1
0
Fork 0
forked from fte/fteqw
fteqw/engine/gl/gl_ppl.c

3683 lines
93 KiB
C
Raw Normal View History

#include "quakedef.h"
#ifdef RGLQUAKE
#include "glquake.h"
#include "shader.h"
//these are shared with gl_rsurf - move to header
void R_MirrorChain (msurface_t *s);
void GL_SelectTexture (GLenum target);
void R_RenderDynamicLightmaps (msurface_t *fa);
void R_BlendLightmaps (void);
extern int gldepthfunc;
extern int *lightmap_textures;
extern int lightmap_bytes; // 1, 2, or 4
extern cvar_t gl_detail;
extern cvar_t r_fb_bmodels;
extern cvar_t gl_part_flame;
extern cvar_t gl_part_flame;
extern cvar_t gl_maxshadowlights;
extern cvar_t r_shadow_realtime_world;
extern int detailtexture;
//end header confict
extern lightmapinfo_t **lightmap;
extern model_t *currentmodel;
extern int *deluxmap_textures;
extern int normalisationCubeMap;
int r_shadowframe;
int shadowsurfcount;
int shadowedgecount;
int shadowlightfaces;
int ppl_specular_fragmentprogram;
//#define glBegin glEnd
typedef struct shadowmesh_s {
int numindicies;
int *indicies;
vec3_t *verts;
} shadowmesh_t;
#define Q2RF_WEAPONMODEL 4 // only draw through eyes
struct {
short count;
short count2;
short next;
short prev;
} edge[MAX_MAP_EDGES];
int firstedge;
vec3_t lightorg = {0, 0, 0};
float lightradius;
typedef struct {
float xyz[3]; //xyz world coordinates
float stw[2]; //base texture/normalmap/specular map st coords
float stl[3]; //lightmap/deluxmap st coords (or attenuated distance*colour)
float ncm[3]; //normalisation cube map (reflected light dir)
} surfvertexarray_t;
#define MAXARRAYVERTS 512
static surfvertexarray_t varray_v[MAXARRAYVERTS];
static unsigned int varray_i[MAXARRAYVERTS];
static unsigned int varray_i_forward[MAXARRAYVERTS];
static unsigned int varray_i_polytotri[MAXARRAYVERTS]; //012 023 034 045...
int varray_ic;
int varray_vc;
#ifdef Q3SHADERS
static qboolean pplvarrayactive;
#endif
#define inline static
extern qboolean varrayactive; //used by the backend
inline void PPL_EnableVertexArrays(void)
{
varrayactive = false;
glDisableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->xyz);
glDisableClientState( GL_COLOR_ARRAY );
}
inline void PPL_FlushArrays(void)
{
if (varray_ic)
glDrawElements(GL_TRIANGLES, varray_ic, GL_UNSIGNED_INT, varray_i);
varray_ic = 0;
varray_vc = 0;
}
static void PPL_GenerateArrays(msurface_t *surf)
{
glpoly_t *p;
int vi;
int vc_s;
float *v;
for (p = surf->polys; p; p=p->next)
{
if (varray_ic + p->numverts*3>MAXARRAYVERTS)
{
PPL_FlushArrays();
}
vc_s = varray_vc;
v = p->verts[0];
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
varray_vc++;
v += VERTEXSIZE;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
varray_vc++;
v += VERTEXSIZE;
for (vi=2 ; vi<p->numverts ; vi++, v+= VERTEXSIZE)
{
varray_i[varray_ic] = vc_s;
varray_i[varray_ic+1] = varray_vc-1;
varray_i[varray_ic+2] = varray_vc;
varray_ic+=3;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
varray_vc++;
}
}
}
#ifdef SPECULAR
//same as above, but also generates cubemap texture coords for light reflection (based on blinn's formula)
static void PPL_GenerateArraysBlinnCubeMap(msurface_t *surf)
{
glpoly_t *p;
int vi;
int vc_s;
float *v;
vec3_t eye, halfdir;
for (p = surf->polys; p; p=p->next)
{
if (varray_ic + p->numverts*3>MAXARRAYVERTS)
{
PPL_FlushArrays();
}
vc_s = varray_vc;
v = p->verts[0];
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
VectorSubtract(cl.simorg[0], v, eye);
VectorNormalize(eye);
VectorAdd(eye, (v+7), halfdir);
// VectorCopy(eye, halfdir);
varray_v[varray_vc].ncm[0] = DotProduct(surf->texinfo->vecs[0], halfdir);
varray_v[varray_vc].ncm[1] = DotProduct(surf->texinfo->vecs[1], halfdir);
if (surf->flags & SURF_PLANEBACK)
varray_v[varray_vc].ncm[2] = -DotProduct(surf->plane->normal, halfdir);
else
varray_v[varray_vc].ncm[2] = DotProduct(surf->plane->normal, halfdir);
varray_vc++;
v += VERTEXSIZE;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
VectorSubtract(r_refdef.vieworg, v, eye);
VectorNormalize(eye);
VectorAdd(eye, (v+7), halfdir);
varray_v[varray_vc].ncm[0] = DotProduct(surf->texinfo->vecs[0], halfdir);
varray_v[varray_vc].ncm[1] = DotProduct(surf->texinfo->vecs[1], halfdir);
if (surf->flags & SURF_PLANEBACK)
varray_v[varray_vc].ncm[2] = -DotProduct(surf->plane->normal, halfdir);
else
varray_v[varray_vc].ncm[2] = DotProduct(surf->plane->normal, halfdir);
varray_vc++;
v += VERTEXSIZE;
for (vi=2 ; vi<p->numverts ; vi++, v+= VERTEXSIZE)
{
varray_i[varray_ic] = vc_s;
varray_i[varray_ic+1] = varray_vc-1;
varray_i[varray_ic+2] = varray_vc;
varray_ic+=3;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
varray_v[varray_vc].stl[0] = v[5];
varray_v[varray_vc].stl[1] = v[6];
VectorSubtract(cl.simorg[0], v, eye);
VectorNormalize(eye);
VectorAdd(eye, (v+7), halfdir);
varray_v[varray_vc].ncm[0] = DotProduct(surf->texinfo->vecs[0], halfdir);
varray_v[varray_vc].ncm[1] = DotProduct(surf->texinfo->vecs[1], halfdir);
if (surf->flags & SURF_PLANEBACK)
varray_v[varray_vc].ncm[2] = -DotProduct(surf->plane->normal, halfdir);
else
varray_v[varray_vc].ncm[2] = DotProduct(surf->plane->normal, halfdir);
varray_vc++;
}
}
}
#endif
/*
static void PPL_BaseChain_NoLightmap(msurface_t *first, texture_t *tex)
{
Sys_Error("1 TMU is disabled for now (surface has no lightmap)\n");
}
*/
static void PPL_BaseChain_NoBump_1TMU(msurface_t *first, texture_t *tex)
{
int vi;
glRect_t *theRect;
msurface_t *s;
PPL_EnableVertexArrays();
glDisable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_TexEnv(GL_REPLACE);
GL_Bind (tex->gl_texturenum);
for (s=first; s ; s=s->texturechain)
{
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
glEnable(GL_BLEND);
GL_TexEnv(GL_MODULATE);
if (gl_lightmap_format == GL_LUMINANCE || gl_lightmap_format == GL_RGB)
glBlendFunc (GL_ZERO, GL_SRC_COLOR);
else if (gl_lightmap_format == GL_INTENSITY)
{
GL_TexEnv(GL_MODULATE);
glColor4f (0,0,0,1);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if (gl_lightmap_format == GL_RGBA)
{
glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA);
}
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
vi = -1;
for (s=first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_BindType(GL_TEXTURE_2D, lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
static void PPL_BaseChain_NoBump_2TMU(msurface_t *s, texture_t *tex)
{
int vi;
glRect_t *theRect;
PPL_EnableVertexArrays();
if (tex->alphaed)
{
glEnable(GL_BLEND);
GL_TexEnv(GL_MODULATE);
}
else
{
glDisable(GL_BLEND);
GL_TexEnv(GL_REPLACE);
}
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenum);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_TexEnv(GL_MODULATE);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
vi = -1;
for (; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
if (vi<0)
glEnable(GL_TEXTURE_2D);
vi = s->lightmaptexturenum;
if (vi>=0)
{
GL_Bind(lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
else
glDisable(GL_TEXTURE_2D);
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
static void PPL_BaseChain_Bump_2TMU(msurface_t *first, texture_t *tex)
{
int vi;
glRect_t *theRect;
msurface_t *s;
PPL_EnableVertexArrays();
if (tex->alphaed)
{
glEnable(GL_BLEND);
GL_TexEnv(GL_MODULATE);
}
else
{
glDisable(GL_BLEND);
GL_TexEnv(GL_REPLACE);
}
//Bind normal map to texture unit 0
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_MBind(GL_TEXTURE1_ARB, tex->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
vi = -1;
for (s=first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_Bind(deluxmap_textures[vi] );
if (lightmap[vi]->deluxmodified)
{
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenum);
GL_SelectTexture(GL_TEXTURE1_ARB);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_MODULATE);
vi = -1;
for (s=first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_Bind(lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE0_ARB);
}
static void PPL_BaseChain_Bump_4TMU(msurface_t *s, texture_t *tex)
{
int vi;
glRect_t *theRect;
PPL_EnableVertexArrays();
//Bind normal map to texture unit 0
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_REPLACE);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
//1 gets the deluxmap
GL_SelectTexture(GL_TEXTURE1_ARB);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
//2 gets the diffusemap
GL_MBind(GL_TEXTURE2_ARB, tex->gl_texturenum);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_MODULATE);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
//3 gets the lightmap
GL_SelectTexture(GL_TEXTURE3_ARB);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_MODULATE);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
vi = -1;
for (; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_MBind(GL_TEXTURE1_ARB, deluxmap_textures[vi] );
if (lightmap[vi]->deluxmodified)
{
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[vi]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
GL_MBind(GL_TEXTURE3_ARB, lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
GL_SelectTexture(GL_TEXTURE3_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
GL_SelectTexture(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
GL_SelectTexture(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_TexEnv(GL_MODULATE);
}
#ifdef SPECULAR
//Draw a texture chain with specular exponant 1.
