1
0
Fork 0
forked from fte/fteqw
fteqw/engine/client/cl_pred.c
Spoike c949500da8 Implement preliminary openxr plugin. inputs are still useless (can HOPEFULLY result in some prints, but nothing else), and there's no considerations for 2d things.
Fix prediction issues with the ftenq protocol.
Fix some console image previews.
Added mod_precache cvar. set to 0 to significantly reduce memory usage in xonotic...
Prevent xonotic's random file writes from forcing full worker syncs, for faster loading.
QTV connections are now accepted only from localhost peers by default.



git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@5694 fc73d0e0-1445-4013-8a0c-d673dee63da5
2020-05-14 15:50:26 +00:00

1474 lines
43 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#include "winquake.h"
cvar_t cl_predict_extrapolate = CVARD("cl_predict_extrapolate", "", "If 1, enables prediction based upon partial input frames which can change over time resulting in a swimmy feel but does not need to interpolate. If 0, prediction will stay in the past and thus use only completed frames. Interpolation will then be used to smooth movement.\nThis cvar only applies when video and input frames are independant (ie: cl_netfps is set).");
static cvar_t cl_predict_timenudge = CVARD("cl_predict_timenudge", "0", "A debug feature. You should normally leave this as 0. Nudges local player prediction into the future if positive (resulting in extrapolation), or into the past if negative (resulting in laggy interpolation). Value is in seconds, so small decimals are required. This cvar applies even if input frames are tied to video frames.");
cvar_t cl_lerp_smooth = CVARD("cl_lerp_smooth", "2", "If 2, will act as 1 when playing demos/singleplayer and otherwise act as if set to 0 (ie: deathmatch).\nIf 1, interpolation will run in the past, resulting in really smooth movement at the cost of latency (even on bunchy german ISDNs).\nIf 0, interpolation will be based upon packet arrival times and may judder due to packet loss.");
static cvar_t cl_lerp_driftbias = CVARD("cl_lerp_driftbias", "0", "Additional bias, can be set to a negative value to hold interpolation in the past.");
static cvar_t cl_lerp_driftfrac = CVARD("cl_lerp_driftfrac", "0", "Proportion of the latest time vs the older time to favour drifting towards.");
cvar_t cl_nopred = CVARD("cl_nopred","0", "Disables clientside movement prediction.");
static cvar_t cl_pushlatency = CVAR("pushlatency","-999");
extern float pm_airaccelerate;
extern usercmd_t cl_pendingcmd[MAX_SPLITS];
#ifdef Q2CLIENT
#define MAX_PARSE_ENTITIES 1024
extern entity_state_t clq2_parse_entities[MAX_PARSE_ENTITIES];
char *Get_Q2ConfigString(int i);
#ifdef Q2BSPS
void VARGS Q2_Pmove (q2pmove_t *pmove);
#define Q2PMF_DUCKED 1
#define Q2PMF_JUMP_HELD 2
#define Q2PMF_ON_GROUND 4
#define Q2PMF_TIME_WATERJUMP 8 // pm_time is waterjump
#define Q2PMF_TIME_LAND 16 // pm_time is time before rejump
#define Q2PMF_TIME_TELEPORT 32 // pm_time is non-moving time
#define Q2PMF_NO_PREDICTION 64 // temporarily disables prediction (used for grappling hook)
#endif
vec3_t cl_predicted_origins[MAX_SPLITS][UPDATE_BACKUP];
/*
===================
CL_CheckPredictionError
===================
*/
#ifdef Q2BSPS
void CLQ2_CheckPredictionError (void)
{
int frame;
int delta[3];
int i;
int len;
int seat;
q2player_state_t *ps;
playerview_t *pv;
for (seat = 0; seat < cl.splitclients; seat++)
{
ps = &cl.q2frame.playerstate[seat];
pv = &cl.playerview[seat];
if (cl_nopred.value || (ps->pmove.pm_flags & Q2PMF_NO_PREDICTION))
continue;
// calculate the last usercmd_t we sent that the server has processed
frame = cls.netchan.incoming_acknowledged;
frame &= (UPDATE_MASK);
// compare what the server returned with what we had predicted it to be
VectorSubtract (ps->pmove.origin, cl_predicted_origins[seat][frame], delta);
// save the prediction error for interpolation
len = abs(delta[0]) + abs(delta[1]) + abs(delta[2]);
if (len > 640) // 80 world units
{ // a teleport or something
VectorClear (pv->prediction_error);
}
else
{
// if (/*cl_showmiss->value && */(delta[0] || delta[1] || delta[2]) )
// Con_Printf ("prediction miss on %i: %i\n", cl.q2frame.serverframe,
// delta[0] + delta[1] + delta[2]);
VectorCopy (ps->pmove.origin, cl_predicted_origins[seat][frame]);
// save for error itnerpolation
for (i=0 ; i<3 ; i++)
pv->prediction_error[i] = delta[i]*0.125;
}
}
}
/*
====================
CL_ClipMoveToEntities
====================
*/
int predignoreentitynum;
void CLQ2_ClipMoveToEntities ( vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end, trace_t *tr )
{
int i;
trace_t trace;
float *angles;
entity_state_t *ent;
int num;
model_t *cmodel;
vec3_t bmins, bmaxs;
for (i=0 ; i<cl.q2frame.num_entities ; i++)
{
num = (cl.q2frame.parse_entities + i)&(MAX_PARSE_ENTITIES-1);
ent = &clq2_parse_entities[num];
if (ent->solidsize == ES_SOLID_NOT)
continue;
if (ent->number == predignoreentitynum)
continue;
if (ent->solidsize == ES_SOLID_BSP)
{ // special value for bmodel
cmodel = cl.model_precache[ent->modelindex];
if (!cmodel)
continue;
angles = ent->angles;
}
else
{ // encoded bbox
COM_DecodeSize(ent->solidsize, bmins, bmaxs);
cmodel = CM_TempBoxModel (bmins, bmaxs);
angles = vec3_origin; // boxes don't rotate
}
if (tr->allsolid)
return;
World_TransformedTrace (cmodel, 0, 0, start, end, mins, maxs, false, &trace, ent->origin, angles, MASK_PLAYERSOLID);
if (trace.allsolid || trace.startsolid || trace.fraction < tr->fraction)
{
trace.ent = (struct edict_s *)ent;
*tr = trace;
}
}
}
/*
================
CL_PMTrace
================
*/
q2trace_t VARGS CLQ2_PMTrace (vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end)
{
q2trace_t q2t;
trace_t t;
// check against world
cl.worldmodel->funcs.NativeTrace(cl.worldmodel, 0, NULLFRAMESTATE, NULL, start, end, mins, maxs, false, MASK_PLAYERSOLID, &t);
if (t.fraction < 1.0)
t.ent = (struct edict_s *)1;
// check all other solid models
CLQ2_ClipMoveToEntities (start, mins, maxs, end, &t);
q2t.allsolid = t.allsolid;
q2t.contents = t.contents;
VectorCopy(t.endpos, q2t.endpos);
q2t.ent = t.ent;
q2t.fraction = t.fraction;
q2t.plane = t.plane;
q2t.startsolid = t.startsolid;
q2t.surface = t.surface;
return q2t;
}
int VARGS CLQ2_PMpointcontents (vec3_t point)
{
int i;
entity_state_t *ent;
int num;
model_t *cmodel;
int contents;
contents = CM_PointContents (cl.worldmodel, point);
for (i=0 ; i<cl.q2frame.num_entities ; i++)
{
num = (cl.q2frame.parse_entities + i)&(MAX_PARSE_ENTITIES-1);
ent = &clq2_parse_entities[num];
if (ent->solidsize != ES_SOLID_BSP) // special value for bmodel
continue;
cmodel = cl.model_precache[ent->modelindex];
if (!cmodel)
continue;
contents |= CM_TransformedPointContents (cl.worldmodel, point, cmodel->hulls[0].firstclipnode, ent->origin, ent->angles);
}
return contents;
}
#endif
/*
=================
CL_PredictMovement
Sets cl.predicted_origin and cl.predicted_angles
=================
*/
static void CLQ2_PredictMovement (int seat) //q2 doesn't support split clients.
