",
"-*--*-*-*--**---*-*--*--*",
"-*----*----*----*----****",
"*---***-***-*-**---**---*",
"*---***--**-*-**--***---*",
"-***-*---**---**---*-***-",
"****-*---*****-*----*----",
"-***-*---**---*-***----**",
"****-*---*****-*-*--*--**",
"-*****-----***-----*****-",
"*****--*----*----*----*--",
"*---**---**---**---******",
"*---**---**---*-*-*---*--",
"*---**---**-*-***-***---*",
"*---*-*-*---*---*-*-*---*",
"*---**---*-*-*---*----*--",
"*****---*---*---*---*****" // Z
};
void DrawLine( int x1, int y1, int x2, int y2 ){
int dx, dy;
int adx, ady;
int count;
float xfrac, yfrac, xstep, ystep;
unsigned sx, sy;
float u, v;
dx = x2 - x1;
dy = y2 - y1;
adx = abs( dx );
ady = abs( dy );
count = adx > ady ? adx : ady;
count++;
if ( count > 300 ) {
printf( "Bad count\n" );
return; // don't ever hang up on bad data
}
xfrac = x1;
yfrac = y1;
xstep = (float)dx / count;
ystep = (float)dy / count;
switch ( LineType )
{
case LINE_NORMAL:
do
{
if ( xfrac < SKINPAGE_WIDTH && yfrac < SKINPAGE_HEIGHT ) {
pic[(int)yfrac * SKINPAGE_WIDTH + (int)xfrac] = LineColor;
}
xfrac += xstep;
yfrac += ystep;
count--;
} while ( count > 0 );
break;
case LINE_FAT:
do
{
for ( u = -0.1 ; u <= 0.9 ; u += 0.999 )
{
for ( v = -0.1 ; v <= 0.9 ; v += 0.999 )
{
sx = xfrac + u;
sy = yfrac + v;
if ( sx < SKINPAGE_WIDTH && sy < SKINPAGE_HEIGHT ) {
pic[sy * SKINPAGE_WIDTH + sx] = LineColor;
}
}
}
xfrac += xstep;
yfrac += ystep;
count--;
} while ( count > 0 );
break;
case LINE_DOTTED:
do
{
if ( count & 1 && xfrac < SKINPAGE_WIDTH &&
yfrac < SKINPAGE_HEIGHT ) {
pic[(int)yfrac * SKINPAGE_WIDTH + (int)xfrac] = LineColor;
}
xfrac += xstep;
yfrac += ystep;
count--;
} while ( count > 0 );
break;
default:
Error( "Unknown <linetype> %d.\n", LineType );
}
}
//==========================================================================
//
// DrawCharacter
//
//==========================================================================
static void DrawCharacter( int x, int y, int character ){
int r, c;
char *def;
character = toupper( character );
if ( character < ASCII_SPACE || character > 'Z' ) {
character = ASCII_SPACE;
}
character -= ASCII_SPACE;
for ( def = CharDefs[character], r = 0; r < 5; r++ )
{
for ( c = 0; c < 5; c++ )
{
pic[( y + r ) * SKINPAGE_WIDTH + x + c] = *def++ == '*' ? 255 : 0;
}
}
}
//==========================================================================
//
// DrawTextChar
//
//==========================================================================
void DrawTextChar( int x, int y, char *text ){
int c;
while ( ( c = *text++ ) != '\0' )
{
DrawCharacter( x, y, c );
x += 6;
}
}
extern void DrawScreen( float s_scale, float t_scale, float iwidth, float iheight );
//==========================================================================
// ExtractDigit
static int ExtractDigit( byte *pic, int x, int y ){
int i;
int r, c;
char digString[32];
char *buffer;
byte backColor;
char **DigitDefs;
backColor = pic[( SKINPAGE_HEIGHT - 1 ) * SKINPAGE_WIDTH];
DigitDefs = &CharDefs['0' - ASCII_SPACE];
buffer = digString;
for ( r = 0; r < 5; r++ )
{
for ( c = 0; c < 5; c++ )
{
*buffer++ = ( pic[( y + r ) * SKINPAGE_WIDTH + x + c] == backColor ) ? ' ' : '*';
}
}
*buffer = '\0';
for ( i = 0; i < 10; i++ )
{
if ( strcmp( DigitDefs[i], digString ) == 0 ) {
return i;
}
}
Error( "Unable to extract scaling info from skin PCX." );
return 0;
}
//==========================================================================
// ExtractNumber
int ExtractNumber( byte *pic, int x, int y ){
return ExtractDigit( pic, x, y ) * 100 + ExtractDigit( pic, x + 6, y ) * 10 + ExtractDigit( pic, x + 12, y );
}
/*
============
BuildST
Builds the triangle_st array for the base frame and
fmheader.skinwidth / fmheader.skinheight
FIXME: allow this to be loaded from a file for
arbitrary mappings
============
*/
static void BuildST( triangle_t *ptri, int numtri, qboolean DrawSkin ){
int backface_flag;
int i, j;
int width, height, iwidth, iheight, swidth;
float basex, basey;
float scale;
vec3_t mins, maxs;
float *pbasevert;
vec3_t vtemp1, vtemp2, normal;
float s_scale, t_scale;
float scWidth;
float scHeight;
int skinwidth;
int skinheight;
//
// find bounds of all the verts on the base frame
//
ClearBounds( mins, maxs );
backface_flag = false;
if ( ptri[0].HasUV ) { // if we have the uv already, we don't want to double up or scale
iwidth = ScaleWidth;
iheight = ScaleHeight;
t_scale = s_scale = 1.0;
}
else
{
for ( i = 0 ; i < numtri ; i++ )
for ( j = 0 ; j < 3 ; j++ )
AddPointToBounds( ptri[i].verts[j], mins, maxs );
for ( i = 0 ; i < 3 ; i++ )
{
mins[i] = floor( mins[i] );
maxs[i] = ceil( maxs[i] );
}
width = maxs[0] - mins[0];