//erm...
//this uses the wrong stuff to work on gf4tis.
/*
static void PPL_BaseChain_Specular_4TMU(msurface_t *first, texture_t *tex)
{
//if I ever do write this function, It'll take a couple of passes.
int vi;
glRect_t *theRect;
msurface_t *s;
glColorMask(1,1,1,0);
PPL_EnableVertexArrays();
if (qglGetError())
Con_Printf("Error before PPL_BaseChain_Specular\n");
//first 4 texture units: (N.((L+V)/2))^2
glDisable(GL_BLEND);
qglActiveTextureARB(GL_TEXTURE0_ARB);
GL_BindType(GL_TEXTURE_2D, tex->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_REPLACE);
qglClientActiveTextureARB(GL_TEXTURE0_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
if (qglGetError())
Con_Printf("Error binding dot3 tmu1\n");
qglActiveTextureARB(GL_TEXTURE1_ARB);
glDisable(GL_TEXTURE_2D);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
glEnable(GL_TEXTURE_CUBE_MAP_ARB);
if (qglGetError())
Con_Printf("Error binding dot3 cubemap\n");
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
if (qglGetError())
Con_Printf("Error binding dot3 combine\n");
qglClientActiveTextureARB(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->ncm);
if (qglGetError())
Con_Printf("Error binding dot3 tmu2\n");
//prev*prev (the exponential)
qglActiveTextureARB(GL_TEXTURE2_ARB);
GL_BindType(GL_TEXTURE_2D, tex->gl_texturenumbumpmap); //need to bind something.
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
if (qglGetError())
Con_Printf("Error binding prev*prev\n");
qglActiveTextureARB(GL_TEXTURE3_ARB);
GL_BindType(GL_TEXTURE_2D, tex->gl_texturenumspec);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
qglClientActiveTextureARB(GL_TEXTURE3_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
if (qglGetError())
Con_Printf("Error binding specular in PPL_BaseChain_Specular\n");
for (s = first; s ; s=s->texturechain)
{
PPL_GenerateArraysBlinnCubeMap(s);
}
PPL_FlushArrays();
glEnable(GL_BLEND);
glBlendFunc(GL_DST_COLOR, GL_ZERO);
// Add normal dot delux times diffusemap then multiple the entire lot by the lightmap.
qglActiveTextureARB(GL_TEXTURE0_ARB);
GL_TexEnv(GL_REPLACE);
qglActiveTextureARB(GL_TEXTURE1_ARB);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
qglClientActiveTextureARB(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
qglActiveTextureARB(GL_TEXTURE2_ARB);
glEnable(GL_TEXTURE_2D);
GL_BindType(GL_TEXTURE_2D, tex->gl_texturenum);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
qglClientActiveTextureARB(GL_TEXTURE2_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
qglActiveTextureARB(GL_TEXTURE3_ARB);
glEnable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
qglClientActiveTextureARB(GL_TEXTURE3_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
vi = -1;
for (s = first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
qglActiveTextureARB(GL_TEXTURE1_ARB);
GL_BindType(GL_TEXTURE_2D, deluxmap_textures[vi] );
if (lightmap[vi]->deluxmodified)
{
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[vi]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
qglActiveTextureARB(GL_TEXTURE3_ARB);
GL_BindType(GL_TEXTURE_2D, lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
glColorMask(1,1,1,0);
if (qglGetError())
Con_Printf("Error drawing in PPL_BaseChain_Specular\n");
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
qglClientActiveTextureARB(GL_TEXTURE2_ARB);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
qglClientActiveTextureARB(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
qglActiveTextureARB(GL_TEXTURE0_ARB);
qglClientActiveTextureARB(GL_TEXTURE0_ARB);
}
*/
void PPL_LoadSpecularFragmentProgram(void)
{
GLint errorPos, isNative;
int i;
const char *error;
//What should the minimum resource limits be?
//RESOLVED: 10 attributes, 24 parameters, 4 texture indirections,
//48 ALU instructions, 24 texture instructions, and 16 temporaries.
//16 temps? hmm. that means we should be keeping the indirections instead of temp usage.
//temps should be same speed, indirections could prevent texture loading for a bit.
char *fp =
//FP to do:
//(diffuse*n.l + gloss*(n.h)^8)*lm
//note excessive temp reuse...
"!!ARBfp1.0\n"
"OUTPUT ocol = result.color;\n"
"PARAM half = { 0.5, 0.5, 0.5, 0.5 };\n"
"PARAM negone = { -1,-1,-1,-1 };\n"
"ATTRIB tm_tc = fragment.texcoord[0];\n"
"ATTRIB lm_tc = fragment.texcoord[1];\n"
"ATTRIB cm_tc = fragment.texcoord[2];\n"
"TEMP diff, spec, nm, ld, cm, gm, lm, dm;\n"
"TEX nm.rgb, tm_tc, texture[1], 2D;\n"
"TEX ld.rgb, lm_tc, texture[3], 2D;\n"
"TEX dm.rgb, tm_tc, texture[0], 2D;\n"
"TEX gm.rgb, tm_tc, texture[4], 2D;\n"
"TEX lm.rgb, lm_tc, texture[2], 2D;\n"
"TEX cm.rgb, cm_tc, texture[5], CUBE;\n"
//textures loaded - get diffuse
"MAD nm.rgb, nm, 2, negone;\n"
"MAD ld.rgb, ld, 2, negone;\n"
"DP3 diff.rgb, nm, ld;\n"
"MUL diff.rgb, diff, dm;\n"
//diff now contains the entire diffuse part of the equation.
//l 19
"MAD cm.rgb, cm, 2, negone;\n"
"DP3 spec.rgb, nm, cm;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, gm;\n"
//that's the specular part done.
//we have diffuse and specular - wahoo
//combine then halve.
"ADD diff.rgb, diff, spec;\n"
//"MUL diff.rgb, diff, half;\n"
//multiply by inverse lm and output the result.
// "SUB lm.rgb, 1, lm;\n"
"MUL_SAT ocol.rgb, diff, lm;\n"
//that's all folks.
"END";
/*
//okay, the NV fallback
char *nvfp = "!!FP1.0\n"
"PARAM half = { 0.5, 0.5, 0.5, 0.5 };\n"
"PARAM negone = { -1,-1,-1,-1 };\n"
"ATTRIB tm_tc = fragment.texcoord[0];\n"
"ATTRIB lm_tc = fragment.texcoord[1];\n"
"ATTRIB cm_tc = fragment.texcoord[2];\n"
"TEMP diff, spec, nm, ld, cm, gm, lm, dm;\n"
"TEX nm.rgb, tm_tc, f[TEX1], 2D;\n" //normalmap
"TEX ld.rgb, lm_tc, f[TEX3], 2D;\n" //
"TEX dm.rgb, tm_tc, f[TEX0], 2D;\n" //deluxmap
"TEX gm.rgb, tm_tc, f[TEX4], 2D;\n" //glossmap
"TEX lm.rgb, lm_tc, f[TEX2], 2D;\n" //lightmap
"TEX cm.rgb, cm_tc, f[TEX5], CUBE;\n" //cubemap
//textures loaded - get diffuse
"MAD nm.rgb, nm, 2, negone;\n"
"MAD ld.rgb, ld, 2, negone;\n"
"DP3 diff.rgb, nm, ld;\n"
"MUL diff.rgb, diff, dm;\n"
//diff now contains the entire diffuse part of the equation.
//l 19
"MAD cm.rgb, cm, 2, negone;\n"
"DP3 spec.rgb, nm, cm;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, spec;\n"
"MUL spec.rgb, spec, gm;\n"
//that's the specular part done.
//we have diffuse and specular - wahoo
//combine then halve.
"ADD diff.rgb, diff, spec;\n"
//"MUL diff.rgb, diff, half;\n"
//multiply by inverse lm and output the result.
// "SUB lm.rgb, 1, lm;\n"
"MUL_SAT o[COLR].rgb, diff, lm;\n"
""
"END";
*/
ppl_specular_fragmentprogram = 0;
for (i = 0; i < MAXARRAYVERTS; i++)
{
varray_i_forward[i] = i;
}
for (i = 0; i < MAXARRAYVERTS/3; i++)
{
varray_i_polytotri[i*3+0] = 0;
varray_i_polytotri[i*3+1] = i+1;
varray_i_polytotri[i*3+2] = i+2;
}
if (!gl_config.arb_fragment_program)
return;
glEnable(GL_FRAGMENT_PROGRAM_ARB);
qglGenProgramsARB( 1, &ppl_specular_fragmentprogram );
qglBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, ppl_specular_fragmentprogram);
if (qglGetError())
Con_Printf("GL Error binding fragment program\n");
qglProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, strlen(fp), fp);
if (qglGetError())
{
glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &errorPos);
error = glGetString(GL_PROGRAM_ERROR_STRING_ARB);
Con_Printf("Fragment program error \'%s\'\n", error);
ppl_specular_fragmentprogram = 0;
}
else
{
qglGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB, &isNative);
if (!isNative)
Con_Printf("Warning: Fragment program is emulated. You will likly experience poor performace.\n");
}
if (qglGetError())
Con_Printf("GL Error loading fragment program\n");
glDisable(GL_FRAGMENT_PROGRAM_ARB);
}
static void PPL_BaseChain_Specular_FP(msurface_t *s, texture_t *tex)
{
int vi;
glRect_t *theRect;
PPL_EnableVertexArrays();
glEnable(GL_FRAGMENT_PROGRAM_ARB);
qglBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, ppl_specular_fragmentprogram);
if (qglGetError())
Con_Printf("GL Error on shadow lighting\n");
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenum);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_MBind(GL_TEXTURE1_ARB, tex->gl_texturenumbumpmap);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
GL_SelectTexture(GL_TEXTURE2_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->ncm);
//qglActiveTextureARB(GL_TEXTURE2_ARB);
//GL_BindType(GL_TEXTURE_2D, ); //lightmap
//qglActiveTextureARB(GL_TEXTURE3_ARB);
//GL_BindType(GL_TEXTURE_2D, ); //deluxmap
if (qglGetError())
Con_Printf("GL Error on shadow lighting\n");
GL_MBind(GL_TEXTURE4_ARB, tex->gl_texturenumspec);
GL_SelectTexture(GL_TEXTURE5_ARB);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
if (qglGetError())
Con_Printf("GL Error on shadow lighting\n");
vi = -1;
for (; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_MBind(GL_TEXTURE3_ARB, deluxmap_textures[vi] );
if (lightmap[vi]->deluxmodified)
{
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[vi]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
GL_MBind(GL_TEXTURE2_ARB, lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArraysBlinnCubeMap(s);
}
PPL_FlushArrays();
if (qglGetError())
Con_Printf("GL Error on shadow lighting\n");
glDisable(GL_FRAGMENT_PROGRAM_ARB);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (qglGetError())
Con_Printf("GL Error on shadow lighting\n");
}
#define GL_MODULATE_ADD_ATI 0x8744
//we actually only use 7, so nur.