{
#ifdef Q2BSPS
int ack, current;
int frame;
int oldframe;
q2usercmd_t *cmd;
q2pmove_t pm;
int step;
int oldz;
#endif
int i;
q2player_state_t *ps = &cl.q2frame.playerstate[seat];
playerview_t *pv = &cl.playerview[seat];
if (cls.state != ca_active)
return;
// if (cl_paused->value)
// return;
#ifdef Q2BSPS
if (cl_nopred.value || cls.demoplayback || (ps->pmove.pm_flags & Q2PMF_NO_PREDICTION))
#endif
{ // just set angles
for (i=0 ; i<3 ; i++)
{
pv->predicted_angles[i] = pv->viewangles[i] + SHORT2ANGLE(ps->pmove.delta_angles[i]);
}
return;
}
#ifdef Q2BSPS
ack = cls.netchan.incoming_acknowledged;
current = cls.netchan.outgoing_sequence;
// if we are too far out of date, just freeze
if (current - ack >= UPDATE_MASK)
{
// if (cl_showmiss->value)
// Con_Printf ("exceeded CMD_BACKUP\n");
return;
}
// copy current state to pmove
memset (&pm, 0, sizeof(pm));
pm.trace = CLQ2_PMTrace;
pm.pointcontents = CLQ2_PMpointcontents;
pm_airaccelerate = atof(Get_Q2ConfigString(Q2CS_AIRACCEL));
pm.s = ps->pmove;
// SCR_DebugGraph (current - ack - 1, 0);
frame = 0;
predignoreentitynum = cl.q2frame.clientnum[seat]+1;//cl.playerview[seat].playernum+1;
// run frames
while (++ack < current)
{
frame = ack & (UPDATE_MASK);
cmd = (q2usercmd_t*)&cl.outframes[frame].cmd[seat];
cmd->msec = cl.outframes[frame].cmd[seat].msec;
pm.cmd = *cmd;
Q2_Pmove (&pm);
// save for debug checking
VectorCopy (pm.s.origin, cl_predicted_origins[seat][frame]);
}
if (cl_pendingcmd[seat].msec)
{
cmd = (q2usercmd_t*)&cl_pendingcmd[seat];
cmd->msec = cl_pendingcmd[seat].msec;
pm.cmd = *cmd;
Q2_Pmove (&pm);
}
oldframe = (ack-1) & (UPDATE_MASK);
oldz = cl_predicted_origins[seat][oldframe][2];
step = pm.s.origin[2] - oldz;
if (step > 63 && step < 160 && (pm.s.pm_flags & Q2PMF_ON_GROUND) )
{
pv->predicted_step = step * 0.125;
pv->predicted_step_time = realtime;// - host_frametime;// * 0.5;
}
pv->onground = !!(pm.s.pm_flags & Q2PMF_ON_GROUND);
// copy results out for rendering
pv->predicted_origin[0] = pm.s.origin[0]*0.125;
pv->predicted_origin[1] = pm.s.origin[1]*0.125;
pv->predicted_origin[2] = pm.s.origin[2]*0.125;
VectorScale (pm.s.velocity, 0.125, pv->simvel);
VectorCopy (pm.viewangles, pv->predicted_angles);
#endif
}
/*
=================
CL_NudgePosition
If pmove.origin is in a solid position,
try nudging slightly on all axis to
allow for the cut precision of the net coordinates
=================
*/
void CL_NudgePosition (void)
{
vec3_t base;
int x, y;
if (cl.worldmodel->funcs.PointContents (cl.worldmodel, NULL, pmove.origin) == FTECONTENTS_EMPTY)
return;
VectorCopy (pmove.origin, base);
for (x=-1 ; x<=1 ; x++)
{
for (y=-1 ; y<=1 ; y++)
{
pmove.origin[0] = base[0] + x * 1.0/8;
pmove.origin[1] = base[1] + y * 1.0/8;
if (cl.worldmodel->funcs.PointContents (cl.worldmodel, NULL, pmove.origin) == FTECONTENTS_EMPTY)
return;
}
}
Con_DPrintf ("CL_NudgePosition: stuck\n");
}
#endif
/*
==============
CL_PredictUsercmd
==============
*/
void CL_PredictUsercmd (int pnum, int entnum, player_state_t *from, player_state_t *to, usercmd_t *u)
{
// split up very long moves
if (u->msec > 50)
{
player_state_t temp;
usercmd_t split;
split = *u;
split.msec = u->msec / 2; //special care to avoid forgetting an msec here and there
if (split.msec > 500)
{
split.msec = 500;
CL_PredictUsercmd (pnum, entnum, from, to, &split);
}
else
{
CL_PredictUsercmd (pnum, entnum, from, &temp, &split);
split.msec = u->msec - split.msec;
CL_PredictUsercmd (pnum, entnum, &temp, to, &split);
}
return;
}
if (!cl.worldmodel || cl.worldmodel->loadstate != MLS_LOADED)
return;
VectorCopy (from->origin, pmove.origin);
VectorCopy (u->angles, pmove.angles);
VectorCopy (from->velocity, pmove.velocity);
VectorCopy (from->gravitydir, pmove.gravitydir);
if (IS_NAN(pmove.velocity[0]))
{
Con_DPrintf("nan velocity!\n");
pmove.velocity[0] = 0;
pmove.velocity[1] = 0;
pmove.velocity[2] = 0;
}
pmove.onground = from->onground;
pmove.jump_msec = (cls.z_ext & Z_EXT_PM_TYPE) ? 0 : from->jump_msec;
pmove.jump_held = from->jump_held;
pmove.waterjumptime = from->waterjumptime;
pmove.pm_type = from->pm_type;
pmove.cmd = *u;
pmove.skipent = entnum;
movevars.entgravity = cl.playerview[pnum].entgravity;
movevars.maxspeed = cl.playerview[pnum].maxspeed;
movevars.bunnyspeedcap = cl.bunnyspeedcap;
pmove.onladder = false;
pmove.safeorigin_known = false;
pmove.capsule = false; //FIXME
VectorCopy(from->szmins, pmove.player_mins);
VectorCopy(from->szmaxs, pmove.player_maxs);
PM_PlayerMove (cl.gamespeed);