height = maxs[2] - mins[2];
for ( i = 0 ; i < numtri ; i++ )
{
VectorSubtract( ptri[i].verts[0], ptri[i].verts[1], vtemp1 );
VectorSubtract( ptri[i].verts[2], ptri[i].verts[1], vtemp2 );
CrossProduct( vtemp1, vtemp2, normal );
if ( normal[1] > 0 ) {
backface_flag = true;
break;
}
}
scWidth = ScaleWidth * SCALE_ADJUST_FACTOR;
if ( backface_flag ) { //we are doubling
scWidth /= 2;
}
scHeight = ScaleHeight * SCALE_ADJUST_FACTOR;
scale = scWidth / width;
if ( height * scale >= scHeight ) {
scale = scHeight / height;
}
iwidth = ceil( width * scale ) + 4;
iheight = ceil( height * scale ) + 4;
s_scale = (float)( iwidth - 4 ) / width;
t_scale = (float)( iheight - 4 ) / height;
t_scale = s_scale;
}
if ( DrawSkin ) {
if ( backface_flag ) {
DrawScreen( s_scale, t_scale, iwidth * 2, iheight );
}
else{
DrawScreen( s_scale, t_scale, iwidth, iheight );
}
}
if ( backface_flag ) {
skinwidth = iwidth * 2;
}
else{
skinwidth = iwidth;
}
skinheight = iheight;
/* if (!g_fixedwidth)
{ // old style
scale = 8;
if (width*scale >= 150)
scale = 150.0 / width;
if (height*scale >= 190)
scale = 190.0 / height;
s_scale = t_scale = scale;
iwidth = ceil(width*s_scale);
iheight = ceil(height*t_scale);
iwidth += 4;
iheight += 4;
}
else
{ // new style
iwidth = g_fixedwidth / 2;
iheight = g_fixedheight;
s_scale = (float)(iwidth-4) / width;
t_scale = (float)(iheight-4) / height;
}*/
//
// determine which side of each triangle to map the texture to
//
basey = 2;
for ( i = 0 ; i < numtri ; i++ )
{
if ( ptri[i].HasUV ) {
for ( j = 0 ; j < 3 ; j++ )
{
triangle_st[i][j][0] = Q_rint( ptri[i].uv[j][0] * skinwidth );
triangle_st[i][j][1] = Q_rint( ( 1.0f - ptri[i].uv[j][1] ) * skinheight );
}
}
else
{
VectorSubtract( ptri[i].verts[0], ptri[i].verts[1], vtemp1 );
VectorSubtract( ptri[i].verts[2], ptri[i].verts[1], vtemp2 );
CrossProduct( vtemp1, vtemp2, normal );
if ( normal[1] > 0 ) {
basex = iwidth + 2;
}
else
{
basex = 2;
}
for ( j = 0 ; j < 3 ; j++ )
{
pbasevert = ptri[i].verts[j];
triangle_st[i][j][0] = Q_rint( ( pbasevert[0] - mins[0] ) * s_scale + basex );
triangle_st[i][j][1] = Q_rint( ( maxs[2] - pbasevert[2] ) * t_scale + basey );
}
}
if ( DrawSkin ) {
DrawLine( triangle_st[i][0][0], triangle_st[i][0][1],
triangle_st[i][1][0], triangle_st[i][1][1] );
DrawLine( triangle_st[i][1][0], triangle_st[i][1][1],
triangle_st[i][2][0], triangle_st[i][2][1] );
DrawLine( triangle_st[i][2][0], triangle_st[i][2][1],
triangle_st[i][0][0], triangle_st[i][0][1] );
}
}
// make the width a multiple of 4; some hardware requires this, and it ensures
// dword alignment for each scan
swidth = iwidth;
if ( backface_flag ) {
swidth *= 2;
}
fmheader.skinwidth = ( swidth + 3 ) & ~3;
fmheader.skinheight = iheight;
skin_width = iwidth;
skin_height = iheight;
}
static void BuildNewST( triangle_t *ptri, int numtri, qboolean DrawSkin ){
int i, j;
for ( i = 0 ; i < numtri ; i++ )
{
if ( ptri[i].HasUV ) {
for ( j = 0 ; j < 3 ; j++ )
{
triangle_st[i][j][0] = Q_rint( ptri[i].uv[j][0] * ( ScaleWidth - 1 ) );
triangle_st[i][j][1] = Q_rint( ( 1.0f - ptri[i].uv[j][1] ) * ( ScaleHeight - 1 ) );
}
}
if ( DrawSkin ) {
DrawLine( triangle_st[i][0][0], triangle_st[i][0][1],
triangle_st[i][1][0], triangle_st[i][1][1] );
DrawLine( triangle_st[i][1][0], triangle_st[i][1][1],
triangle_st[i][2][0], triangle_st[i][2][1] );
DrawLine( triangle_st[i][2][0], triangle_st[i][2][1],
triangle_st[i][0][0], triangle_st[i][0][1] );
}
}
// make the width a multiple of 4; some hardware requires this, and it ensures
// dword alignment for each scan
fmheader.skinwidth = ( ScaleWidth + 3 ) & ~3;
fmheader.skinheight = ScaleHeight;
skin_width = ScaleWidth;
skin_height = ScaleHeight;
}
byte *BasePalette;
byte *BasePixels,*TransPixels;
int BaseWidth, BaseHeight, TransWidth, TransHeight;
qboolean BaseTrueColor;
static qboolean SetPixel = false;
int CheckTransRecursiveTri( int *lp1, int *lp2, int *lp3 ){
int *temp;
int d;
int new[2];
d = lp2[0] - lp1[0];
if ( d < -1 || d > 1 ) {
goto split;
}
d = lp2[1] - lp1[1];
if ( d < -1 || d > 1 ) {
goto split;
}
d = lp3[0] - lp2[0];
if ( d < -1 || d > 1 ) {
goto split2;
}
d = lp3[1] - lp2[1];
if ( d < -1 || d > 1 ) {
goto split2;
}
d = lp1[0] - lp3[0];
if ( d < -1 || d > 1 ) {
goto split3;
}
d = lp1[1] - lp3[1];
if ( d < -1 || d > 1 ) {
split3:
temp = lp1;
lp1 = lp3;
lp3 = lp2;
lp2 = temp;
goto split;
}
return 0; // entire tri is filled
split2:
temp = lp1;
lp1 = lp2;
lp2 = lp3;
lp3 = temp;
split:
// split this edge
new[0] = ( lp1[0] + lp2[0] ) >> 1;
new[1] = ( lp1[1] + lp2[1] ) >> 1;
// draw the point if splitting a leading edge
if ( lp2[1] > lp1[1] ) {
goto nodraw;
}
if ( ( lp2[1] == lp1[1] ) && ( lp2[0] < lp1[0] ) ) {
