doom3-bfg/neo/idlib/geometry/Winding2D.h

184 lines
5.7 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __WINDING2D_H__
#define __WINDING2D_H__
/*
===============================================================================
A 2D winding is an arbitrary convex 2D polygon defined by an array of points.
===============================================================================
*/
#define MAX_POINTS_ON_WINDING_2D 16
class idWinding2D
{
public:
idWinding2D();
idWinding2D& operator=( const idWinding2D& winding );
const idVec2& operator[]( const int index ) const;
idVec2& operator[]( const int index );
void Clear();
void AddPoint( const idVec2& point );
int GetNumPoints() const;
void Expand( const float d );
void ExpandForAxialBox( const idVec2 bounds[2] );
// splits the winding into a front and back winding, the winding itself stays unchanged
// returns a SIDE_?
int Split( const idVec3& plane, const float epsilon, idWinding2D** front, idWinding2D** back ) const;
// cuts off the part at the back side of the plane, returns true if some part was at the front
// if there is nothing at the front the number of points is set to zero
bool ClipInPlace( const idVec3& plane, const float epsilon = ON_EPSILON, const bool keepOn = false );
idWinding2D* Copy() const;
idWinding2D* Reverse() const;
float GetArea() const;
idVec2 GetCenter() const;
float GetRadius( const idVec2& center ) const;
void GetBounds( idVec2 bounds[2] ) const;
bool IsTiny() const;
bool IsHuge() const; // base winding for a plane is typically huge
void Print() const;
float PlaneDistance( const idVec3& plane ) const;
int PlaneSide( const idVec3& plane, const float epsilon = ON_EPSILON ) const;
bool PointInside( const idVec2& point, const float epsilon ) const;
bool LineIntersection( const idVec2& start, const idVec2& end ) const;
bool RayIntersection( const idVec2& start, const idVec2& dir, float& scale1, float& scale2, int* edgeNums = NULL ) const;
static idVec3 Plane2DFromPoints( const idVec2& start, const idVec2& end, const bool normalize = false );
static idVec3 Plane2DFromVecs( const idVec2& start, const idVec2& dir, const bool normalize = false );
static bool Plane2DIntersection( const idVec3& plane1, const idVec3& plane2, idVec2& point );
private:
int numPoints;
idVec2 p[MAX_POINTS_ON_WINDING_2D];
};
ID_INLINE idWinding2D::idWinding2D()
{
numPoints = 0;
}
ID_INLINE idWinding2D& idWinding2D::operator=( const idWinding2D& winding )
{
int i;
for( i = 0; i < winding.numPoints; i++ )
{
p[i] = winding.p[i];
}
numPoints = winding.numPoints;
return *this;
}
ID_INLINE const idVec2& idWinding2D::operator[]( const int index ) const
{
return p[ index ];
}
ID_INLINE idVec2& idWinding2D::operator[]( const int index )
{
return p[ index ];
}
ID_INLINE void idWinding2D::Clear()
{
numPoints = 0;
}
ID_INLINE void idWinding2D::AddPoint( const idVec2& point )
{
p[numPoints++] = point;
}
ID_INLINE int idWinding2D::GetNumPoints() const
{
return numPoints;
}
ID_INLINE idVec3 idWinding2D::Plane2DFromPoints( const idVec2& start, const idVec2& end, const bool normalize )
{
idVec3 plane;
plane.x = start.y - end.y;
plane.y = end.x - start.x;
if( normalize )
{
plane.ToVec2().Normalize();
}
plane.z = - ( start.x * plane.x + start.y * plane.y );
return plane;
}
ID_INLINE idVec3 idWinding2D::Plane2DFromVecs( const idVec2& start, const idVec2& dir, const bool normalize )
{
idVec3 plane;
plane.x = -dir.y;
plane.y = dir.x;
if( normalize )
{
plane.ToVec2().Normalize();
}
plane.z = - ( start.x * plane.x + start.y * plane.y );
return plane;
}
ID_INLINE bool idWinding2D::Plane2DIntersection( const idVec3& plane1, const idVec3& plane2, idVec2& point )
{
float n00, n01, n11, det, invDet, f0, f1;
n00 = plane1.x * plane1.x + plane1.y * plane1.y;
n01 = plane1.x * plane2.x + plane1.y * plane2.y;
n11 = plane2.x * plane2.x + plane2.y * plane2.y;
det = n00 * n11 - n01 * n01;
if( idMath::Fabs( det ) < 1e-6f )
{
return false;
}
invDet = 1.0f / det;
f0 = ( n01 * plane2.z - n11 * plane1.z ) * invDet;
f1 = ( n01 * plane1.z - n00 * plane2.z ) * invDet;
point.x = f0 * plane1.x + f1 * plane2.x;
point.y = f0 * plane1.y + f1 * plane2.y;
return true;
}
#endif /* !__WINDING2D_H__ */