to->waterjumptime = pmove.waterjumptime;
to->jump_held = pmove.jump_held;
to->jump_msec = pmove.jump_msec;
pmove.jump_msec = 0;
VectorCopy (pmove.origin, to->origin);
VectorCopy (pmove.angles, to->viewangles);
VectorCopy (pmove.velocity, to->velocity);
VectorCopy (pmove.gravitydir, to->gravitydir);
to->onground = pmove.onground;
to->weaponframe = from->weaponframe;
to->pm_type = from->pm_type;
VectorCopy(pmove.player_mins, to->szmins);
VectorCopy(pmove.player_maxs, to->szmaxs);
}
//Used when cl_nopred is 1 to determine whether we are on ground, otherwise stepup smoothing code produces ugly jump physics
void CL_CatagorizePosition (playerview_t *pv, float *org)
{
//fixme: in nq, we are told by the server and should skip this, which avoids needing to know the player's size.
if (pv->spectator && !CAM_ISLOCKED(pv))
{
pv->onground = false; // in air
return;
}
VectorClear (pmove.velocity);
VectorCopy (org, pmove.origin);
pmove.numtouch = 0;
PM_CategorizePosition ();
pv->onground = pmove.onground;
}
//Smooth out stair step ups.
//Called before CL_EmitEntities so that the player's lightning model origin is updated properly
void CL_CalcCrouch (playerview_t *pv)
{
qboolean teleported;
vec3_t delta;
float orgz = -DotProduct(pv->simorg, pv->gravitydir); //compensate for running on walls.
VectorSubtract(pv->simorg, pv->oldorigin, delta);
teleported = Length(delta)>48;
if (teleported)
{
// possibly teleported or respawned
pv->oldz = orgz;
pv->extracrouch = 0;
pv->crouchspeed = 100;
pv->crouch = 0;
VectorCopy (pv->simorg, pv->oldorigin);
return;
}
VectorCopy (pv->simorg, pv->oldorigin);
if (pv->onground && orgz - pv->oldz)
{
if (pv->oldz > orgz)
{ //stepping down should be a little faster than stepping up.
//so steps will still feel a little juddery. my knees hate walking down steep hills, so I guess this is similar.
if (pv->crouchspeed > 0)
pv->crouchspeed = -pv->crouchspeed*2;
if (orgz - pv->oldz < -movevars.stepheight-2)
{
// if on steep stairs, increase speed
if (pv->crouchspeed > -160*2)
{
pv->extracrouch = orgz - pv->oldz + host_frametime * 400 + 15;
pv->extracrouch = max(pv->extracrouch, -5);
}
pv->crouchspeed = -160*2;
}
pv->oldz += host_frametime * pv->crouchspeed;
if (pv->oldz < orgz)
pv->oldz = orgz;
if (pv->oldz > orgz + 15 - pv->extracrouch)
pv->oldz = orgz + 15 + pv->extracrouch;
if (pv->extracrouch < -host_frametime*400)
pv->extracrouch += host_frametime * 400;
else if (pv->extracrouch < 0)
pv->extracrouch = 0;
}
else
{
if (pv->crouchspeed < 0)
pv->crouchspeed = -pv->crouchspeed/2;
if (orgz - pv->oldz > movevars.stepheight+2)
{
// if on steep stairs, increase speed
if (pv->crouchspeed < 160)
{
pv->extracrouch = orgz - pv->oldz - host_frametime * 200 - 15;
pv->extracrouch = min(pv->extracrouch, 5);
}
pv->crouchspeed = 160;
}
pv->oldz += host_frametime * pv->crouchspeed;
if (pv->oldz > orgz)
pv->oldz = orgz;
// if (orgz - pv->oldz > 15 + pv->extracrouch)
if (pv->oldz < orgz - 15 + pv->extracrouch)
pv->oldz = orgz - 15 - pv->extracrouch;
if (pv->extracrouch >= host_frametime * 200)
pv->extracrouch -= host_frametime * 200;
else if (pv->extracrouch > 0)
pv->extracrouch = 0;
}
pv->crouch = pv->oldz - orgz;
}
else
{
// in air or moving down
pv->oldz = orgz;
if (pv->crouch > 0)
{
//step-down
pv->crouch -= host_frametime * 150;
if (orgz - pv->oldz > 0)
pv->crouch += orgz - pv->oldz; //if the view moved down, remove that amount from our crouching to avoid unneeded bobbing
if (pv->crouch > 0)
pv->crouch = 0;
pv->crouchspeed = -100;
}
else
{ //step-up
pv->crouch += host_frametime * 150;
if (orgz - pv->oldz < 0)
pv->crouch -= orgz - pv->oldz; //if the view moved down, remove that amount from our crouching to avoid unneeded bobbing
if (pv->crouch > 0)
pv->crouch = 0;
pv->crouchspeed = 100;
}
pv->extracrouch = 0;
}
}
float LerpAngles360(float to, float from, float frac)
{
float delta;
delta = (from-to);
if (delta > 180)
delta -= 360;
if (delta < -180)
delta += 360;
return to + frac*delta;
}
short LerpAngles16(short to, short from, float frac)
{
int delta;
delta = (from-to);
if (delta > 32767)
delta -= 65535;
if (delta < -32767)
delta += 65535;
return to + frac*delta;
}
void CL_CalcClientTime(void)
{
if (!cls.state)
{
cl.servertime += host_frametime;
cl.time = cl.servertime;
return;
}
else// if (cls.protocol != CP_QUAKE3)
{
// float oldst = realtime;
if (cls.demoplayback && cls.timedemo)
{ //more deterministic. one frame is drawn per demo packet parsed. so sync to it as closely as possible.