goto nodraw;
}
if ( SetPixel ) {
assert( ( new[1] * BaseWidth ) + new[0] < BaseWidth * BaseHeight );
if ( BaseTrueColor ) {
BasePixels[( ( new[1] * BaseWidth ) + new[0] ) * 4] = 1;
}
else
{
BasePixels[( new[1] * BaseWidth ) + new[0]] = 1;
}
}
else
{
if ( TransPixels ) {
if ( TransPixels[( new[1] * TransWidth ) + new[0]] != 255 ) {
return 1;
}
}
else if ( BaseTrueColor ) {
if ( BasePixels[( ( ( new[1] * BaseWidth ) + new[0] ) * 4 ) + 3] != 255 ) {
return 1;
}
}
else
{
// pixel = BasePixels[(new[1]*BaseWidth) + new[0]];
}
}
nodraw:
// recursively continue
if ( CheckTransRecursiveTri( lp3, lp1, new ) ) {
return 1;
}
return CheckTransRecursiveTri( lp3, new, lp2 );
}
static void ReplaceClusterIndex( int newIndex, int oldindex, int **clusters,
IntListNode_t **vertLists, int *num_verts, int *new_num_verts ){
int i, j;
IntListNode_t *next;
for ( j = 0; j < numJointsInSkeleton[g_skelModel.type]; ++j )
{
if ( !clusters[j] ) {
continue;
}
for ( i = 0; i < num_verts[j + 1]; ++i )
{
if ( clusters[j][i] == oldindex ) {
++new_num_verts[j + 1];
next = vertLists[j];
vertLists[j] = (IntListNode_t *) SafeMalloc( sizeof( IntListNode_t ), "ReplaceClusterIndex" );
// Currently freed in WriteJointedModelFile only
vertLists[j]->data = newIndex;
vertLists[j]->next = next;
}
}
}
}
#define FUDGE_EPSILON 0.002
qboolean VectorFudgeCompare( vec3_t v1, vec3_t v2 ){
int i;
for ( i = 0 ; i < 3 ; i++ )
if ( fabs( v1[i] - v2[i] ) > FUDGE_EPSILON ) {
return false;
}
return true;
}
/*
=================
Cmd_Base
=================
*/
void Cmd_FMBase( qboolean GetST ){
triangle_t *ptri, *st_tri;
int num_st_tris;
int i, j, k, l;
int x,y,z;
// int time1;
char file1[1024],file2[1024],trans_file[1024], stfile[1024], extension[256];
vec3_t base_xyz[MAX_FM_VERTS];
FILE *FH;
int pos,bit;
qboolean NewSkin;
GetScriptToken( false );
if ( g_skipmodel || g_release || g_archive ) {
return;
}
printf( "---------------------\n" );
sprintf( file1, "%s/%s.%s", cdarchive, token, trifileext );
printf( "%s ", file1 );
ExpandPathAndArchive( file1 );
// Use the input filepath for this one.
sprintf( file1, "%s/%s", cddir, token );
// time1 = FileTime (file1);
// if (time1 == -1)
// Error ("%s doesn't exist", file1);
//
// load the base triangles
//
if ( do3ds ) {
Load3DSTriangleList( file1, &ptri, &fmheader.num_tris, &pmnodes, &fmheader.num_mesh_nodes );
}
else{
LoadTriangleList( file1, &ptri, &fmheader.num_tris, &pmnodes, &fmheader.num_mesh_nodes );
}
if ( g_ignoreTriUV ) {
for ( i = 0; i < fmheader.num_tris; i++ )
{
ptri[i].HasUV = 0;
}
}
GetScriptToken( false );
sprintf( file2, "%s/%s", cddir, token );
sprintf( trans_file, "%s/!%s_a.pcx", cddir, token );
ExtractFileExtension( file2, extension );
if ( extension[0] == 0 ) {
strcat( file2, ".pcx" );
}
printf( "skin: %s\n", file2 );
BaseTrueColor = LoadAnyImage( file2, &BasePixels, &BasePalette, &BaseWidth, &BaseHeight );
NewSkin = false;
if ( BaseWidth != SKINPAGE_WIDTH || BaseHeight != SKINPAGE_HEIGHT ) {
if ( g_allow_newskin ) {
ScaleWidth = BaseWidth;
ScaleHeight = BaseHeight;
NewSkin = true;
}
else
{
Error( "Invalid skin page size: (%d,%d) should be (%d,%d)",
BaseWidth,BaseHeight,SKINPAGE_WIDTH,SKINPAGE_HEIGHT );
}
}
else if ( !BaseTrueColor ) {
ScaleWidth = (float)ExtractNumber( BasePixels, ENCODED_WIDTH_X,
ENCODED_WIDTH_Y );
ScaleHeight = (float)ExtractNumber( BasePixels, ENCODED_HEIGHT_X,
ENCODED_HEIGHT_Y );
}
else
{
Error( "Texture coordinates not supported on true color image" );
}
if ( GetST ) {
GetScriptToken( false );
sprintf( stfile, "%s/%s.%s", cdarchive, token, trifileext );
printf( "ST: %s ", stfile );
sprintf( stfile, "%s/%s", cddir, token );
if ( do3ds ) {
Load3DSTriangleList( stfile, &st_tri, &num_st_tris, NULL, NULL );
}
else{
LoadTriangleList( stfile, &st_tri, &num_st_tris, NULL, NULL );
}
if ( num_st_tris != fmheader.num_tris ) {
Error( "num st tris mismatch: st %d / base %d", num_st_tris, fmheader.num_tris );
}
printf( " matching triangles...\n" );
for ( i = 0; i < fmheader.num_tris; i++ )
{
k = -1;
for ( j = 0; j < num_st_tris; j++ )
{
for ( x = 0; x < 3; x++ )
{
for ( y = 0; y < 3; y++ )
{
if ( x == y ) {
continue;
}
for ( z = 0; z < 3; z++ )
{
if ( z == x || z == y ) {
continue;
}
if ( VectorFudgeCompare( ptri[i].verts[0], st_tri[j].verts[x] ) &&
VectorFudgeCompare( ptri[i].verts[1], st_tri[j].verts[y] ) &&
VectorFudgeCompare( ptri[i].verts[2], st_tri[j].verts[z] ) ) {
if ( k == -1 ) {
k = j;
ptri[i].HasUV = st_tri[k].HasUV;
ptri[i].uv[0][0] = st_tri[k].uv[x][0];
ptri[i].uv[0][1] = st_tri[k].uv[x][1];
ptri[i].uv[1][0] = st_tri[k].uv[y][0];
ptri[i].uv[1][1] = st_tri[k].uv[y][1];
ptri[i].uv[2][0] = st_tri[k].uv[z][0];