static void PPL_BaseChain_Specular_8TMU(msurface_t *first, texture_t *tex)
{ //uses blinn shading instead of phong. This way we don't have to generate lots of complex stuff.
int vi;
glRect_t *theRect;
msurface_t *s;
// float fourhalffloats[4] = {0.5,0.5,0.5,0.5};
glColorMask(1,1,1,1);
PPL_EnableVertexArrays();
/* lets do things in parallel.
normalmap -> rgb
rgb . halfvector -> alpha
alpha*alpha -> alpha normalmap -> rgb
(alpha*alpha -> alpha) rgb . luxmap -> rgb
alpha*gloss -> alpha rgb * diffuse -> rgb
rgb + alpha -> rgb
rgb * lightmap -> rgb
//note: crossbar could use third input texture removing the first tmu.
//note: could combine3 combine the last two?
//note: 5 tmus: not enough to work on a gf4.
*/
glDisable(GL_BLEND);
//0 takes a normalmap
GL_MBind(GL_TEXTURE0_ARB, tex->gl_texturenumbumpmap);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_TexEnv(GL_REPLACE);
//1 takes a cubemap for specular half-vectors.
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_CUBE_MAP_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->ncm);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGBA_ARB); //writes alpha
//2 takes a normalmap
GL_MBind(GL_TEXTURE2_ARB, tex->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB); //square the alpha
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE);
//3 takes the deluxmap
GL_SelectTexture(GL_TEXTURE3_ARB);
glEnable(GL_TEXTURE_2D); //bind with the surface texturenum
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB); //square the alpha again.
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE);
//4 multiplies with diffuse
GL_MBind(GL_TEXTURE4_ARB, tex->gl_texturenum);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
//nothing to the alpha (square yet again?)
// glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB);
// glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB); //square the alpha again.
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE);
//5 halves rgb and alpha (so that adding will not clamp)
GL_MBind(GL_TEXTURE5_ARB, tex->gl_texturenum); //need to bind something.
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
/* glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, fourhalffloats);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
*/
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA_ARB, GL_CONSTANT_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
//6 adds rgb and alpha, using the glossmap...
GL_MBind(GL_TEXTURE6_ARB, tex->gl_texturenumspec);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
//broken diffuse + specular
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE_ADD_ATI);
//perfect diffuse
/* GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
*/
//perfect specular
/* GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
*/
//7 multiplies by lightmap
GL_SelectTexture(GL_TEXTURE7_ARB);
glEnable(GL_TEXTURE_2D); //bind with the surface texturenum
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
GL_TexEnv(GL_COMBINE_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_ONE_MINUS_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
vi = -1;
for (s = first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
PPL_FlushArrays();
vi = s->lightmaptexturenum;
GL_MBind(GL_TEXTURE3_ARB, deluxmap_textures[vi] );
if (lightmap[vi]->deluxmodified)
{
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[vi]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
GL_MBind(GL_TEXTURE7_ARB, lightmap_textures[vi] );
if (lightmap[vi]->modified)
{
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
PPL_GenerateArraysBlinnCubeMap(s);
}
PPL_FlushArrays();
glColorMask(1,1,1,0);
for (vi = 7; vi > 0; vi--)
{
GL_SelectTexture(GL_TEXTURE0_ARB+vi);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
glDisable(GL_TEXTURE_CUBE_MAP_ARB);//1
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE0_ARB);
}
#endif
static void PPL_BaseTextureChain(msurface_t *first)
{
extern cvar_t gl_bump, gl_specular;
texture_t *t;
#ifdef Q3SHADERS
if (first->texinfo->texture->shader)
{
meshbuffer_t mb;
msurface_t *s;
int vi=-1;
int redraw = false;
glRect_t *theRect;
if (first->texinfo->texture->shader->flags & SHADER_FLARE )
return;
if (!varrayactive)
R_IBrokeTheArrays();
mb.entity = &r_worldentity;
mb.shader = first->texinfo->texture->shader;
mb.mesh = NULL;
mb.fog = NULL;
mb.infokey = -2;
mb.dlightbits = 0;
GL_DisableMultitexture();
glShadeModel(GL_SMOOTH);
{
for (s = first; s ; s=s->texturechain)
{
if (vi != s->lightmaptexturenum)
{
vi = s->lightmaptexturenum;
if (vi >= 0)
{
if (lightmap[vi]->deluxmodified)
{
GL_BindType(GL_TEXTURE_2D, deluxmap_textures[vi] );
lightmap[vi]->deluxmodified = false;
theRect = &lightmap[vi]->deluxrectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[vi]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
if (lightmap[vi]->modified)
{
GL_BindType(GL_TEXTURE_2D, lightmap_textures[vi] );
lightmap[vi]->modified = false;
theRect = &lightmap[vi]->rectchange;
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmap[vi]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*lightmap_bytes);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
}
if (s->flags&SURF_DRAWALPHA || !(mb.shader->sort & SHADER_SORT_OPAQUE))
{
extern msurface_t *r_alpha_surfaces;
s->nextalphasurface = r_alpha_surfaces;
r_alpha_surfaces = s;
s->ownerent = &r_worldentity;
continue;
}
if (s->mesh)
{
redraw = mb.fog != s->fog || mb.infokey != vi|| mb.shader->flags&SHADER_DEFORMV_BULGE;
if (redraw)
{
if (mb.mesh)
R_RenderMeshBuffer ( &mb, false );
redraw = false;
}
mb.infokey = vi;
mb.mesh = s->mesh;
mb.fog = s->fog;
R_PushMesh(s->mesh, mb.shader->features);
}
}
}
if (mb.mesh)
R_RenderMeshBuffer ( &mb, false );
return;
}
#endif
glEnable(GL_TEXTURE_2D);
t = GLR_TextureAnimation (first->texinfo->texture);
if (first->flags & SURF_DRAWTURB)
{
GL_DisableMultitexture();
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
GL_Bind (t->gl_texturenum);
for (; first ; first=first->texturechain)
EmitWaterPolys (first, currententity->alpha);
glDisable(GL_BLEND);
glColor4f(1,1,1, 1);
t->texturechain = NULL; //no lighting effects. (good job these don't animate eh?)
return;
}
/* else if (s->lightmaptexturenum < 0) //no lightmap
{
PPL_BaseChain_NoLightmap(first, t);
}*/
else if (gl_mtexarbable < 2)
{ //multitexture isn't supported.
PPL_BaseChain_NoBump_1TMU(first, t);
}
else
{
if (gl_bump.value && currentmodel->deluxdata && t->gl_texturenumbumpmap)
{
if (gl_mtexarbable>=4)
{
if (t->gl_texturenumspec && gl_specular.value)
{
if (ppl_specular_fragmentprogram)
PPL_BaseChain_Specular_FP(first, t);
else if (gl_mtexarbable>=8)
PPL_BaseChain_Specular_8TMU(first, t);
else
PPL_BaseChain_Bump_4TMU(first, t); //can't do specular.
}
else
PPL_BaseChain_Bump_4TMU(first, t);
}
else
PPL_BaseChain_Bump_2TMU(first, t);
}
else
{
PPL_BaseChain_NoBump_2TMU(first, t);
}
}
}
static void PPL_FullBrightTextureChain(msurface_t *first)
{
texture_t *t;
msurface_t *s;
t = GLR_TextureAnimation (first->texinfo->texture);
if (detailtexture && gl_detail.value)
{
GL_Bind(detailtexture);
glBlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
PPL_EnableVertexArrays();
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
for (s = first; s ; s=s->texturechain)
{
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
}
if (t->gl_texturenumfb && r_fb_bmodels.value && cls.allow_luma)
{
GL_Bind(t->gl_texturenumfb);
glBlendFunc(GL_ONE, GL_ONE);
PPL_EnableVertexArrays();
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
for (s = first; s ; s=s->texturechain)
{
PPL_GenerateArrays(s);
}
PPL_FlushArrays();
}
}
//requires multitexture
void PPL_BaseTextures(model_t *model)
{
int i;
msurface_t *s;
texture_t *t;
GL_DoSwap();
glDisable(GL_BLEND);
glColor4f(1,1,1, 1);
// glDepthFunc(GL_LESS);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glShadeModel(GL_FLAT);
currentmodel = model;
currententity->alpha = 1;
if (model == cl.worldmodel && skytexturenum>=0)
{
t = model->textures[skytexturenum];
if (t)
{
s = t->texturechain;
if (s)
{
t->texturechain = NULL;
R_DrawSkyChain (s);
}
}
}
if (mirrortexturenum>=0 && model == cl.worldmodel && r_mirroralpha.value != 1.0)
{
t = model->textures[mirrortexturenum];
if (t)
{
s = t->texturechain;
if (s)
{
t->texturechain = NULL;
R_MirrorChain (s);
}
}
}
for (i=0 ; i<model->numtextures ; i++)
{
t = model->textures[i];
if (!t)
continue;
s = t->texturechain;
if (!s)
continue;
if ((s->flags & SURF_DRAWTURB) && r_wateralphaval != 1.0)
continue; // draw translucent water later
PPL_BaseTextureChain(s);
}
GL_DisableMultitexture();
}
void PPL_BaseBModelTextures(entity_t *e)
{
extern msurface_t *r_alpha_surfaces;
int i, k;
model_t *model;
msurface_t *s;
msurface_t *chain = NULL;
glPushMatrix();
R_RotateForEntity(e);
currentmodel = model = e->model;
s = model->surfaces+model->firstmodelsurface;
GL_TexEnv(GL_MODULATE);
if (currententity->alpha<1)
{
glEnable(GL_BLEND);
glColor4f(1, 1, 1, currententity->alpha);
}
else
{
glDisable(GL_BLEND);
glColor4f(1, 1, 1, 1);
}
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// calculate dynamic lighting for bmodel if it's not an
// instanced model
if (currentmodel->firstmodelsurface != 0 && r_dynamic.value)
{
for (k=0 ; k<MAX_DLIGHTS ; k++)
{
if (!cl_dlights[k].radius)
continue;
if (cl_dlights[k].nodynamic)
continue;
currentmodel->funcs.MarkLights (&cl_dlights[k], 1<<k,
currentmodel->nodes + currentmodel->hulls[0].firstclipnode);
}
}
//update lightmaps.