/*NOTE: this also has the effect of speeding up particles etc*/
extern float olddemotime;
cl.servertime = olddemotime;
}
//q2 has no drifting (our code can't cope with picking anything beyond old/new snapshots, and frankly its 10fps which is horrendous enough as it is).
//q3 always drifts (gamecode does snapshot selection).
//qw code can drift (but oh noes! my latency!)
//FIXME: nq code should be able to drift, but is apparently buggy somewhere and ends up uncomfortably stuttery right now.
//default is to drift in demos+SP but not live (oh noes! added latency!)
if (cls.protocol == CP_QUAKE2 || cls.protocol==CP_NETQUAKE/*FIXME*/ || (cls.protocol != CP_QUAKE3 && (!cl_lerp_smooth.ival || (cl_lerp_smooth.ival == 2 && !(cls.demoplayback || cl.allocated_client_slots == 1 || cl.playerview[0].spectator))) && cls.demoplayback != DPB_MVD))
{ //no drift logic
float f;
f = cl.gametime - cl.oldgametime;
if (f > 0.1)
f = 0.1;
f = (realtime - cl.gametimemark) / (f);
f = bound(0, f, 1);
cl.servertime = cl.gametime*f + cl.oldgametime*(1-f);
}
else
{ //funky magic drift logic. we be behind the most recent frame in order to attempt to cover network congestions (which is apparently common in germany).
float min, max;
// oldst = cl.servertime;
max = cl.gametime;
min = cl.oldgametime;
FloatInterpolate(min, cl_lerp_driftfrac.value, max, min);
min += cl_lerp_driftbias.value;
if (max < min)
max = min;
if (max)
{
extern cvar_t cl_demospeed;
if (cls.demoplayback && cl_demospeed.value > 0 && cls.state == ca_active)
cl.servertime += host_frametime*cl_demospeed.value;
else
cl.servertime += host_frametime;
}
else
cl.servertime = 0;
if (!cl.oldgametime)
cl.servertime = max; //map start (or reload/connect or something). snap to current.
else if (cl.servertime > min)
{
if (cl.servertime > max)
{
cl.servertime = max;
// Con_Printf("clamped to new time\n");
}
else
{
cl.servertime -= 0.02*(max - cl.servertime);
if (cl.servertime < cl.time)
cl.servertime = cl.time;
}
}
if (cl.servertime < min)
{
if (cl.servertime < min-0.5)
{
cl.servertime = min-0.5;
// Con_Printf("clamped to old time\n");
}
else if (cl.servertime < min-0.3)
{
cl.servertime += 0.02*(min - cl.servertime);
// Con_Printf("running really slow\n");
}
else
{
cl.servertime += 0.01*(min - cl.servertime);
// Con_Printf("running slow\n");
}
}
}
cl.time = cl.servertime;
/* if (oldst == 0)
{
int i;
for (i = 0; i < cl.allocated_client_slots; i++)
{
cl.players[i].entertime += cl.servertime;
}
}
*/
return;
}
#if 0
if (cls.protocol == CP_NETQUAKE || (cls.demoplayback && cls.demoplayback != DPB_MVD && cls.demoplayback != DPB_EZTV))
{
float want;
// float off;
want = cl.oldgametime + realtime - cl.gametimemark;
// off = (want - cl.time);
if (want>cl.time) //don't decrease
cl.time = want;
// Con_Printf("Drifted to %f off by %f\n", cl.time, off);
// Con_Printf("\n");
if (cl.time > cl.gametime)
{
cl.time = cl.gametime;
// Con_Printf("max TimeClamp\n");
}
if (cl.time < cl.oldgametime)
{
cl.time = cl.oldgametime;
// Con_Printf("old TimeClamp\n");
}
}
else
{
if (cl_pushlatency.value > 0)
Cvar_Set (&cl_pushlatency, "0");
cl.time = realtime - cls.latency - cl_pushlatency.value*0.001;
if (cl.time > realtime)
cl.time = realtime;
}
#endif
}
static void CL_DecodeStateSize(unsigned int solid, int modelindex, vec3_t mins, vec3_t maxs)
{
if (solid == ES_SOLID_BSP)
{
if (modelindex < MAX_PRECACHE_MODELS && cl.model_precache[modelindex] && cl.model_precache[modelindex]->loadstate == MLS_LOADED)
{
VectorCopy(cl.model_precache[modelindex]->mins, mins);
VectorCopy(cl.model_precache[modelindex]->maxs, maxs);
}
else
{
VectorClear(mins);
VectorClear(maxs);
}
}
else if (solid)
COM_DecodeSize(solid, mins, maxs);
else
{
VectorClear(mins);
VectorClear(maxs);
}
}
/*called on packet reception*/
#include "pr_common.h"
static void CL_EntStateToPlayerState(player_state_t *plstate, entity_state_t *state)
{
vec3_t a;
int pmtype;
qboolean onground = plstate->onground;
qboolean jumpheld = plstate->jump_held;
vec3_t vel;
VectorCopy(plstate->velocity, vel);
memset(plstate, 0, sizeof(*plstate));
plstate->jump_held = jumpheld;
switch(state->u.q1.pmovetype & 0x3f)
{
case MOVETYPE_NOCLIP:
if (cls.z_ext & Z_EXT_PM_TYPE_NEW)
pmtype = PM_SPECTATOR;
else
pmtype = PM_OLD_SPECTATOR;
break;
case MOVETYPE_FLY:
pmtype = PM_FLY;
break;
case MOVETYPE_NONE:
pmtype = PM_NONE;
break;
case MOVETYPE_BOUNCE:
case MOVETYPE_TOSS:
pmtype = PM_DEAD;
break;
case MOVETYPE_WALLWALK:
pmtype = PM_WALLWALK;
break;
case MOVETYPE_6DOF:
pmtype = PM_6DOF;
break;
default:
pmtype = PM_NORMAL;
break;
}
VectorCopy(state->origin, plstate->origin);
if (cls.protocol == CP_NETQUAKE && !(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS))
{ //nq is annoying, this stuff wasn't part of the entity state, so don't break it
VectorCopy(vel, plstate->velocity);
pmtype = PM_NORMAL;
plstate->onground = onground;
}
else
{
