/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __WINDING2D_H__ #define __WINDING2D_H__ /* =============================================================================== A 2D winding is an arbitrary convex 2D polygon defined by an array of points. =============================================================================== */ #define MAX_POINTS_ON_WINDING_2D 16 class idWinding2D { public: idWinding2D(); idWinding2D& operator=( const idWinding2D& winding ); const idVec2& operator[]( const int index ) const; idVec2& operator[]( const int index ); void Clear(); void AddPoint( const idVec2& point ); int GetNumPoints() const; void Expand( const float d ); void ExpandForAxialBox( const idVec2 bounds[2] ); // splits the winding into a front and back winding, the winding itself stays unchanged // returns a SIDE_? int Split( const idVec3& plane, const float epsilon, idWinding2D** front, idWinding2D** back ) const; // cuts off the part at the back side of the plane, returns true if some part was at the front // if there is nothing at the front the number of points is set to zero bool ClipInPlace( const idVec3& plane, const float epsilon = ON_EPSILON, const bool keepOn = false ); idWinding2D* Copy() const; idWinding2D* Reverse() const; float GetArea() const; idVec2 GetCenter() const; float GetRadius( const idVec2& center ) const; void GetBounds( idVec2 bounds[2] ) const; bool IsTiny() const; bool IsHuge() const; // base winding for a plane is typically huge void Print() const; float PlaneDistance( const idVec3& plane ) const; int PlaneSide( const idVec3& plane, const float epsilon = ON_EPSILON ) const; bool PointInside( const idVec2& point, const float epsilon ) const; bool LineIntersection( const idVec2& start, const idVec2& end ) const; bool RayIntersection( const idVec2& start, const idVec2& dir, float& scale1, float& scale2, int* edgeNums = NULL ) const; static idVec3 Plane2DFromPoints( const idVec2& start, const idVec2& end, const bool normalize = false ); static idVec3 Plane2DFromVecs( const idVec2& start, const idVec2& dir, const bool normalize = false ); static bool Plane2DIntersection( const idVec3& plane1, const idVec3& plane2, idVec2& point ); private: int numPoints; idVec2 p[MAX_POINTS_ON_WINDING_2D]; }; ID_INLINE idWinding2D::idWinding2D() { numPoints = 0; } ID_INLINE idWinding2D& idWinding2D::operator=( const idWinding2D& winding ) { int i; for( i = 0; i < winding.numPoints; i++ ) { p[i] = winding.p[i]; } numPoints = winding.numPoints; return *this; } ID_INLINE const idVec2& idWinding2D::operator[]( const int index ) const { return p[ index ]; } ID_INLINE idVec2& idWinding2D::operator[]( const int index ) { return p[ index ]; } ID_INLINE void idWinding2D::Clear() { numPoints = 0; } ID_INLINE void idWinding2D::AddPoint( const idVec2& point ) { p[numPoints++] = point; } ID_INLINE int idWinding2D::GetNumPoints() const { return numPoints; } ID_INLINE idVec3 idWinding2D::Plane2DFromPoints( const idVec2& start, const idVec2& end, const bool normalize ) { idVec3 plane; plane.x = start.y - end.y; plane.y = end.x - start.x; if( normalize ) { plane.ToVec2().Normalize(); } plane.z = - ( start.x * plane.x + start.y * plane.y ); return plane; } ID_INLINE idVec3 idWinding2D::Plane2DFromVecs( const idVec2& start, const idVec2& dir, const bool normalize ) { idVec3 plane; plane.x = -dir.y; plane.y = dir.x; if( normalize ) { plane.ToVec2().Normalize(); } plane.z = - ( start.x * plane.x + start.y * plane.y ); return plane; } ID_INLINE bool idWinding2D::Plane2DIntersection( const idVec3& plane1, const idVec3& plane2, idVec2& point ) { float n00, n01, n11, det, invDet, f0, f1; n00 = plane1.x * plane1.x + plane1.y * plane1.y; n01 = plane1.x * plane2.x + plane1.y * plane2.y; n11 = plane2.x * plane2.x + plane2.y * plane2.y; det = n00 * n11 - n01 * n01; if( idMath::Fabs( det ) < 1e-6f ) { return false; } invDet = 1.0f / det; f0 = ( n01 * plane2.z - n11 * plane1.z ) * invDet; f1 = ( n01 * plane1.z - n00 * plane2.z ) * invDet; point.x = f0 * plane1.x + f1 * plane2.x; point.y = f0 * plane1.y + f1 * plane2.y; return true; } #endif /* !__WINDING2D_H__ */