for (s = model->surfaces+model->firstmodelsurface,i = 0; i < model->nummodelsurfaces; i++, s++)
R_RenderDynamicLightmaps (s);
for (s = model->surfaces+model->firstmodelsurface,i = 0; i < model->nummodelsurfaces; i++, s++)
{
if (s->texinfo->flags & SURF_TRANS33 || s->texinfo->flags & SURF_TRANS66)
{
s->ownerent = currententity;
s->nextalphasurface = r_alpha_surfaces;
r_alpha_surfaces = s;
continue;
}
else if (chain && s->texinfo->texture != chain->texinfo->texture) //last surface or not the same as the next
{
PPL_BaseTextureChain(chain);
chain = NULL;
}
s->texturechain = chain;
chain = s;
}
if (chain)
PPL_BaseTextureChain(chain);
glPopMatrix();
GL_DisableMultitexture();
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
if (!varrayactive)
R_IBrokeTheArrays();
}
void PPL_BaseEntTextures(void)
{
extern model_t *currentmodel;
int i;
if (!r_drawentities.value)
return;
// draw sprites seperately, because of alpha blending
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = &cl_visedicts[i];
if (cl.viewentity[r_refdef.currentplayernum] && currententity->keynum == cl.viewentity[r_refdef.currentplayernum])
continue;
if (!Cam_DrawPlayer(0, currententity->keynum-1))
continue;
if (!currententity->model)
continue;
if (cls.allow_anyparticles || currententity->visframe) //allowed or static
{
if (currententity->model->particleeffect>=0)
{
if (currententity->model->particleengulphs)
{
if (gl_part_flame.value)
{ //particle effect is addedin GLR_DrawEntitiesOnList. Is this so wrong?
continue;
}
}
}
}
switch (currententity->model->type)
{
case mod_alias:
if (!varrayactive)
R_IBrokeTheArrays();
R_DrawGAliasModel (currententity);
break;
case mod_brush:
PPL_BaseBModelTextures (currententity);
break;
default:
break;
}
}
currentmodel = cl.worldmodel;
}
#ifdef PPL
static void PPL_GenerateLightArrays(msurface_t *surf, vec3_t relativelightorigin, dlight_t *light)
{
glpoly_t *p;
int vi;
int vc_s;
float *v;
vec3_t lightdir;
float dist;
for (p = surf->polys; p; p=p->next)
{
shadowlightfaces++;
if (varray_ic + p->numverts*3>MAXARRAYVERTS)
{
PPL_FlushArrays();
}
vc_s = varray_vc;
v = p->verts[0];
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
lightdir[0] = relativelightorigin[0] - v[0];
lightdir[1] = relativelightorigin[1] - v[1];
lightdir[2] = relativelightorigin[2] - v[2];
dist = 1-(sqrt( (lightdir[0])*(lightdir[0]) +
(lightdir[1])*(lightdir[1]) +
(lightdir[2])*(lightdir[2])) / light->radius);
VectorNormalize(lightdir);
varray_v[varray_vc].stl[0] = light->color[0]*dist;
varray_v[varray_vc].stl[1] = light->color[1]*dist;
varray_v[varray_vc].stl[2] = light->color[2]*dist;
varray_v[varray_vc].ncm[0] = DotProduct(lightdir, surf->texinfo->vecs[0]);
varray_v[varray_vc].ncm[1] = -DotProduct(lightdir, surf->texinfo->vecs[1]);
varray_v[varray_vc].ncm[2] = DotProduct(lightdir, surf->normal);
varray_vc++;
v += VERTEXSIZE;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
lightdir[0] = relativelightorigin[0] - v[0];
lightdir[1] = relativelightorigin[1] - v[1];
lightdir[2] = relativelightorigin[2] - v[2];
dist = 1-(sqrt( (lightdir[0])*(lightdir[0]) +
(lightdir[1])*(lightdir[1]) +
(lightdir[2])*(lightdir[2])) / light->radius);
VectorNormalize(lightdir);
varray_v[varray_vc].stl[0] = light->color[0]*dist;
varray_v[varray_vc].stl[1] = light->color[1]*dist;
varray_v[varray_vc].stl[2] = light->color[2]*dist;
varray_v[varray_vc].ncm[0] = DotProduct(lightdir, surf->texinfo->vecs[0]);
varray_v[varray_vc].ncm[1] = -DotProduct(lightdir, surf->texinfo->vecs[1]);
varray_v[varray_vc].ncm[2] = DotProduct(lightdir, surf->normal);
varray_vc++;
v += VERTEXSIZE;
for (vi=2 ; vi<p->numverts ; vi++, v+= VERTEXSIZE)
{
varray_i[varray_ic] = vc_s;
varray_i[varray_ic+1] = varray_vc-1;
varray_i[varray_ic+2] = varray_vc;
varray_ic+=3;
varray_v[varray_vc].xyz[0] = v[0];
varray_v[varray_vc].xyz[1] = v[1];
varray_v[varray_vc].xyz[2] = v[2];
varray_v[varray_vc].stw[0] = v[3];
varray_v[varray_vc].stw[1] = v[4];
lightdir[0] = relativelightorigin[0] - v[0];
lightdir[1] = relativelightorigin[1] - v[1];
lightdir[2] = relativelightorigin[2] - v[2];
dist = 1-(sqrt( (lightdir[0])*(lightdir[0]) +
(lightdir[1])*(lightdir[1]) +
(lightdir[2])*(lightdir[2])) / light->radius);
VectorNormalize(lightdir);
varray_v[varray_vc].stl[0] = light->color[0]*dist;
varray_v[varray_vc].stl[1] = light->color[1]*dist;
varray_v[varray_vc].stl[2] = light->color[2]*dist;
varray_v[varray_vc].ncm[0] = DotProduct(lightdir, surf->texinfo->vecs[0]);
varray_v[varray_vc].ncm[1] = -DotProduct(lightdir, surf->texinfo->vecs[1]);
varray_v[varray_vc].ncm[2] = DotProduct(lightdir, surf->normal);
varray_vc++;
}
}
}
void PPL_LightTextures(model_t *model, vec3_t modelorigin, dlight_t *light)
{
int i;
msurface_t *s;
texture_t *t;
vec3_t relativelightorigin;
PPL_EnableVertexArrays();
VectorSubtract(light->origin, modelorigin, relativelightorigin);
glShadeModel(GL_SMOOTH);
for (i=0 ; i<model->numtextures ; i++)
{
t = model->textures[i];
if (!t)
continue;
s = t->texturechain;
if (!s)
continue;
if ((s->flags & SURF_DRAWTURB) && r_wateralphaval != 1.0)
continue; // draw translucent water later
{
extern int normalisationCubeMap;
t = GLR_TextureAnimation (t);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
if (t->gl_texturenumbumpmap && gl_mtexarbable>3)
{
GL_MBind(GL_TEXTURE0_ARB, t->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
//Set up texture environment to do (tex0 dot tex1)*color
GL_TexEnv(GL_REPLACE); //make texture normalmap available.
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
glEnable(GL_TEXTURE_CUBE_MAP_ARB);
GL_TexEnv(GL_COMBINE_ARB); //normalisation cubemap . normalmap
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->ncm);
GL_MBind(GL_TEXTURE2_ARB, t->gl_texturenumbumpmap); //a dummy
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB); //bumps * color (the attenuation)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PRIMARY_COLOR_ARB); //(doesn't actually use the bound texture)
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
GL_MBind(GL_TEXTURE3_ARB, t->gl_texturenum);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
}
else
{
if (gl_mtexarbable>3)
{
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_TexEnv(GL_MODULATE);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
GL_SelectTexture(GL_TEXTURE0_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
glDisable(GL_TEXTURE_2D);
}
for (; s; s=s->texturechain)
{
if (s->shadowframe != r_shadowframe)
continue;
/* if (fabs(s->center[0] - lightorg[0]) > lightradius+s->radius ||
fabs(s->center[1] - lightorg[1]) > lightradius+s->radius ||
fabs(s->center[2] - lightorg[2]) > lightradius+s->radius)
continue;*/
if (s->flags & SURF_PLANEBACK)
{//inverted normal.
if (-DotProduct(s->plane->normal, relativelightorigin)+s->plane->dist > lightradius)
continue;
}
else
{
if (DotProduct(s->plane->normal, relativelightorigin)-s->plane->dist > lightradius)
continue;
}
PPL_GenerateLightArrays(s, relativelightorigin, light);
}
PPL_FlushArrays();
}
}
if (gl_mtexarbable>2)
{
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
}
void PPL_LightBModelTextures(entity_t *e, dlight_t *light)
{
int i;
model_t *model = e->model;
msurface_t *s;
texture_t *t;
vec3_t relativelightorigin;
glPushMatrix();
R_RotateForEntity(e);
glColor4f(1, 1, 1, 1);
VectorSubtract(light->origin, e->origin, relativelightorigin);
glShadeModel(GL_SMOOTH);
for (s = model->surfaces+model->firstmodelsurface,i = 0; i < model->nummodelsurfaces; i++, s++)
{
t = GLR_TextureAnimation (s->texinfo->texture);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stl);
if (t->gl_texturenumbumpmap && gl_mtexarbable>3)
{
GL_MBind(GL_TEXTURE0_ARB, t->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
//Set up texture environment to do (tex0 dot tex1)*color
GL_TexEnv(GL_REPLACE); //make texture normalmap available.