VectorScale(state->u.q1.velocity, 1/8.0, plstate->velocity);
plstate->onground = !!(state->u.q1.pmovetype&128);
plstate->jump_held = !!(state->u.q1.pmovetype&64);
}
plstate->pm_type = pmtype;
plstate->viewangles[0] = SHORT2ANGLE(state->u.q1.vangle[0]);
plstate->viewangles[1] = SHORT2ANGLE(state->u.q1.vangle[1]);
plstate->viewangles[2] = SHORT2ANGLE(state->u.q1.vangle[2]);
if (!state->u.q1.gravitydir[0] && !state->u.q1.gravitydir[1])
VectorSet(plstate->gravitydir, 0, 0, -1);
else
{
a[0] = ((192+state->u.q1.gravitydir[0])/256.0f) * 360;
a[1] = (state->u.q1.gravitydir[1]/256.0f) * 360;
a[2] = 0;
AngleVectors(a, plstate->gravitydir, NULL, NULL);
}
if (!state->solidsize || !(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS))
{
VectorSet(plstate->szmins, -16, -16, -24);
VectorSet(plstate->szmaxs, 16, 16, 32);
}
else
CL_DecodeStateSize(state->solidsize, state->modelindex, plstate->szmins, plstate->szmaxs);
}
static void CL_EntStateToPlayerCommand(usercmd_t *cmd, entity_state_t *state, float age)
{
int msec;
float extra;
memset(cmd, 0, sizeof(*cmd));
extra = /*-cls.latency + */ 0.02; //network latency
extra += age; //if the state is not exactly current
// extra += realtime - cl.inframes[cl.validsequence&UPDATE_MASK].receivedtime;
// extra += (cl.inframes[cl.validsequence&UPDATE_MASK].receivedtime - cl.inframes[cl.oldvalidsequence&UPDATE_MASK].receivedtime)*4;
msec = 1000*extra;
// Con_DPrintf("%i: age = %i, stale=%i\n", state->number, msec, state->u.q1.msec);
msec += state->u.q1.msec; //this is the age on the server
cmd->msec = bound(0, msec, 250);
cmd->forwardmove = state->u.q1.movement[0];
cmd->sidemove = state->u.q1.movement[1];
cmd->upmove = state->u.q1.movement[2];
cmd->angles[0] = state->u.q1.vangle[0];// * -3 *65536/360.0;
cmd->angles[1] = state->u.q1.vangle[1];// * 65536/360.0;
cmd->angles[2] = state->u.q1.vangle[2];// * 65536/360.0;
}
void CL_PredictEntityMovement(entity_state_t *estate, float age)
{
player_state_t startstate, resultstate;
usercmd_t cmd;
int oldphysent;
extern cvar_t cl_predict_players;
//build the entitystate state into a player state for prediction to use
if (!estate->u.q1.pmovetype || !cl_predict_players.ival || age <= 0)
VectorCopy(estate->origin, estate->u.q1.predorg);
else
{
VectorClear(startstate.velocity);
startstate.onground = false;
startstate.jump_held = false;
CL_EntStateToPlayerState(&startstate, estate);
CL_EntStateToPlayerCommand(&cmd, estate, age);
// cmd.forwardmove = 5000;
// cmd.msec = sin(realtime*6) * 128 + 128;
oldphysent = pmove.numphysent;
pmove.onground = startstate.onground;
CL_PredictUsercmd(0, estate->number, &startstate, &resultstate, &cmd); //uses player 0's maxspeed/grav...
pmove.numphysent = oldphysent;
VectorCopy(resultstate.origin, estate->u.q1.predorg);
}
}
/*
==============
CL_PredictMove
==============
*/
void CL_PredictMovePNum (int seat)
{
//when this is called, the entity states have been interpolated.
//interpolation state should be updated to match prediction state, so entities move correctly in mirrors/portals.
//this entire function is pure convolouted bollocks.
struct {
int frame;
double time;
player_state_t *state;
usercmd_t *cmd;
} from, to;
playerview_t *pv = &cl.playerview[seat];
int i;
float f;
outframe_t *backdate;
player_state_t framebuf[2]; //need two framebufs so we can interpolate between two states.
static player_state_t nullstate;
int oldphysent;
double simtime; //this is server time if nopred is set (lerp-only), and local time if we're predicting
extern cvar_t cl_netfps;
lerpents_t *le;
qboolean nopred;
qboolean lerpangles = false;
int trackent;
qboolean cam_nowlocked = false;
usercmd_t indcmd;
//these are to make svc_viewentity work better
float netfps = cl_netfps.value;
if (!netfps)
{
//every video frame has its own input frame.
simtime = realtime;
}
else
{
qboolean extrap = cl_predict_extrapolate.ival;
// float fps = 1/host_frametime;
// fps = bound(6.7, fps, cls.maxfps);
netfps = bound(6.7, netfps, cls.maxfps);
// if (netfps > fps)
// netfps = fps;
if (!*cl_predict_extrapolate.string)
extrap = netfps < 30;
if (cls.protocol == CP_NETQUAKE && CPNQ_IS_DP)
extrap = true; //DP servers do a nasty thing where they send packets without any entities. This messes with our timings. Its much smoother to just always use extrapolation in this case (otherwise we'd have to backdate too much for prediction to do much).
if (!extrap)
{
//interpolate. The input rate is completely smoothed out, at the cost of some latency.
//You can still get juddering if the video rate doesn't match the monitor refresh rate (and isn't so high that it doesn't matter).
//note that the code below will back-date input frames if the server acks too fast.
simtime = realtime - (1.0/netfps);
}
else
{
//extrapolate if we've a low net rate. This should reduce apparent lag, but will be jerky if the net rate is not an (inverse) multiple of the monitor rate.