ptri[i].uv[2][1] = st_tri[k].uv[z][1];
x = y = z = 999;
}
else if ( k != j ) {
printf( "Duplicate triangle %d found in st file: %d and %d\n",i,k,j );
printf( " (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f)\n",
ptri[i].verts[0][0],ptri[i].verts[0][1],ptri[i].verts[0][2],
ptri[i].verts[1][0],ptri[i].verts[1][1],ptri[i].verts[1][2],
ptri[i].verts[2][0],ptri[i].verts[2][1],ptri[i].verts[2][2] );
printf( " (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f)\n",
st_tri[k].verts[0][0],st_tri[k].verts[0][1],st_tri[k].verts[0][2],
st_tri[k].verts[1][0],st_tri[k].verts[1][1],st_tri[k].verts[1][2],
st_tri[k].verts[2][0],st_tri[k].verts[2][1],st_tri[k].verts[2][2] );
printf( " (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f) (%0.3f %0.3f %0.3f)\n",
st_tri[j].verts[0][0],st_tri[j].verts[0][1],st_tri[j].verts[0][2],
st_tri[j].verts[1][0],st_tri[j].verts[1][1],st_tri[j].verts[1][2],
st_tri[j].verts[2][0],st_tri[j].verts[2][1],st_tri[j].verts[2][2] );
}
}
}
}
}
}
if ( k == -1 ) {
printf( "No matching triangle %d\n",i );
}
}
free( st_tri );
}
//
// get the ST values
//
if ( ptri && ptri[0].HasUV ) {
if ( !NewSkin ) {
Error( "Base has UVs with old style skin page\nMaybe you want to use -ignoreUV" );
}
else
{
BuildNewST( ptri, fmheader.num_tris, false );
}
}
else
{
if ( NewSkin ) {
Error( "Base has new style skin without UVs" );
}
else
{
BuildST( ptri, fmheader.num_tris, false );
}
}
TransPixels = NULL;
if ( !BaseTrueColor ) {
FH = fopen( trans_file,"rb" );
if ( FH ) {
fclose( FH );
Load256Image( trans_file, &TransPixels, NULL, &TransWidth, &TransHeight );
if ( TransWidth != fmheader.skinwidth || TransHeight != fmheader.skinheight ) {
Error( "source image %s dimensions (%d,%d) are not the same as alpha image (%d,%d)\n",file2,fmheader.skinwidth,fmheader.skinheight,TransWidth,TransHeight );
}
}
}
//
// run through all the base triangles, storing each unique vertex in the
// base vertex list and setting the indirect triangles to point to the base
// vertices
//
for ( l = 0; l < fmheader.num_mesh_nodes; l++ )
{
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
pos = i >> 3;
bit = 1 << ( i & 7 );
if ( !( pmnodes[l].tris[pos] & bit ) ) {
continue;
}
for ( j = 0 ; j < 3 ; j++ )
{
// get the xyz index
for ( k = 0 ; k < fmheader.num_xyz ; k++ )
{
if ( VectorCompare( ptri[i].verts[j], base_xyz[k] ) ) {
break; // this vertex is already in the base vertex list
}
}
if ( k == fmheader.num_xyz ) { // new index
VectorCopy( ptri[i].verts[j], base_xyz[fmheader.num_xyz] );
if ( pmnodes[l].clustered == true ) {
ReplaceClusterIndex( k, ptri[i].indicies[j], (int **)&pmnodes[l].clusters, (IntListNode_t **)&g_skelModel.vertLists, (int *)&pmnodes[l].num_verts, (int *)&g_skelModel.new_num_verts );
}
fmheader.num_xyz++;
}
pos = k >> 3;
bit = 1 << ( k & 7 );
pmnodes[l].verts[pos] |= bit;
triangles[i].index_xyz[j] = k;
// get the st index
for ( k = 0 ; k < fmheader.num_st ; k++ )
{
if ( triangle_st[i][j][0] == base_st[k].s
&& triangle_st[i][j][1] == base_st[k].t ) {
break; // this vertex is already in the base vertex list
}
}
if ( k == fmheader.num_st ) { // new index
base_st[fmheader.num_st].s = triangle_st[i][j][0];
base_st[fmheader.num_st].t = triangle_st[i][j][1];
fmheader.num_st++;
}
triangles[i].index_st[j] = k;
}
if ( TransPixels || BaseTrueColor ) {
translucent[i] = CheckTransRecursiveTri( triangle_st[i][0], triangle_st[i][1], triangle_st[i][2] );
}
else
{
translucent[i] = false;
}
}
}
if ( !BaseTrueColor ) {
SetPixel = true;
memset( BasePixels,0,BaseWidth * BaseHeight );
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
CheckTransRecursiveTri( triangle_st[i][0], triangle_st[i][1], triangle_st[i][2] );
}
SetPixel = false;
skin_pixels_used = 0;
for ( i = 0; i < fmheader.skinheight; i++ )
{
for ( j = 0; j < fmheader.skinwidth; j++ )
{
skin_pixels_used += BasePixels[( i * BaseWidth ) + j];
}
}
total_skin_pixels = fmheader.skinheight * fmheader.skinwidth;
}
else
{
SetPixel = true;
memset( BasePixels,0,BaseWidth * BaseHeight * 4 );
for ( i = 0 ; i < fmheader.num_tris ; i++ )
{
CheckTransRecursiveTri( triangle_st[i][0], triangle_st[i][1], triangle_st[i][2] );
}
SetPixel = false;
skin_pixels_used = 0;
for ( i = 0; i < fmheader.skinheight; i++ )
{
for ( j = 0; j < fmheader.skinwidth; j++ )
{
skin_pixels_used += BasePixels[( ( i * BaseWidth ) + j ) * 4];
}
}
total_skin_pixels = fmheader.skinheight * fmheader.skinwidth;
}
// build triangle strips / fans
BuildGlCmds();
if ( TransPixels ) {
free( TransPixels );
}
free( BasePixels );
if ( BasePalette ) {
free( BasePalette );
}
free( ptri );
}
void Cmd_FMNodeOrder( void ){
mesh_node_t *newnodes, *pos;
int i,j;