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
GL_SelectTexture(GL_TEXTURE1_ARB);
GL_BindType(GL_TEXTURE_CUBE_MAP_ARB, normalisationCubeMap);
glEnable(GL_TEXTURE_CUBE_MAP_ARB);
GL_TexEnv(GL_COMBINE_ARB); //normalisation cubemap * normalmap
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->ncm);
GL_MBind(GL_TEXTURE2_ARB, t->gl_texturenumbumpmap);
glEnable(GL_TEXTURE_2D);
GL_TexEnv(GL_COMBINE_ARB); //bumps * color (the attenuation)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PRIMARY_COLOR_ARB); //(doesn't actually use the bound texture)
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
GL_MBind(GL_TEXTURE3_ARB, t->gl_texturenum);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
}
else
{
if (gl_mtexarbable>3)
{
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
qglActiveTextureARB(GL_TEXTURE1_ARB);
GL_TexEnv(GL_MODULATE);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
qglActiveTextureARB(GL_TEXTURE0_ARB);
qglClientActiveTextureARB(GL_TEXTURE0_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(surfvertexarray_t), varray_v->stw);
}
// for (; s; s=s->texturechain)
{
// if (s->shadowframe != r_shadowframe)
// continue;
/* if (fabs(s->center[0] - lightorg[0]) > lightradius+s->radius ||
fabs(s->center[1] - lightorg[1]) > lightradius+s->radius ||
fabs(s->center[2] - lightorg[2]) > lightradius+s->radius)
continue;*/
if (s->flags & SURF_PLANEBACK)
{//inverted normal.
if (-DotProduct(s->plane->normal, relativelightorigin)+s->plane->dist > lightradius)
continue;
}
else
{
if (DotProduct(s->plane->normal, relativelightorigin)-s->plane->dist > lightradius)
continue;
}
PPL_GenerateLightArrays(s, relativelightorigin, light);
}
PPL_FlushArrays();
}
if (gl_mtexarbable>2)
{
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
GL_SelectTexture(GL_TEXTURE2_ARB);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_2D);
qglClientActiveTextureARB(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
qglClientActiveTextureARB(GL_TEXTURE0_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
qglActiveTextureARB(GL_TEXTURE1_ARB);
GL_TexEnv(GL_MODULATE);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
qglActiveTextureARB(GL_TEXTURE0_ARB);
glDisable(GL_TEXTURE_2D);
glPopMatrix();
}
//draw the bumps on the models for each light.
void PPL_DrawEntLighting(dlight_t *light)
{
int i;
PPL_LightTextures(cl.worldmodel, r_worldentity.origin, light);
if (!r_drawentities.value)
return;
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = &cl_visedicts[i];
if (cl.viewentity[r_refdef.currentplayernum] && currententity->keynum == cl.viewentity[r_refdef.currentplayernum])
continue;
if (!Cam_DrawPlayer(0, currententity->keynum-1))
continue;
if (!currententity->model)
continue;
if (cls.allow_anyparticles || currententity->visframe) //allowed or static
{
if (currententity->model->particleeffect>=0)
{
if (currententity->model->particleengulphs)
{
if (gl_part_flame.value)
{
continue;
}
}
}
}
switch (currententity->model->type)
{
case mod_alias:
if (!varrayactive)
R_IBrokeTheArrays();
R_DrawGAliasModelLighting (currententity, light->origin, light->color, light->radius);
break;
case mod_brush:
PPL_LightBModelTextures (currententity, light);
break;
default:
break;
}
}
}
#endif
void PPL_FullBrights(model_t *model)
{
int tn;
msurface_t *s;
texture_t *t;
glColor3f(1,1,1);
glDepthMask(0); //don't bother writing depth
GL_TexEnv(GL_MODULATE);
glShadeModel(GL_FLAT);
glEnable(GL_BLEND);
glEnable(GL_TEXTURE_2D);
for (tn=0 ; tn<model->numtextures ; tn++)
{
t = model->textures[tn];
if (!t)
continue;
s = t->texturechain;
if (!s)
continue;
if ((s->flags & SURF_DRAWTURB) && r_wateralphaval != 1.0)
continue; // draw translucent water later
PPL_FullBrightTextureChain(s);
t->texturechain=NULL;
}
GL_TexEnv(GL_REPLACE);
glDepthMask(1);
}
void PPL_FullBrightBModelTextures(entity_t *e)
{
int i;
model_t *model;
msurface_t *s;
msurface_t *chain = NULL;
glPushMatrix();
R_RotateForEntity(e);
currentmodel = model = e->model;
s = model->surfaces+model->firstmodelsurface;
glColor4f(1, 1, 1, 1);
glDepthMask(0); //don't bother writing depth
GL_TexEnv(GL_MODULATE);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glShadeModel(GL_FLAT);
glEnable(GL_BLEND);
glEnable(GL_TEXTURE_2D);
for (s = model->surfaces+model->firstmodelsurface,i = 0; i < model->nummodelsurfaces; i++, s++)
{
if (chain && s->texinfo->texture != chain->texinfo->texture) //last surface or not the same as the next
{
PPL_FullBrightTextureChain(chain);
chain = NULL;
}
s->texturechain = chain;
chain = s;
}
if (chain)
PPL_FullBrightTextureChain(chain);
glPopMatrix();
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glDepthMask(1);
}
//draw the bumps on the models for each light.
void PPL_DrawEntFullBrights(void)
{
int i;
PPL_FullBrights(cl.worldmodel);
if (!r_drawentities.value)
return;
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = &cl_visedicts[i];
if (cl.viewentity[r_refdef.currentplayernum] && currententity->keynum == cl.viewentity[r_refdef.currentplayernum])
continue;
if (!Cam_DrawPlayer(0, currententity->keynum-1))
continue;
if (!currententity->model)
continue;
if (cls.allow_anyparticles || currententity->visframe) //allowed or static
{
if (currententity->model->particleeffect>=0)
{
if (currententity->model->particleengulphs)
{
if (gl_part_flame.value)
{
continue;
}
}
}
}
switch (currententity->model->type)
{
case mod_alias:
// R_DrawGAliasModelLighting (currententity);
break;
case mod_brush:
PPL_FullBrightBModelTextures (currententity);
break;
default:
break;
}
}
}
#ifdef PPL
qboolean PPL_VisOverlaps(qbyte *v1, qbyte *v2)
{
int i, m;
m = (cl.worldmodel->numleafs-1)>>3;
for (i=0 ; i<m ; i++)
{
if (v1[i] & v2[i])
return true;
}
return false;
}
void PPL_RecursiveWorldNode_r (mnode_t *node)
{
int c, side;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double dot;
glpoly_t *p;
int v;
float *v1;
vec3_t v3;
if (node->shadowframe != r_shadowframe)
return;
if (node->contents == Q1CONTENTS_SOLID)
return; // solid
//if light areabox is outside node, ignore node + children
for (c = 0; c < 3; c++)
{
if (lightorg[c] + lightradius < node->minmaxs[c])
return;
if (lightorg[c] - lightradius > node->minmaxs[3+c])
return;
}
// if a leaf node, draw stuff
if (node->contents < 0)
{
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
if (c)
{
do
{
(*mark++)->shadowframe = r_shadowframe;
} while (--c);
}
return;
}
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
if (dot >= 0)
side = 0;
else
side = 1;
// recurse down the children, front side first
PPL_RecursiveWorldNode_r (node->children[side]);
// draw stuff
c = node->numsurfaces;
if (c)
{
surf = cl.worldmodel->surfaces + node->firstsurface;
{
for ( ; c ; c--, surf++)
{
if (surf->shadowframe != r_shadowframe)
continue;
// if ((dot < 0) ^ !!(surf->flags & SURF_PLANEBACK))
// continue; // wrong side
// if (surf->flags & SURF_PLANEBACK)
// continue;
if (surf->flags & (SURF_DRAWALPHA | SURF_DRAWTILED))
{ // no shadows
continue;
}
//is the light on the right side?
if (surf->flags & SURF_PLANEBACK)
{//inverted normal.
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist <= -lightradius)
continue;
}
else
{
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist >= lightradius)
continue;
}
/* if (fabs(surf->center[0] - lightorg[0]) > lightradius+surf->radius ||
fabs(surf->center[1] - lightorg[1]) > lightradius+surf->radius ||
fabs(surf->center[2] - lightorg[2]) > lightradius+surf->radius)
continue;
*/
#define PROJECTION_DISTANCE (float)(lightradius*2)//0x7fffffff
//build a list of the edges that are to be drawn.
for (v = 0; v < surf->numedges; v++)
{
int e, delta;
e = cl.worldmodel->surfedges[surf->firstedge+v];
//negative edge means backwards edge.
if (e < 0)
{
e=-e;
delta = -1;
}
else
{
delta = 1;
}
if (!edge[e].count)
{
if (firstedge)
edge[firstedge].prev = e;
edge[e].next = firstedge;
edge[e].prev = 0;
firstedge = e;
edge[e].count = delta;
}
else
{
edge[e].count += delta;
if (!edge[e].count) //unlink
{
if (edge[e].next)
{
edge[edge[e].next].prev = edge[e].prev;
}
if (edge[e].prev)
edge[edge[e].prev].next = edge[e].next;
else
firstedge = edge[e].next;
}
}
}
for (p = surf->polys; p; p=p->next)
{
shadowsurfcount++;
//front face
glVertexPointer(3, GL_FLOAT, sizeof(GLfloat)*VERTEXSIZE, p->verts[0]);
glDrawElements(GL_TRIANGLES, (p->numverts-2)*3, GL_UNSIGNED_INT, varray_i_polytotri);
//back
glBegin(GL_POLYGON);
for (v = p->numverts-1; v >=0; v--)
{
v1 = p->verts[v];
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
}
glEnd();
}
}
}
}
// recurse down the back side
PPL_RecursiveWorldNode_r (node->children[!side]);
}
//2 changes, but otherwise the same
void PPL_RecursiveWorldNodeQ2_r (mnode_t *node)
{
int c, side;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double dot;
glpoly_t *p;
int v;
float *v1;
vec3_t v3;
if (node->contents == Q2CONTENTS_SOLID)
return; // solid
if (node->shadowframe != r_shadowframe)
return;
// if (R_CullBox (node->minmaxs, node->minmaxs+3))
// return;
// if a leaf node, draw stuff
if (node->contents != -1)
{
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
if (c)
{
do
{
(*mark++)->shadowframe = r_shadowframe;
} while (--c);
}
return;
}
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
if (dot >= 0)
side = 0;
else
side = 1;
// recurse down the children, front side first
PPL_RecursiveWorldNodeQ2_r (node->children[side]);
// draw stuff
c = node->numsurfaces;
if (c)
{
surf = cl.worldmodel->surfaces + node->firstsurface;
{
for ( ; c ; c--, surf++)
{
if (surf->shadowframe != r_shadowframe)
continue;
// if ((dot < 0) ^ !!(surf->flags & SURF_PLANEBACK))
// continue; // wrong side
// if (surf->flags & SURF_PLANEBACK)
// continue;
if (surf->flags & SURF_PLANEBACK)
{//inverted normal.