//this is in addition to any monitor desync.
simtime = realtime;
}
}
if (cls.demoplayback == DPB_QUAKEWORLD || pv->cam_state == CAM_EYECAM)
simtime -= cls.latency; //push back when playing demos.
simtime += bound(-0.5, cl_predict_timenudge.value, 0.5);
pv->nolocalplayer = !!(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS) || (cls.protocol != CP_QUAKEWORLD);
if (!pv->spectator && (pv->cam_state != CAM_FREECAM || pv->cam_spec_track != -1)) //just in case
{
if (pv->cam_state != CAM_FREECAM)
pv->viewentity = (cls.demoplayback)?0:(pv->playernum+1);
pv->cam_state = CAM_FREECAM;
pv->cam_spec_track = -1;
}
#ifdef Q2CLIENT
if (cls.protocol == CP_QUAKE2)
{
if (!cl.worldmodel || cl.worldmodel->loadstate != MLS_LOADED)
return;
pv->crouch = 0;
CLQ2_PredictMovement(seat);
return;
}
#endif
if (cl.paused && !(cls.demoplayback!=DPB_MVD && cls.demoplayback!=DPB_EZTV) && pv->cam_state == CAM_FREECAM)
return;
if (!cl.validsequence)
{
return;
}
if (cl.intermissionmode == IM_QWSCORES)
{
//quakeworld locks view position once you hit intermission.
VectorCopy (pv->intermissionangles, pv->simangles);
return;
}
else if (cl.intermissionmode != IM_NONE)
lerpangles = false; //will do angles later.
else
{
if (cl.currentpackentities && cl.currentpackentities->fixangles[seat])
{
if (cl.previouspackentities && cl.previouspackentities->fixangles[seat]==cl.currentpackentities->fixangles[seat])
{
for (i = 0; i < 3; i++)
pv->simangles[i] = LerpAngles360(cl.currentpackentities->fixedangles[seat][i], cl.previouspackentities->fixedangles[seat][i], 1-(cl.previouspackentities->fixangles[seat]?cl.packfrac:1));
}
else
VectorCopy(cl.currentpackentities->fixedangles[seat], pv->simangles);
if (cls.demoplayback)
VectorCopy(pv->simangles, pv->viewangles);
if (cl.currentpackentities->fixangles[seat] == 2)
lerpangles = (cls.demoplayback == DPB_QUAKEWORLD);
}
else
{
lerpangles = (cls.demoplayback == DPB_QUAKEWORLD);
VectorCopy (pv->viewangles, pv->simangles);
}
}
//if we now know where our target player is, we can finally lock on to them.
if (pv->cam_state == CAM_PENDING && pv->cam_spec_track >= 0 && pv->cam_spec_track < cl.allocated_client_slots && pv->viewentity != pv->cam_spec_track+1)
{
if ((cl.inframes[cl.validsequence & UPDATE_MASK].playerstate[pv->cam_spec_track].messagenum == cl.validsequence) ||
(pv->cam_spec_track+1 < cl.maxlerpents && cl.lerpents[pv->cam_spec_track+1].sequence == cl.lerpentssequence))
{
pv->cam_state = CAM_EYECAM;
pv->viewentity = pv->cam_spec_track+1;
cam_nowlocked = true;
}
}
if (pv->cam_state == CAM_WALLCAM)
trackent = pv->cam_spec_track+1;
else
trackent = pv->viewentity;
nopred = cl_nopred.ival;
//don't wrap
if (!cl.ackedmovesequence)
nopred = true;
else if (cl.movesequence - cl.ackedmovesequence >= UPDATE_BACKUP-1)
nopred = true;
//these things also force-disable prediction
if ((cls.demoplayback==DPB_MVD || cls.demoplayback == DPB_EZTV) ||
cl.intermissionmode != IM_NONE || cl.paused || pv->pmovetype == PM_NONE || pv->pmovetype == PM_FREEZE || CAM_ISLOCKED(pv))
{
nopred = true;
}
// figure out the first frame to lerp from.
// we generate one new input frame every 1/72th of a second, with a refresh rate of 60hz that's blatently obvious
// if we live in the present, we'll only have half a frame. in order to avoid extrapolation (which can give a swimmy feel), we live in the past by one frame time period
// if we're running somewhere with a low latency, we can get a reply from the server before our next input frame is even generated, so we need to go backwards beyond the current state
if (nopred)
{
lerpangles = false;
//match interpolation info
from.frame = ((char*)cl.previouspackentities - (char*)&cl.inframes[0].packet_entities) / sizeof(inframe_t);
from.time = cl.inframes[from.frame & UPDATE_MASK].packet_entities.servertime;
to.frame = ((char*)cl.currentpackentities - (char*)&cl.inframes[0].packet_entities) / sizeof(inframe_t);
to.time = cl.inframes[to.frame & UPDATE_MASK].packet_entities.servertime;
simtime = cl.currentpacktime;
to.cmd = from.cmd = NULL;
}
else
{
to.frame = from.frame = 0;
to.time = from.time = 0;
to.cmd = from.cmd = NULL;
//try to find the inbound frame that sandwiches the realtime that we're trying to simulate.
//if we're predicting, this will be some time in the future, and thus we'll be forced to pick the most recent frame.
//if we're interpolating, we'll need to grab the frame before that.
//we're only interested in inbound frames, not outbound, but its outbound frames that contain the prediction timing, so we need to look that up
//(note that in qw, inframe[i].ack==i holds true, but this code tries to be generic for unsyncronised protocols)
//(note that in nq, using outbound times means we'll skip over dupe states without noticing, and input packets with dupes should also be handled gracefully)
// Con_DPrintf("in:%i:%i out:%i:%i ack:%i\n", cls.netchan.incoming_sequence, cl.validsequence, cls.netchan.outgoing_sequence,cl.movesequence, cl.ackedmovesequence);
for (i = cl.validsequence; i >= cls.netchan.incoming_sequence - UPDATE_MASK; i--)
{
int out;
//skip frames which were not received, or are otherwise invalid. yay packetloss
if (cl.inframes[i & UPDATE_MASK].frameid != i || cl.inframes[i & UPDATE_MASK].invalid)
{
// Con_DPrintf("stale incoming command %i\n", i);
continue;
}
//each inbound frame tracks the outgoing frame that was last applied to it, and its outgoing frames that contain our timing info
out = cl.inframes[i&UPDATE_MASK].ackframe;
backdate = &cl.outframes[out & UPDATE_MASK];
if (backdate->cmd_sequence != out)
{
// Con_DPrintf("stale outgoing command %i (%i:%i:%i)\n", i, out, backdate->cmd_sequence, backdate->server_message_num);
continue;
}
//okay, looks valid
//if this is the first one we found, make sure both from+to are set properly
if (!from.frame)
{
from.frame = i;
from.time = backdate->senttime;
}
to = from;
to.state = NULL;
from.frame = i;
from.time = backdate->senttime;
from.cmd = &backdate->cmd[seat];
if (cl.inframes[to.frame&UPDATE_MASK].ackframe > pv->prop.sequence)
continue; //if we didn't predict to this frame yet, then the waterjump etc state will be invalid, so try to go for an older frame so that it actually propagates properly.