if ( !pmnodes ) {
Error( "Base has not been established yet" );
}
pos = newnodes = malloc( sizeof( mesh_node_t ) * fmheader.num_mesh_nodes );
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{
GetScriptToken( false );
for ( j = 0; j < fmheader.num_mesh_nodes; j++ )
{
if ( strcmpi( pmnodes[j].name, token ) == 0 ) {
*pos = pmnodes[j];
pos++;
break;
}
}
if ( j >= fmheader.num_mesh_nodes ) {
Error( "Node '%s' not in base list!\n", token );
}
}
free( pmnodes );
pmnodes = newnodes;
}
//===============================================================
extern char *FindFrameFile( char *frame );
/*
===============
GrabFrame
===============
*/
void GrabFrame( char *frame ){
triangle_t *ptri;
int i, j;
fmtrivert_t *ptrivert;
int num_tris;
char file1[1024];
fmframe_t *fr;
int index_xyz;
char *framefile;
// the frame 'run1' will be looked for as either
// run.1 or run1.tri, so the new alias sequence save
// feature an be used
framefile = FindFrameFile( frame );
sprintf( file1, "%s/%s", cdarchive, framefile );
ExpandPathAndArchive( file1 );
sprintf( file1, "%s/%s",cddir, framefile );
printf( "grabbing %s ", file1 );
if ( fmheader.num_frames >= MAX_FM_FRAMES ) {
Error( "fmheader.num_frames >= MAX_FM_FRAMES" );
}
fr = &g_frames[fmheader.num_frames];
fmheader.num_frames++;
strcpy( fr->name, frame );
//
// load the frame
//
if ( do3ds ) {
Load3DSTriangleList( file1, &ptri, &num_tris, NULL, NULL );
}
else{
LoadTriangleList( file1, &ptri, &num_tris, NULL, NULL );
}
if ( num_tris != fmheader.num_tris ) {
Error( "%s: number of triangles (%d) doesn't match base frame (%d)\n", file1, num_tris, fmheader.num_tris );
}
//
// allocate storage for the frame's vertices
//
ptrivert = fr->v;
for ( i = 0 ; i < fmheader.num_xyz ; i++ )
{
ptrivert[i].vnorm.numnormals = 0;
VectorClear( ptrivert[i].vnorm.normalsum );
}
ClearBounds( fr->mins, fr->maxs );
//
// store the frame's vertices in the same order as the base. This assumes the
// triangles and vertices in this frame are in exactly the same order as in the
// base
//
for ( i = 0 ; i < num_tris ; i++ )
{
vec3_t vtemp1, vtemp2, normal;
float ftemp;
VectorSubtract( ptri[i].verts[0], ptri[i].verts[1], vtemp1 );
VectorSubtract( ptri[i].verts[2], ptri[i].verts[1], vtemp2 );
CrossProduct( vtemp1, vtemp2, normal );
VectorNormalize( normal, normal );
// rotate the normal so the model faces down the positive x axis
ftemp = normal[0];
normal[0] = -normal[1];
normal[1] = ftemp;
for ( j = 0 ; j < 3 ; j++ )
{
index_xyz = triangles[i].index_xyz[j];
// rotate the vertices so the model faces down the positive x axis
// also adjust the vertices to the desired origin
ptrivert[index_xyz].v[0] = ( ( -ptri[i].verts[j][1] ) * scale_up ) +
adjust[0];
ptrivert[index_xyz].v[1] = ( ptri[i].verts[j][0] * scale_up ) +
adjust[1];
ptrivert[index_xyz].v[2] = ( ptri[i].verts[j][2] * scale_up ) +
adjust[2];
AddPointToBounds( ptrivert[index_xyz].v, fr->mins, fr->maxs );
VectorAdd( ptrivert[index_xyz].vnorm.normalsum, normal, ptrivert[index_xyz].vnorm.normalsum );
ptrivert[index_xyz].vnorm.numnormals++;
}
}
//
// calculate the vertex normals, match them to the template list, and store the
// index of the best match
//
for ( i = 0 ; i < fmheader.num_xyz ; i++ )
{
int j;
vec3_t v;
float maxdot;
int maxdotindex;
int c;
c = ptrivert[i].vnorm.numnormals;
if ( !c ) {
Error( "Vertex with no triangles attached" );
}
VectorScale( ptrivert[i].vnorm.normalsum, 1.0 / c, v );
VectorNormalize( v, v );
maxdot = -999999.0;
maxdotindex = -1;
for ( j = 0 ; j < NUMVERTEXNORMALS ; j++ )
{
float dot;
dot = DotProduct( v, avertexnormals[j] );
if ( dot > maxdot ) {
maxdot = dot;
maxdotindex = j;
}
}
ptrivert[i].lightnormalindex = maxdotindex;
}
free( ptri );
}
/*
===============
Cmd_Frame
===============
*/
void Cmd_FMFrame( void ){
while ( ScriptTokenAvailable() )
{
GetScriptToken( false );
if ( g_skipmodel ) {
continue;
}
if ( g_release || g_archive ) {
fmheader.num_frames = 1; // don't skip the writeout
continue;
}
H_printf( "#define FRAME_%-16s\t%i\n", token, fmheader.num_frames );
if ( ( g_skelModel.type != SKEL_NULL ) || ( g_skelModel.references != REF_NULL ) ) {
GrabModelTransform( token );
}
GrabFrame( token );
if ( g_skelModel.type != SKEL_NULL ) {
GrabSkeletalFrame( token );
}
if ( g_skelModel.references != REF_NULL ) {
GrabReferencedFrame( token );
}
// need to add the up and dir points to the frame bounds here
// using AddPointToBounds (ptrivert[index_xyz].v, fr->mins, fr->maxs);
// then remove fudge in determining scale on frame write out
}
}
/*
===============
Cmd_Skin
Skins aren't actually stored in the file, only a reference
is saved out to the header file.