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist >= 0)
continue;
}
else
{
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist <= 0)
continue;
}
//#define PROJECTION_DISTANCE (float)0x7fffffff
if (surf->flags & (SURF_DRAWALPHA | SURF_DRAWTILED))
{ // no shadows
continue;
}
//build a list of the edges that are to be drawn.
for (v = 0; v < surf->numedges; v++)
{
int e, delta;
e = cl.worldmodel->surfedges[surf->firstedge+v];
//negative edge means backwards edge.
if (e < 0)
{
e=-e;
delta = -1;
}
else
{
delta = 1;
}
if (!edge[e].count)
{
if (firstedge)
edge[firstedge].prev = e;
edge[e].next = firstedge;
edge[e].prev = 0;
firstedge = e;
edge[e].count = delta;
}
else
{
edge[e].count += delta;
if (!edge[e].count) //unlink
{
if (edge[e].next)
{
edge[edge[e].next].prev = edge[e].prev;
}
if (edge[e].prev)
edge[edge[e].prev].next = edge[e].next;
else
firstedge = edge[e].next;
}
}
}
for (p = surf->polys; p; p=p->next)
{
//front face
glVertexPointer(3, GL_FLOAT, sizeof(GLfloat)*VERTEXSIZE, p->verts);
glDrawElements(GL_TRIANGLES, (p->numverts-2)*3, GL_UNSIGNED_INT, varray_i_polytotri);
//back
glBegin(GL_POLYGON);
for (v = p->numverts-1; v >=0; v--)
{
v1 = p->verts[v];
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
}
glEnd();
}
}
}
}
// recurse down the back side
PPL_RecursiveWorldNodeQ2_r (node->children[!side]);
}
void PPL_RecursiveWorldNodeQ3_r (mnode_t *node)
{
int c, side;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double dot;
glpoly_t *p;
int v;
float *v2;
vec3_t v4;
float *v1;
vec3_t v3;
if (node->contents == Q2CONTENTS_SOLID)
return; // solid
if (node->shadowframe != r_shadowframe)
return;
// if (R_CullBox (node->minmaxs, node->minmaxs+3))
// return;
// if a leaf node, draw stuff
if (node->contents != -1)
{
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
if (c)
{
do
{
surf = *mark;
(*mark++)->shadowframe = r_shadowframe;
/* if (surf->shadowframe != r_shadowframe)
continue;
*/
// if ((dot < 0) ^ !!(surf->flags & SURF_PLANEBACK))
// continue; // wrong side
// if (surf->flags & SURF_PLANEBACK)
// continue;
if (surf->flags & SURF_PLANEBACK)
{//inverted normal.
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist <= -lightradius)
continue;
}
else
{
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist >= lightradius)
continue;
}
//#define PROJECTION_DISTANCE (float)0x7fffffff
/*if (surf->flags & (SURF_DRAWALPHA | SURF_DRAWTILED))
{ // no shadows
continue;
}*/
for (p = surf->polys; p; p=p->next)
{
//front face
glVertexPointer(3, GL_FLOAT, sizeof(GLfloat)*VERTEXSIZE, p->verts);
glDrawElements(GL_TRIANGLES, (p->numverts-2)*3, GL_UNSIGNED_INT, varray_i_polytotri);
//fixme...
for (v = 0; v < p->numverts; v++)
{
//border
v1 = p->verts[v];
v2 = p->verts[( v+1 )%p->numverts];
//get positions of v3 and v4 based on the light position
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
v4[0] = ( v2[0]-lightorg[0] )*PROJECTION_DISTANCE;
v4[1] = ( v2[1]-lightorg[1] )*PROJECTION_DISTANCE;
v4[2] = ( v2[2]-lightorg[2] )*PROJECTION_DISTANCE;
//Now draw the quad from the two verts to the projected light
//verts
glBegin( GL_QUAD_STRIP );
glVertex3f( v1[0], v1[1], v1[2] );
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
glVertex3f( v2[0], v2[1], v2[2] );
glVertex3f( v2[0]+v4[0], v2[1]+v4[1], v2[2]+v4[2] );
glEnd();
}
//back
glBegin(GL_POLYGON);
for (v = p->numverts-1; v >=0; v--)
{
v1 = p->verts[v];
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
}
glEnd();
}
} while (--c);
}
return;
}
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
if (dot >= 0)
side = 0;
else
side = 1;
// recurse down the children, front side first
PPL_RecursiveWorldNodeQ3_r (node->children[side]);
// draw stuff
c = node->numsurfaces;
if (c)
{
surf = cl.worldmodel->surfaces + node->firstsurface;
{
for ( ; c ; c--, surf++)
{
}
}
}
// recurse down the back side
PPL_RecursiveWorldNodeQ3_r (node->children[!side]);
}
void PPL_RecursiveWorldNode (dlight_t *dl)
{
float *v1, *v2;
vec3_t v3, v4;
if (dl->worldshadowmesh)
{
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(vec3_t), dl->worldshadowmesh->verts);
glDrawElements(GL_TRIANGLES, dl->worldshadowmesh->numindicies, GL_UNSIGNED_INT, dl->worldshadowmesh->indicies);
return;
}
lightradius = dl->radius;
lightorg[0] = dl->origin[0]+0.5;
lightorg[1] = dl->origin[1]+0.5;
lightorg[2] = dl->origin[2]+0.5;
modelorg[0] = lightorg[0];
modelorg[1] = lightorg[1];
modelorg[2] = lightorg[2];
glEnableClientState(GL_VERTEX_ARRAY);
if (qglGetError())
Con_Printf("GL Error on entities\n");
if (cl.worldmodel->fromgame == fg_quake3)
PPL_RecursiveWorldNodeQ3_r(cl.worldmodel->nodes);
else if (cl.worldmodel->fromgame == fg_quake2)
PPL_RecursiveWorldNodeQ2_r(cl.worldmodel->nodes);
else
PPL_RecursiveWorldNode_r(cl.worldmodel->nodes);
if (qglGetError())
Con_Printf("GL Error on entities\n");
glVertexPointer(3, GL_FLOAT, sizeof(surfvertexarray_t), varray_v[0].xyz);
if (qglGetError())
Con_Printf("GL Error on entities\n");
while(firstedge)
{
//border
v1 = cl.worldmodel->vertexes[cl.worldmodel->edges[firstedge].v[0]].position;
v2 = cl.worldmodel->vertexes[cl.worldmodel->edges[firstedge].v[1]].position;
//get positions of v3 and v4 based on the light position
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
v4[0] = ( v2[0]-lightorg[0] )*PROJECTION_DISTANCE;
v4[1] = ( v2[1]-lightorg[1] )*PROJECTION_DISTANCE;
v4[2] = ( v2[2]-lightorg[2] )*PROJECTION_DISTANCE;
if (varray_vc + 4>MAXARRAYVERTS)
{
glDrawElements(GL_QUADS, varray_vc, GL_UNSIGNED_INT, varray_i_forward);
if (qglGetError())
Con_Printf("GL Error on entities\n");
varray_vc=0;
}
if (edge[firstedge].count > 0)
{
varray_v[varray_vc].xyz[0] = v1[0]+v3[0];
varray_v[varray_vc].xyz[1] = v1[1]+v3[1];
varray_v[varray_vc].xyz[2] = v1[2]+v3[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v2[0]+v4[0];
varray_v[varray_vc].xyz[1] = v2[1]+v4[1];
varray_v[varray_vc].xyz[2] = v2[2]+v4[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v2[0];
varray_v[varray_vc].xyz[1] = v2[1];
varray_v[varray_vc].xyz[2] = v2[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v1[0];
varray_v[varray_vc].xyz[1] = v1[1];
varray_v[varray_vc].xyz[2] = v1[2];
varray_vc++;
}
else
{
varray_v[varray_vc].xyz[0] = v1[0];
varray_v[varray_vc].xyz[1] = v1[1];
varray_v[varray_vc].xyz[2] = v1[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v2[0];
varray_v[varray_vc].xyz[1] = v2[1];
varray_v[varray_vc].xyz[2] = v2[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v2[0]+v4[0];
varray_v[varray_vc].xyz[1] = v2[1]+v4[1];
varray_v[varray_vc].xyz[2] = v2[2]+v4[2];
varray_vc++;
varray_v[varray_vc].xyz[0] = v1[0]+v3[0];
varray_v[varray_vc].xyz[1] = v1[1]+v3[1];
varray_v[varray_vc].xyz[2] = v1[2]+v3[2];
varray_vc++;
}
edge[firstedge].count=0;
firstedge = edge[firstedge].next;
shadowedgecount++;
}
glDrawElements(GL_QUADS, varray_vc, GL_UNSIGNED_INT, varray_i_forward);
if (qglGetError())
Con_Printf("GL Error on entities\n");
varray_vc=0;
firstedge=0;
}
void PPL_DrawBrushModel(dlight_t *dl, entity_t *e)
{
glpoly_t *p;
int v;
float *v1, *v2;
vec3_t v3, v4;
int i;
model_t *model;
msurface_t *surf;
RotateLightVector(e->angles, e->origin, dl->origin, lightorg);
glPushMatrix();
R_RotateForEntity(e);
model = e->model;
surf = model->surfaces+model->firstmodelsurface;
for (i = 0; i < model->nummodelsurfaces; i++, surf++)
{
if (surf->flags & SURF_PLANEBACK)
{//inverted normal.