if (from.time < simtime && from.frame != to.frame)
break; //okay, we found the first frame that is older, no need to continue looking
}
}
// Con_DPrintf("sim%f, %i(%i-%i): old%f, cur%f\n", simtime, cl.ackedmovesequence, fromframe, toframe, fromtime, totime);
if ((pv->cam_state == CAM_WALLCAM || pv->cam_state == CAM_EYECAM) && trackent && trackent <= cl.allocated_client_slots)
{
from.state = &cl.inframes[from.frame & UPDATE_MASK].playerstate[trackent-1];
to.state = &cl.inframes[to.frame & UPDATE_MASK].playerstate[trackent-1];
}
else
{
if (cls.demoplayback==DPB_MVD || cls.demoplayback == DPB_EZTV)
{
pv->nolocalplayer = false;
from.state = &cl.inframes[cl.ackedmovesequence & UPDATE_MASK].playerstate[pv->playernum];
to.state = &cl.inframes[cl.movesequence & UPDATE_MASK].playerstate[pv->playernum];
}
else
{
from.state = &cl.inframes[from.frame & UPDATE_MASK].playerstate[pv->playernum];
to.state = &cl.inframes[to.frame & UPDATE_MASK].playerstate[pv->playernum];
}
}
pv->pmovetype = to.state->pm_type;
le = &cl.lerpplayers[pv->playernum];
if (!from.cmd)
from.cmd = &cl.outframes[from.frame & UPDATE_MASK].cmd[pv->playernum];
if (!to.cmd)
to.cmd = &cl.outframes[to.frame & UPDATE_MASK].cmd[pv->playernum];
//if our network protocol doesn't have a concept of separate players, make sure our player states are updated from those entities
//fixme: use entity states instead of player states to avoid the extra work here
if (pv->nolocalplayer)
{
packet_entities_t *pe;
pe = &cl.inframes[from.frame & UPDATE_MASK].packet_entities;
for (i = 0; i < pe->num_entities; i++)
{
if (pe->entities[i].number == trackent)
{
CL_EntStateToPlayerState(from.state, &pe->entities[i]);
if (nopred)
from.time -= (pe->entities[i].u.q1.msec / 1000.0f); //correct the time to match stale players
break;
}
}
if (i == pe->num_entities && pv->nolocalplayer)
{
if (cls.state >= ca_active)
return; //no player, nothing makes sense any more.
from.state = &nullstate;
nopred = true;
}
pe = &cl.inframes[to.frame & UPDATE_MASK].packet_entities;
for (i = 0; i < pe->num_entities; i++)
{
if (pe->entities[i].number == trackent)
{
CL_EntStateToPlayerState(to.state, &pe->entities[i]);
if (nopred)
to.time -= (pe->entities[i].u.q1.msec / 1000.0f); //correct the time to match stale players. FIXME: this can push the simtime into the 'future' resulting in stuttering
if (cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS)
{
#ifdef QUAKESTATS
//putting weapon frames in there was a stupid idea. qwisms I guess.
if (!(cls.fteprotocolextensions2 & PEXT2_PREDINFO))
{
pv->stats[STAT_WEAPONFRAME] = cl.players[pv->playernum].stats[STAT_WEAPONFRAME] = pe->entities[i].u.q1.weaponframe;
pv->statsf[STAT_WEAPONFRAME] = cl.players[pv->playernum].statsf[STAT_WEAPONFRAME] = pe->entities[i].u.q1.weaponframe;
}
#endif
pv->pmovetype = to.state->pm_type;
}
break;
}
}
if (i == pe->num_entities && pv->nolocalplayer)
{
to.state = &nullstate;
nopred = true;
}
if (pv->nolocalplayer && trackent < cl.maxlerpents)
{
le = &cl.lerpents[trackent];
if (le->sequence != cl.lerpentssequence)
nopred = true; //err, guys, this guy ain't valid... we don't know who we are! no point predicting.
}
}
// predict forward until cl.time <= to->senttime
oldphysent = pmove.numphysent;
CL_SetSolidPlayers();
pmove.skipent = trackent;
//just in case we don't run any prediction
VectorCopy(to.state->gravitydir, pmove.gravitydir);
//if all else fails...
pmove.pm_type = to.state->pm_type;
pmove.onground = to.state->onground;
VectorCopy(to.state->szmins, pmove.player_mins);
VectorCopy(to.state->szmaxs, pmove.player_maxs);
if (!nopred)
{
int stopframe;
//Con_Printf("Pred %i to %i\n", to.frame+1, min(from.frame+UPDATE_BACKUP, cl.movesequence));
//fix up sequence numbers for nq
int validsequence = cl.inframes[cl.validsequence&UPDATE_MASK].ackframe;
from.frame = cl.inframes[from.frame&UPDATE_MASK].ackframe;
to.frame = cl.inframes[to.frame&UPDATE_MASK].ackframe;
for (i=to.frame+1, stopframe=min(from.frame+UPDATE_BACKUP, cl.movesequence) ; i < stopframe; i++)
{
outframe_t *of = &cl.outframes[i & UPDATE_MASK];
if (to.time >= simtime)
break;
if (of->cmd_sequence != i)
{
// Con_DPrintf("trying to predict a frame which is no longer valid\n");
break;
}
//okay, move it forward a frame.
from = to;
to.cmd = &of->cmd[seat];
to.time = of->senttime;
to.frame = i;//qw debug
to.state = &framebuf[to.frame&1];
if (from.frame == pv->prop.sequence && pv->prop.sequence)
{
if (!(cls.z_ext & Z_EXT_PF_ONGROUND))
from.state->onground = pv->prop.onground;
if (!(cls.z_ext & Z_EXT_PM_TYPE))
from.state->jump_held = pv->prop.jump_held;
from.state->jump_msec = pv->prop.jump_msec;
from.state->waterjumptime = pv->prop.waterjumptime;
if (!(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS))
VectorCopy(pv->prop.gravitydir, from.state->gravitydir);
}
CL_PredictUsercmd (seat, trackent, from.state, to.state, to.cmd);
if (i <= validsequence && simtime >= to.time)
{ //this frame is final keep track of our propagated values.