===============
*/
void Cmd_FMSkin( void ){
byte *palette;
byte *pixels;
int width, height;
byte *cropped;
int y;
char name[1024], savename[1024], transname[1024], extension[256];
miptex32_t *qtex32;
int size;
FILE *FH;
qboolean TrueColor;
GetScriptToken( false );
if ( fmheader.num_skins == MAX_FM_SKINS ) {
Error( "fmheader.num_skins == MAX_FM_SKINS" );
}
if ( g_skipmodel ) {
return;
}
sprintf( name, "%s/%s", cdarchive, token );
strcpy( name, ExpandPathAndArchive( name ) );
// sprintf (name, "%s/%s.lbm", cddir, token);
if ( ScriptTokenAvailable() ) {
GetScriptToken( false );
sprintf( g_skins[fmheader.num_skins], "!%s", token );
sprintf( savename, "%s!%s", g_outputDir, token );
sprintf( transname, "%s!%s_a.pcx", gamedir, token );
}
else
{
sprintf( g_skins[fmheader.num_skins], "%s/!%s", cdpartial, token );
sprintf( savename, "%s/!%s", g_outputDir, token );
sprintf( transname, "%s/!%s_a.pcx", cddir, token );
}
fmheader.num_skins++;
if ( g_skipmodel || g_release || g_archive ) {
return;
}
// load the image
printf( "loading %s\n", name );
ExtractFileExtension( name, extension );
if ( extension[0] == 0 ) {
strcat( name, ".pcx" );
}
TrueColor = LoadAnyImage( name, &pixels, &palette, &width, &height );
// RemapZero (pixels, palette, width, height);
// crop it to the proper size
if ( !TrueColor ) {
cropped = (byte *) SafeMalloc( fmheader.skinwidth * fmheader.skinheight, "Cmd_FMSkin" );
for ( y = 0 ; y < fmheader.skinheight ; y++ )
{
memcpy( cropped + y * fmheader.skinwidth,
pixels + y * width, fmheader.skinwidth );
}
TransPixels = NULL;
FH = fopen( transname,"rb" );
if ( FH ) {
fclose( FH );
strcat( g_skins[fmheader.num_skins - 1],".pcx" );
strcat( savename,".pcx" );
// save off the new image
printf( "saving %s\n", savename );
CreatePath( savename );
WritePCXfile( savename, cropped, fmheader.skinwidth, fmheader.skinheight, palette );
}
else
{
#if 1
miptex_t *qtex;
qtex = CreateMip( cropped, fmheader.skinwidth, fmheader.skinheight, palette, &size, true );
strcat( g_skins[fmheader.num_skins - 1],".m8" );
strcat( savename,".m8" );
printf( "saving %s\n", savename );
CreatePath( savename );
SaveFile( savename, (byte *)qtex, size );
free( qtex );
#else
strcat( g_skins[fmheader.num_skins - 1],".pcx" );
strcat( savename,".pcx" );
// save off the new image
printf( "saving %s\n", savename );
CreatePath( savename );
WritePCXfile( savename, cropped, fmheader.skinwidth, fmheader.skinheight, palette );
#endif
}
}
else
{
cropped = (byte *) SafeMalloc( fmheader.skinwidth * fmheader.skinheight * 4, "Cmd_FMSkin" );
for ( y = 0 ; y < fmheader.skinheight ; y++ )
{
memcpy( cropped + ( ( y * fmheader.skinwidth ) * 4 ), pixels + ( y * width * 4 ), fmheader.skinwidth * 4 );
}
qtex32 = CreateMip32( (unsigned *)cropped, fmheader.skinwidth, fmheader.skinheight, &size, true );
StripExtension( g_skins[fmheader.num_skins - 1] );
strcat( g_skins[fmheader.num_skins - 1],".m32" );
StripExtension( savename );
strcat( savename,".m32" );
printf( "saving %s\n", savename );
CreatePath( savename );
SaveFile( savename, (byte *)qtex32, size );
}
free( pixels );
if ( palette ) {
free( palette );
}
free( cropped );
}
/*
===============
Cmd_Cd
===============
*/
void Cmd_FMCd( void ){
char temp[256];
FinishModel();
ClearModel();
GetScriptToken( false );
// this is a silly mess...
sprintf( cdpartial, "models/%s", token );
sprintf( cdarchive, "%smodels/%s", gamedir + strlen( qdir ), token );
sprintf( cddir, "%s%s", gamedir, cdpartial );
// Since we also changed directories on the output side (for mirror) make sure the outputdir is set properly too.
sprintf( temp, "%s%s", g_outputDir, cdpartial );
strcpy( g_outputDir, temp );
// if -only was specified and this cd doesn't match,
// skip the model (you only need to match leading chars,
// so you could regrab all monsters with -only monsters)
if ( !g_only[0] ) {
return;
}
if ( strncmp( token, g_only, strlen( g_only ) ) ) {
g_skipmodel = true;
printf( "skipping %s\n", cdpartial );
}
}
/*
//=======================
// NEW GEN
//=======================
void NewGen (char *ModelFile, char *OutputName, int width, int height)
{
trigroup_t *triangles;
triangle_t *ptri;
triangle_t *grouptris;
mesh_node_t *pmnodes;
vec3_t *vertices;
vec3_t *uvs;
vec3_t aveNorm, crossvect;
vec3_t diffvect1, diffvect2;
vec3_t v0, v1, v2;
vec3_t n, u, v;
vec3_t base, zaxis, yaxis;
vec3_t uvwMin, uvwMax;
vec3_t groupMin, groupMax;
vec3_t uvw;
float *uFinal, *vFinal;
unsigned char *newpic;
int finalstart = 0, finalcount = 0;
int xbase = 0, xwidth = 0, ywidth = 0;
int *todo, *done, finished;
int i, j, k, l; //counters
int groupnum, numtris, numverts, num;
int count;
FILE *grpfile;
long datasize;
for ( i = 0; i<3; i++)
{
aveNorm[i] = 0;
uvwMin[i] = 1e30f;
uvwMax[i] = -1e30f;
}
pmnodes = NULL;
ptri = NULL;
triangles = NULL;
zaxis[0] = 0;
zaxis[1] = 0;
zaxis[2] = 1;
yaxis[0] = 0;
yaxis[1] = 1;
yaxis[2] = 0;