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist >= -0.1)
continue;
}
else
{
if (DotProduct(surf->plane->normal, lightorg)-surf->plane->dist <= 0.1)
continue;
}
//#define PROJECTION_DISTANCE (float)0x7fffffff
if (surf->flags & (SURF_DRAWALPHA | SURF_DRAWTILED))
{ // no shadows
continue;
}
for (p = surf->polys; p; p=p->next)
{
//front face
glBegin(GL_POLYGON);
for (v = 0; v < p->numverts; v++)
glVertex3fv(p->verts[v]);
glEnd();
for (v = 0; v < p->numverts; v++)
{
//border
v1 = p->verts[v];
v2 = p->verts[( v+1 )%p->numverts];
//get positions of v3 and v4 based on the light position
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
v4[0] = ( v2[0]-lightorg[0] )*PROJECTION_DISTANCE;
v4[1] = ( v2[1]-lightorg[1] )*PROJECTION_DISTANCE;
v4[2] = ( v2[2]-lightorg[2] )*PROJECTION_DISTANCE;
//Now draw the quad from the two verts to the projected light
//verts
glBegin( GL_QUAD_STRIP );
glVertex3f( v1[0], v1[1], v1[2] );
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
glVertex3f( v2[0], v2[1], v2[2] );
glVertex3f( v2[0]+v4[0], v2[1]+v4[1], v2[2]+v4[2] );
glEnd();
}
//back
glBegin(GL_POLYGON);
for (v = p->numverts-1; v >=0; v--)
{
v1 = p->verts[v];
v3[0] = ( v1[0]-lightorg[0] )*PROJECTION_DISTANCE;
v3[1] = ( v1[1]-lightorg[1] )*PROJECTION_DISTANCE;
v3[2] = ( v1[2]-lightorg[2] )*PROJECTION_DISTANCE;
glVertex3f( v1[0]+v3[0], v1[1]+v3[1], v1[2]+v3[2] );
}
glEnd();
}
}
glPopMatrix();
}
void PPL_DrawShadowMeshes(dlight_t *dl)
{
int i;
if (!r_drawentities.value)
return;
// draw sprites seperately, because of alpha blending
for (i=0 ; i<cl_numvisedicts ; i++)
{
currententity = &cl_visedicts[i];
if (cl.viewentity[r_refdef.currentplayernum] && currententity->keynum == cl.viewentity[r_refdef.currentplayernum])
continue;
if (!currententity->model)
continue;
if (dl->key == currententity->keynum)
continue;
if (currententity->flags & Q2RF_WEAPONMODEL)
continue; //weapon models don't cast shadows.
if (cls.allow_anyparticles || currententity->visframe) //allowed or static
{
if (currententity->model->particleeffect>=0)
{
if (currententity->model->particleengulphs)
{
if (gl_part_flame.value)
{
continue;
}
}
}
}
switch (currententity->model->type)
{
case mod_alias:
R_DrawGAliasShadowVolume (currententity, dl->origin, dl->radius);
break;
case mod_brush:
PPL_DrawBrushModel (dl, currententity);
break;
default:
break;
}
}
}
void PPL_UpdateNodeShadowFrames(qbyte *lvis)
{
int i;
mnode_t *node;
#ifdef Q3BSPS
if (cl.worldmodel->fromgame == fg_quake3)
{
mleaf_t *leaf;
r_shadowframe++;
for (i=0, leaf=cl.worldmodel->leafs; i<cl.worldmodel->numleafs ; i++, leaf++)
{
node = (mnode_t *)leaf;
while (node)
{
if (node->shadowframe == r_shadowframe)
break;
node->shadowframe = r_shadowframe;
node = node->parent;
}
}
}
else
#endif
#ifdef Q2BSPS
if (cl.worldmodel->fromgame == fg_quake2)
{
mleaf_t *leaf;
int cluster;
r_shadowframe++;
for (i=0, leaf=cl.worldmodel->leafs; i<cl.worldmodel->numleafs ; i++, leaf++)
{
cluster = leaf->cluster;
if (cluster == -1)
continue;
if (lvis[cluster>>3] & (1<<(cluster&7)))
{
node = (mnode_t *)leaf;
do
{
if (node->shadowframe == r_shadowframe)
break;
node->shadowframe = r_shadowframe;
node = node->parent;
} while (node);
}
}
}
else
#endif
{
if (r_novis.value != 2)
{
r_shadowframe++;
//variation on mark leaves
for (i=0 ; i<cl.worldmodel->numleafs ; i++)
{
if (lvis[i>>3] & (1<<(i&7)))// && vvis[i>>3] & (1<<(i&7)))
{
node = (mnode_t *)&cl.worldmodel->leafs[i+1];
do
{
if (node->shadowframe == r_shadowframe)
break;
node->shadowframe = r_shadowframe;
node = node->parent;
} while (node);
}
}
}
}
}
#if 1 //DP's stolen code
static void GL_Scissor (int x, int y, int width, int height)
{
#if 0 //visible scissors
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho (0, glwidth, glheight, 0, -99999, 99999);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// GL_Set2D();
glColor4f(1,1,1,1);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE );
glDisable(GL_TEXTURE_2D);
GL_TexEnv(GL_REPLACE);
glBegin(GL_LINE_LOOP);
glVertex2f(x, y);
glVertex2f(x+glwidth, y);
glVertex2f(x+glwidth, y+glheight);
glVertex2f(x, y+glheight);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
#endif
qglScissor(x, glheight - (y + height),width,height);
}
#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2])
qboolean PPL_ScissorForBox(vec3_t mins, vec3_t maxs)
{
int i, ix1, iy1, ix2, iy2;
float x1, y1, x2, y2, x, y, f;
vec3_t smins, smaxs;
vec4_t v, v2;
int r_view_x = 0;
int r_view_y = 0;
int r_view_width = glwidth;
int r_view_height = glheight;
if (0)//!r_shadow_scissor.integer)
{
GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
return false;
}
// if view is inside the box, just say yes it's visible
if (BoxesOverlap(r_refdef.vieworg, r_refdef.vieworg, mins, maxs))
{
GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
return false;
}
for (i = 0;i < 3;i++)
{
if (vpn[i] >= 0)
{
v[i] = mins[i];
v2[i] = maxs[i];
}
else
{
v[i] = maxs[i];
v2[i] = mins[i];
}
}
f = DotProduct(vpn, r_refdef.vieworg) + 1;
if (DotProduct(vpn, v2) <= f)
{
// entirely behind nearclip plane
GL_Scissor(r_view_x, r_view_y, r_view_width, r_view_height);
return true;
}
if (DotProduct(vpn, v) >= f)
{
// entirely infront of nearclip plane
x1 = y1 = x2 = y2 = 0;
for (i = 0;i < 8;i++)
{
v[0] = (i & 1) ? mins[0] : maxs[0];
v[1] = (i & 2) ? mins[1] : maxs[1];
v[2] = (i & 4) ? mins[2] : maxs[2];
v[3] = 1.0f;
ML_Project(v, v2, r_refdef.viewangles, r_refdef.vieworg, (float)vid.width/vid.height, r_refdef.fov_y);
v2[0]*=r_view_width;
v2[1]*=r_view_height;
// GL_TransformToScreen(v, v2);
//Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
x = v2[0];
y = v2[1];
if (i)
{
if (x1 > x) x1 = x;
if (x2 < x) x2 = x;
if (y1 > y) y1 = y;
if (y2 < y) y2 = y;
}
else
{
x1 = x2 = x;
y1 = y2 = y;
}
}
}
else
{
// clipped by nearclip plane
// this is nasty and crude...