pv->prop.onground = pmove.onground;
pv->prop.jump_held = pmove.jump_held;
pv->prop.jump_msec = pmove.jump_msec;
pv->prop.waterjumptime = pmove.waterjumptime;
VectorCopy(pmove.gravitydir, pv->prop.gravitydir);
pv->prop.sequence = i;
}
}
if (simtime > to.time)
{
//extrapolate X extra seconds
float msec;
msec = ((simtime - to.time) * 1000);
if (msec >= 1)
{
from = to;
if (cl_pendingcmd[seat].msec && !cls.demoplayback)
indcmd = cl_pendingcmd[seat];
else
indcmd = *to.cmd;
to.cmd = &indcmd;
to.time = simtime;
to.frame+=1;
to.state = &framebuf[to.frame&1];
if (cls.demoplayback)
{
extern cvar_t cl_demospeed;
msec *= cl_demospeed.value;
}
to.cmd->msec = bound(0, msec, 250);
if (from.frame == pv->prop.sequence && pv->prop.sequence)
{ //overwrite non-networked state, to propagate it as required.
if (!(cls.z_ext & Z_EXT_PF_ONGROUND))
from.state->onground = pv->prop.onground;
if (!(cls.z_ext & Z_EXT_PM_TYPE))
from.state->jump_held = pv->prop.jump_held;
from.state->jump_msec = pv->prop.jump_msec;
from.state->waterjumptime = pv->prop.waterjumptime;
if (!(cls.fteprotocolextensions2 & PEXT2_REPLACEMENTDELTAS))
VectorCopy(pv->prop.gravitydir, from.state->gravitydir);
}
// Con_DPrintf(" extrap %i: %f-%f (%g)\n", toframe, fromtime, simtime, simtime-fromtime);
CL_PredictUsercmd (seat, trackent, from.state, to.state, to.cmd);
}
}
pv->onground = pmove.onground;
pv->pmovetype = to.state->pm_type;
}
pmove.numphysent = oldphysent;
if (to.time == from.time)
{
VectorCopy (to.state->velocity, pv->simvel);
VectorCopy (to.state->origin, pv->simorg);
if (trackent && trackent != pv->playernum+1 && pv->cam_state == CAM_EYECAM)
VectorCopy(to.state->viewangles, pv->simangles);
//Con_DPrintf("%f %f %f\n", fromtime, simtime, totime);
}
else
{
vec3_t move;
// now interpolate some fraction of the final frame
f = (simtime - from.time) / (to.time - from.time);
if (f < 0)
f = 0;
if (f > 1)
f = 1;
//Con_DPrintf("%i:%f %f %i:%f (%f)\n", fromframe, fromtime, simtime, toframe, totime, f);
VectorSubtract(to.state->origin, from.state->origin, move);
if (DotProduct(move, move) > 128*128)
{
// teleported, so don't lerp
VectorCopy (to.state->velocity, pv->simvel);
VectorCopy (to.state->origin, pv->simorg);
}
else
{
for (i=0 ; i<3 ; i++)
{
pv->simorg[i] = (1-f)*from.state->origin[i] + f*to.state->origin[i];
pv->simvel[i] = (1-f)*from.state->velocity[i] + f*to.state->velocity[i];
if (trackent && trackent != pv->playernum+1 && pv->cam_state == CAM_EYECAM)
{
pv->simangles[i] = LerpAngles360(from.state->viewangles[i], to.state->viewangles[i], f);// * (360.0/65535);
// pv->viewangles[i] = LerpAngles16(fromstate->command.angles[i], tostate->command.angles[i], f) * (360.0/65535);
}
else if (lerpangles)
pv->simangles[i] = LerpAngles16(from.cmd->angles[i], to.cmd->angles[i], f) * (360.0/65535);
}
}
}
if (cls.protocol == CP_NETQUAKE && nopred)
pv->onground = to.state->onground;
else
CL_CatagorizePosition(pv, to.state->origin);
CL_CalcCrouch (pv);
pv->waterlevel = pmove.waterlevel;
if (!DotProduct(pmove.gravitydir,pmove.gravitydir))
VectorSet(pmove.gravitydir, 0, 0, -1);
else
VectorCopy(pmove.gravitydir, pv->gravitydir);
if (cl.intermissionmode != IM_NONE && le)
{
VectorCopy(le->angles, pv->simangles);
VectorCopy(pv->simangles, pv->viewangles);
}
else if (le && pv->cam_state == CAM_FREECAM)
{
//keep the entity tracking the prediction position, so mirrors don't go all weird
VectorMA(pv->simorg, -pv->crouch, pv->gravitydir, le->origin);
#ifdef QUAKESTATS
if (pv->stats[STAT_HEALTH] > 0)
#endif
{
VectorScale(pv->simangles, 1, le->angles);
if (pv->pmovetype != PM_6DOF)
le->angles[0] *= 0.333;
le->angles[0] *= r_meshpitch.value;
}
}
if (cam_nowlocked)
Cam_NowLocked(pv);
if (pv->cam_state == CAM_WALLCAM)
{
vec3_t dir;
VectorSubtract(pv->simorg, pv->cam_desired_position, dir);
VectorAngles(dir, NULL, pv->simangles, false);
VectorCopy(pv->simangles, pv->viewangles);
pv->viewangles[0] = anglemod(pv->viewangles[0]);
if (pv->viewangles[0] > 180)
pv->viewangles[0] -= 360;
VectorCopy(pv->cam_desired_position, pv->simorg);
VectorClear(pv->simvel);
}
if (cam_nowlocked)
{
//invalidate the roll, so we don't spin when switching povs
pv->rollangle = V_CalcRoll(pv->simangles, pv->simvel);
pv->vm.oldmodel = NULL; //invalidate the viewmodel, so the lerps get reset
}
}
void CL_PredictMove (void)
{
int i;
// Set up prediction for other players
CL_SetUpPlayerPrediction(false);
// do client side motion prediction
for (i = 0; i < cl.splitclients; i++)
CL_PredictMovePNum(i);
// Set up prediction for other players
CL_SetUpPlayerPrediction(true);
VALGRIND_MAKE_MEM_UNDEFINED(&pmove.onground, sizeof(pmove.onground));
}
/*
==============
CL_InitPrediction
==============
*/
void CL_InitPrediction (void)
{
extern char cl_predictiongroup[];
Cvar_Register (&cl_pushlatency, cl_predictiongroup);
Cvar_Register (&cl_nopred, cl_predictiongroup);
Cvar_Register (&cl_predict_extrapolate, cl_predictiongroup);
Cvar_Register (&cl_predict_timenudge, cl_predictiongroup);
Cvar_Register (&cl_lerp_smooth, cl_predictiongroup);
Cvar_Register (&cl_lerp_driftbias, cl_predictiongroup);
Cvar_Register (&cl_lerp_driftfrac, cl_predictiongroup);
}