LoadTriangleList (ModelFile, &ptri, &fmheader.num_tris, &pmnodes, &fmheader.num_mesh_nodes);
todo = (int*)SafeMalloc(fmheader.num_tris*sizeof(int), "NewGen");
done = (int*)SafeMalloc(fmheader.num_tris*sizeof(int), "NewGen");
triangles = (trigroup_t*)SafeMalloc(fmheader.num_tris*sizeof(trigroup_t), "NewGen");
for ( i=0; i < fmheader.num_tris; i++)
{
todo[i] = false;
done[i] = false;
triangles[i].triangle = ptri[i];
triangles[i].group = 0;
}
groupnum = 0;
// transitive closure algorithm follows
// put all triangles who transitively share vertices into separate groups
while (1)
{
for ( i = 0; i < fmheader.num_tris; i++)
{
if (!done[i])
{
break;
}
}
if ( i == fmheader.num_tris)
{
break;
}
finished = false;
todo[i] = true;
while (!finished)
{
finished = true;
for ( i = 0; i < fmheader.num_tris; i++)
{
if (todo[i])
{
done[i] = true;
triangles[i].group = groupnum;
todo[i] = false;
for ( j = 0; j < fmheader.num_tris; j++)
{
if ((!done[j]) && (ShareVertex(triangles[i],triangles[j])))
{
todo[j] = true;
finished = false;
}
}
}
}
}
groupnum++;
}
uFinal = (float*)SafeMalloc(3*fmheader.num_tris*sizeof(float), "NewGen");
vFinal = (float*)SafeMalloc(3*fmheader.num_tris*sizeof(float), "NewGen");
grpfile = fopen("grpdebug.txt","w");
for (i = 0; i < groupnum; i++)
{
fprintf(grpfile,"Group Number: %d\n", i);
numtris = GetNumTris(triangles, i); // number of triangles in group i
numverts = numtris * 3;
fprintf(grpfile,"%d triangles.\n", numtris);
vertices = (vec3_t*)SafeMalloc(numverts*sizeof(vec3_t), "NewGen");
uvs = (vec3_t*)SafeMalloc(numverts*sizeof(vec3_t), "NewGen");
grouptris = (triangle_t*)SafeMalloc(numtris*sizeof(triangle_t), "NewGen");
for (count = 0; count < fmheader.num_tris; count++)
{
if (triangles[count].group == i)
{
fprintf(grpfile,"Triangle %d\n", count);
}
}
fprintf(grpfile,"\n");
GetOneGroup(triangles, i, grouptris);
num = 0;
for (j = 0; j < numtris; j++)
{
VectorCopy(grouptris[j].verts[0], v0);
VectorCopy(grouptris[j].verts[1], v1);
VectorCopy(grouptris[j].verts[2], v2);
VectorSubtract(v1, v0, diffvect1);
VectorSubtract(v2, v1, diffvect2);
CrossProduct( diffvect1, diffvect2, crossvect);
VectorAdd(aveNorm, crossvect, aveNorm);
VectorCopy(v0,vertices[num]);
num++; // FIXME
VectorCopy(v1,vertices[num]);
num++; // add routine to add only verts that
VectorCopy(v2,vertices[num]);
num++; // have not already been added
}
assert (num >= 3);
// figure out the best plane projections
DOsvdPlane ((float*)vertices, num, (float *)&n, (float *)&base);
if (DotProduct(aveNorm,n) < 0.0f)
{
VectorScale(n, -1.0f, n);
}
VectorNormalize(n,n);
if (fabs(n[2]) < .57)
{
CrossProduct( zaxis, n, crossvect);
VectorCopy(crossvect, u);
}
else
{
CrossProduct( yaxis, n, crossvect);
VectorCopy(crossvect, u);
}
VectorNormalize(u,u);
CrossProduct( n, u, crossvect);
VectorCopy(crossvect, v);
VectorNormalize(v,v);
num = 0;
for ( j = 0; j < 3; j++)
{
groupMin[j] = 1e30f;
groupMax[j] = -1e30f;
}
for ( j = 0; j < numtris; j++)
{
for ( k = 0; k < 3; k++)
{
VectorCopy(grouptris[j].verts[k],v0);
VectorSubtract(v0, base, v0);
uvw[0] = DotProduct(v0, u);
uvw[1] = DotProduct(v0, v);
uvw[2] = DotProduct(v0, n);
VectorCopy(uvw,uvs[num]);
num++;
for ( l = 0; l < 3; l++)
{
if (uvw[l] < groupMin[l])
{
groupMin[l] = uvw[l];
}
if (uvw[l] > groupMax[l])
{
groupMax[l] = uvw[l];
}
}
}
}
xwidth = ceil(0 - groupMin[0]) + 2; // move right of origin and avoid overlap
ywidth = ceil(0 - groupMin[1]) + 2; // move "above" origin
for ( j=0; j < numverts; j++)
{
uFinal[finalcount] = uvs[j][0] + xwidth + xbase;
vFinal[finalcount] = uvs[j][1] + ywidth;
if (uFinal[finalcount] < uvwMin[0])
{
uvwMin[0] = uFinal[finalcount];
}
if (uFinal[finalcount] > uvwMax[0])
{
uvwMax[0] = uFinal[finalcount];
}
if (vFinal[finalcount] < uvwMin[1])
{
uvwMin[1] = vFinal[finalcount];
}
if (vFinal[finalcount] > uvwMax[1])
{
uvwMax[1] = vFinal[finalcount];
}
finalcount++;
}
fprintf(grpfile,"svdPlaned Group min: ( %f , %f )\n",groupMin[0] + xwidth + xbase, groupMin[1] + ywidth);
fprintf(grpfile,"svdPlaned Group max: ( %f , %f )\n",groupMax[0] + xwidth + xbase, groupMax[1] + ywidth);
finalcount = finalstart;
for ( count = 0; count < numverts; count++)
{
fprintf(grpfile,"Vertex %d: ( %f , %f , %f )\n",count,vertices[count][0],vertices[count][1],vertices[count][2]);
fprintf(grpfile,"svdPlaned: ( %f , %f )\n",uFinal[finalcount],vFinal[finalcount++]);
}
finalstart = finalcount;
fprintf(grpfile,"\n");
free(vertices);
free(uvs);
free(grouptris);
xbase += ceil(groupMax[0] - groupMin[0]) + 2;
}
fprintf(grpfile,"Global Min ( %f , %f )\n",uvwMin[0],uvwMin[1]);
fprintf(grpfile,"Global Max ( %f , %f )\n",uvwMax[0],uvwMax[1]);
ScaleTris(uvwMin, uvwMax, width, height, uFinal, vFinal, finalcount);
for (k = 0; k < finalcount; k++)
{
fprintf(grpfile, "scaled vertex %d: ( %f , %f )\n",k,uFinal[k],vFinal[k]);
}
// i've got the array of vertices in uFinal and vFinal. Now I need to write them and draw lines
datasize = width * height*sizeof(unsigned char);
newpic = (unsigned char*)SafeMalloc(datasize, "NewGen");
memset(newpic,0,datasize);
memset(pic_palette,0,sizeof(pic_palette));
pic_palette[767] = pic_palette[766] = pic_palette[765] = 255;
k = 0;
while (k < finalcount)
{
NewDrawLine(uFinal[k], vFinal[k], uFinal[k+1], vFinal[k+1], newpic, width, height);
k++;
NewDrawLine(uFinal[k], vFinal[k], uFinal[k+1], vFinal[k+1], newpic, width, height);
k++;
NewDrawLine(uFinal[k], vFinal[k], uFinal[k-2], vFinal[k-2], newpic, width, height);
k++;
fprintf(grpfile, "output tri with verts %d, %d, %d", k-2, k-1, k);
}
WritePCXfile (OutputName, newpic, width, height, pic_palette);
fclose(grpfile);
free(todo);
free(done);
free(triangles);
free(newpic);
return;
}
void NewDrawLine(int x1, int y1, int x2, int y2, unsigned char* picture, int width, int height)
{
long dx, dy;
long adx, ady;
long count;
float xfrac, yfrac, xstep, ystep;
unsigned long sx, sy;
float u, v;
dx = x2 - x1;
dy = y2 - y1;
adx = abs(dx);
ady = abs(dy);
count = adx > ady ? adx : ady;
count++;
if(count > 300)
{
printf("Bad count\n");
return; // don't ever hang up on bad data
}
xfrac = x1;
yfrac = y1;
xstep = (float)dx/count;
ystep = (float)dy/count;
switch(LineType)
{
case LINE_NORMAL:
do
{
if(xfrac < width && yfrac < height)
{
picture[(long)yfrac*width+(long)xfrac] = LineColor;
}
xfrac += xstep;
yfrac += ystep;
count--;
} while (count > 0);
break;
case LINE_FAT:
do
{
for (u=-0.1 ; u<=0.9 ; u+=0.999)
{
for (v=-0.1 ; v<=0.9 ; v+=0.999)
{
sx = xfrac+u;
sy = yfrac+v;
if(sx < width && sy < height)
{
picture[sy*width+sx] = LineColor;
}
}
}
xfrac += xstep;
yfrac += ystep;
count--;
} while (count > 0);
break;
case LINE_DOTTED:
do
{
if(count&1 && xfrac < width &&
yfrac < height)
{
picture[(long)yfrac*width+(long)xfrac] = LineColor;
}
xfrac += xstep;
yfrac += ystep;
count--;
} while (count > 0);
break;
default:
Error("Unknown <linetype> %d.\n", LineType);
}
}
*/
void ScaleTris( vec3_t min, vec3_t max, int Width, int Height, float* u, float* v, int verts ){
int i;
float hscale, vscale;
float scale;
hscale = max[0];
vscale = max[1];
hscale = ( Width - 2 ) / max[0];
vscale = ( Height - 2 ) / max[1];
scale = hscale;
if ( scale > vscale ) {
scale = vscale;
}
for ( i = 0; i < verts; i++ )
{
u[i] *= scale;
v[i] *= scale;
}
return;
}
void GetOneGroup( trigroup_t *tris, int grp, triangle_t* triangles ){
int i;
int j;
j = 0;
for ( i = 0; i < fmheader.num_tris; i++ )
{
if ( tris[i].group == grp ) {
triangles[j++] = tris[i].triangle;
}
}
return;
}
int GetNumTris( trigroup_t *tris, int grp ){
int i;
int verts;
verts = 0;
for ( i = 0; i < fmheader.num_tris; i++ )
{
if ( tris[i].group == grp ) {
verts++;
}
}
return verts;
}
int ShareVertex( trigroup_t trione, trigroup_t tritwo ){
int i;
int j;
i = 1;
j = 1;
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < 3; j++ )
{
if ( DistBetween( trione.triangle.verts[i],tritwo.triangle.verts[j] ) < TRIVERT_DIST ) {
return true;
}
}
}
return false;
}
float DistBetween( vec3_t point1, vec3_t point2 ){
float dist;
dist = ( point1[0] - point2[0] );
dist *= dist;
dist += ( point1[1] - point2[1] ) * ( point1[1] - point2[1] );
dist += ( point1[2] - point2[2] ) * ( point1[2] - point2[2] );
dist = sqrt( dist );
return dist;
}
void GenSkin( char *ModelFile, char *OutputName, int Width, int Height ){
triangle_t *ptri;
mesh_node_t *pmnodes;
int i;
pmnodes = NULL;
ptri = NULL;
LoadTriangleList( ModelFile, &ptri, &fmheader.num_tris, &pmnodes, &fmheader.num_mesh_nodes );
if ( g_ignoreTriUV ) {
for ( i = 0; i < fmheader.num_tris; i++ )
{
ptri[i].HasUV = 0;
}
}
memset( pic,0,sizeof( pic ) );
memset( pic_palette,0,sizeof( pic_palette ) );
pic_palette[767] = pic_palette[766] = pic_palette[765] = 255;
ScaleWidth = Width;
ScaleHeight = Height;
BuildST( ptri, fmheader.num_tris, true );
WritePCXfile( OutputName, pic, SKINPAGE_WIDTH, SKINPAGE_HEIGHT, pic_palette );
printf( "Gen Skin Stats:\n" );
printf( " Input Base: %s\n",ModelFile );
printf( " Input Dimensions: %d,%d\n",Width,Height );
printf( "\n" );
printf( " Output File: %s\n",OutputName );
printf( " Output Dimensions: %d,%d\n",ScaleWidth,ScaleHeight );
if ( fmheader.num_mesh_nodes ) {
printf( "\nNodes:\n" );
for ( i = 0; i < fmheader.num_mesh_nodes; i++ )
{
printf( " %s\n",pmnodes[i].name );
}
}
free( ptri );
free( pmnodes );
}
void Cmd_FMBeginGroup( void ){
GetScriptToken( false );
g_no_opimizations = false;
groups[num_groups].start_frame = fmheader.num_frames;
groups[num_groups].num_frames = 0;
groups[num_groups].degrees = atol( token );
if ( groups[num_groups].degrees < 1 || groups[num_groups].degrees > 32 ) {
Error( "Degrees of freedom out of range: %d",groups[num_groups].degrees );
}
}
void Cmd_FMEndGroup( void ){
groups[num_groups].num_frames = fmheader.num_frames - groups[num_groups].start_frame;
if ( num_groups < MAX_GROUPS - 1 ) {
num_groups++;
}
else
{
Error( "Number of compression groups exceded: %i\n", MAX_GROUPS );
}
}