// create viewspace bbox
for (i = 0;i < 8;i++)
{
v[0] = ((i & 1) ? mins[0] : maxs[0]) - r_refdef.vieworg[0];
v[1] = ((i & 2) ? mins[1] : maxs[1]) - r_refdef.vieworg[1];
v[2] = ((i & 4) ? mins[2] : maxs[2]) - r_refdef.vieworg[2];
v2[0] = DotProduct(v, vright);
v2[1] = DotProduct(v, vup);
v2[2] = DotProduct(v, vpn);
if (i)
{
if (smins[0] > v2[0]) smins[0] = v2[0];
if (smaxs[0] < v2[0]) smaxs[0] = v2[0];
if (smins[1] > v2[1]) smins[1] = v2[1];
if (smaxs[1] < v2[1]) smaxs[1] = v2[1];
if (smins[2] > v2[2]) smins[2] = v2[2];
if (smaxs[2] < v2[2]) smaxs[2] = v2[2];
}
else
{
smins[0] = smaxs[0] = v2[0];
smins[1] = smaxs[1] = v2[1];
smins[2] = smaxs[2] = v2[2];
}
}
// now we have a bbox in viewspace
// clip it to the view plane
if (smins[2] < 1)
smins[2] = 1;
// return true if that culled the box
if (smins[2] >= smaxs[2])
return true;
// ok some of it is infront of the view, transform each corner back to
// worldspace and then to screenspace and make screen rect
// initialize these variables just to avoid compiler warnings
x1 = y1 = x2 = y2 = 0;
for (i = 0;i < 8;i++)
{
v2[0] = (i & 1) ? smins[0] : smaxs[0];
v2[1] = (i & 2) ? smins[1] : smaxs[1];
v2[2] = (i & 4) ? smins[2] : smaxs[2];
v[0] = v2[0] * vright[0] + v2[1] * vup[0] + v2[2] * vpn[0] + r_refdef.vieworg[0];
v[1] = v2[0] * vright[1] + v2[1] * vup[1] + v2[2] * vpn[1] + r_refdef.vieworg[1];
v[2] = v2[0] * vright[2] + v2[1] * vup[2] + v2[2] * vpn[2] + r_refdef.vieworg[2];
v[3] = 1.0f;
ML_Project(v, v2, r_refdef.viewangles, r_refdef.vieworg, vid.width/vid.height, r_refdef.fov_y);
v2[0]*=r_view_width;
v2[1]*=r_view_height;
// GL_TransformToScreen(v, v2);
//Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
x = v2[0];
y = v2[1];
if (i)
{
if (x1 > x) x1 = x;
if (x2 < x) x2 = x;
if (y1 > y) y1 = y;
if (y2 < y) y2 = y;
}
else
{
x1 = x2 = x;
y1 = y2 = y;
}
}
#if 0
// this code doesn't handle boxes with any points behind view properly
x1 = 1000;x2 = -1000;
y1 = 1000;y2 = -1000;
for (i = 0;i < 8;i++)
{
v[0] = (i & 1) ? mins[0] : maxs[0];
v[1] = (i & 2) ? mins[1] : maxs[1];
v[2] = (i & 4) ? mins[2] : maxs[2];
v[3] = 1.0f;
GL_TransformToScreen(v, v2);
v2[0]*=r_view_width;
v2[1]*=r_view_height;
//Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
if (v2[2] > 0)
{
x = v2[0];
y = v2[1];
if (x1 > x) x1 = x;
if (x2 < x) x2 = x;
if (y1 > y) y1 = y;
if (y2 < y) y2 = y;
}
}
#endif
}
ix1 = x1 - 1.0f;
iy1 = y1 - 1.0f;
ix2 = x2 + 1.0f;
iy2 = y2 + 1.0f;
//Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
if (ix1 < r_view_x) ix1 = r_view_x;
if (iy1 < r_view_y) iy1 = r_view_y;
if (ix2 > r_view_x + r_view_width) ix2 = r_view_x + r_view_width;
if (iy2 > r_view_y + r_view_height) iy2 = r_view_y + r_view_height;
if (ix2 <= ix1 || iy2 <= iy1)
return true;
// set up the scissor rectangle
qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1);
//qglEnable(GL_SCISSOR_TEST);
return false;
}
#endif
void CL_NewDlight (int key, float x, float y, float z, float radius, float time,
int type);
//generates stencil shadows of the world geometry.
//redraws world geometry
void PPL_AddLight(dlight_t *dl)
{
int i;
int sdecrw;
int sincrw;
int leaf;
qbyte *lvis;
qbyte *vvis;
qbyte lvisb[MAX_MAP_LEAFS/8];
qbyte vvisb[MAX_MAP_LEAFS/8];
vec3_t mins;
vec3_t maxs;
mins[0] = dl->origin[0] - dl->radius;
mins[1] = dl->origin[1] - dl->radius;
mins[2] = dl->origin[2] - dl->radius;
maxs[0] = dl->origin[0] + dl->radius;
maxs[1] = dl->origin[1] + dl->radius;
maxs[2] = dl->origin[2] + dl->radius;
if (PPL_ScissorForBox(mins, maxs))
return; //was culled.
if (cl.worldmodel->fromgame == fg_quake2 || cl.worldmodel->fromgame == fg_quake3)
i = cl.worldmodel->funcs.LeafForPoint(r_refdef.vieworg, cl.worldmodel);
else
i = r_viewleaf - cl.worldmodel->leafs;
leaf = cl.worldmodel->funcs.LeafForPoint(dl->origin, cl.worldmodel);
lvis = cl.worldmodel->funcs.LeafPVS(leaf, cl.worldmodel, lvisb);
vvis = cl.worldmodel->funcs.LeafPVS(i, cl.worldmodel, vvisb);
// if (!(lvis[i>>3] & (1<<(i&7)))) //light might not be visible, but it's effects probably should be.
// return;
if (!PPL_VisOverlaps(lvis, vvis)) //The two viewing areas do not intersect.
return;
PPL_EnableVertexArrays();
glDisable(GL_TEXTURE_2D);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
// if (1)
// goto noshadows;
glEnable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE );
glDepthMask(0);
if (gldepthfunc==GL_LEQUAL)
glDepthFunc(GL_LESS);
else
glDepthFunc(GL_GREATER);
glEnable(GL_DEPTH_TEST);
glEnable(GL_STENCIL_TEST);
sincrw = GL_INCR;
sdecrw = GL_DECR;
if (gl_config.ext_stencil_wrap)
{ //minamlise damage...
sincrw = GL_INCR_WRAP_EXT;
sdecrw = GL_DECR_WRAP_EXT;
}
//our stencil writes.
#ifdef _DEBUG
if (r_shadows.value == 666) //testing (visible shadow volumes)
{
if (qglGetError())
Con_Printf("GL Error on entities\n");
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE );
glColor3f(dl->color[0], dl->color[1], dl->color[2]);
glDisable(GL_STENCIL_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
if (qglGetError())
Con_Printf("GL Error on entities\n");
PPL_RecursiveWorldNode(dl);
if (qglGetError())
Con_Printf("GL Error on entities\n");
PPL_DrawShadowMeshes(dl);
if (qglGetError())
Con_Printf("GL Error on entities\n");
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
else
#endif
if (qglStencilOpSeparateATI && !((int)r_shadows.value & 2))//GL_ATI_separate_stencil
{
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glDisable(GL_CULL_FACE);
glStencilFunc( GL_ALWAYS, 1, ~0 );
qglStencilOpSeparateATI(GL_BACK, GL_KEEP, sincrw, GL_KEEP);
qglStencilOpSeparateATI(GL_FRONT, GL_KEEP, sdecrw, GL_KEEP);
PPL_UpdateNodeShadowFrames(lvisb);
PPL_RecursiveWorldNode(dl);
PPL_DrawShadowMeshes(dl);
qglStencilOpSeparateATI(GL_FRONT_AND_BACK, GL_KEEP, GL_KEEP, GL_KEEP);
glEnable(GL_CULL_FACE);
glStencilFunc( GL_EQUAL, 0, ~0 );
}
else if (qglActiveStencilFaceEXT && !((int)r_shadows.value & 2)) //NVidias variation on a theme. (GFFX class)
{
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glDisable(GL_CULL_FACE);
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
qglActiveStencilFaceEXT(GL_BACK);
glStencilOp(GL_KEEP, sincrw, GL_KEEP);
glStencilFunc( GL_ALWAYS, 1, ~0 );
qglActiveStencilFaceEXT(GL_FRONT);
glStencilOp(GL_KEEP, sdecrw, GL_KEEP);
glStencilFunc( GL_ALWAYS, 1, ~0 );
PPL_UpdateNodeShadowFrames(lvisb);
PPL_RecursiveWorldNode(dl);
PPL_DrawShadowMeshes(dl);
qglActiveStencilFaceEXT(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
qglActiveStencilFaceEXT(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
glEnable(GL_CULL_FACE);
qglActiveStencilFaceEXT(GL_BACK);
glStencilFunc( GL_EQUAL, 0, ~0 );
}
else //your graphics card sucks and lacks efficient stencil shadow techniques.
{ //centered around 0. Will only be increased then decreased less.
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_CULL_FACE);
glStencilFunc( GL_ALWAYS, 0, ~0 );
shadowsurfcount = 0;
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, sincrw, GL_KEEP);
PPL_UpdateNodeShadowFrames(lvis);
PPL_RecursiveWorldNode(dl);
PPL_DrawShadowMeshes(dl);
shadowsurfcount=0;
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, sdecrw, GL_KEEP);
PPL_UpdateNodeShadowFrames(lvis);
PPL_RecursiveWorldNode(dl);
PPL_DrawShadowMeshes(dl);
glStencilFunc( GL_EQUAL, 0, ~0 );
}
//end stencil writing.
glEnable(GL_DEPTH_TEST);
glDepthMask(0);
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE );
glStencilOp( GL_KEEP, GL_KEEP, GL_KEEP );
glCullFace(GL_FRONT);
//noshadows:
glColor3f(1,1,1);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
glColor4f(dl->color[0], dl->color[1], dl->color[2], 1);
glDepthFunc(GL_EQUAL);
lightorg[0] = dl->origin[0]+0.5;
lightorg[1] = dl->origin[1]+0.5;
lightorg[2] = dl->origin[2]+0.5;
PPL_DrawEntLighting(dl);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask(1);
glDepthFunc(gldepthfunc);
glEnable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glStencilFunc( GL_ALWAYS, 0, ~0 );
qglDisable(GL_SCISSOR_TEST);
}
#endif
void PPL_DrawWorld (void)
{
dlight_t *l;
#if 0
dlight_t *lc, *furthestprev;
float furthest;
#endif
int i;
vec3_t mins, maxs;
int maxshadowlights = gl_maxshadowlights.value;
if (maxshadowlights < 1)
maxshadowlights = 1;
// if (qglGetError())
// Con_Printf("GL Error before world\n");
//glColorMask(0,0,0,0);
TRACE(("dbg: calling PPL_BaseTextures\n"));
PPL_BaseTextures(cl.worldmodel);
// if (qglGetError())
// Con_Printf("GL Error during base textures\n");
//glColorMask(1,1,1,1);
TRACE(("dbg: calling PPL_BaseEntTextures\n"));
PPL_BaseEntTextures();
// CL_NewDlightRGB(1, r_refdef.vieworg[0], r_refdef.vieworg[1]-16, r_refdef.vieworg[2]-24, 128, 1, 1, 1, 1);
// if (qglGetError())
// Con_Printf("GL Error on entities\n");
#ifdef PPL
if (r_shadows.value && glStencilFunc && gl_canstencil)
{
if (cl.worldmodel->fromgame == fg_quake || cl.worldmodel->fromgame == fg_halflife || cl.worldmodel->fromgame == fg_quake2 /*|| cl.worldmodel->fromgame == fg_quake3*/)
{
// lc = NULL;
for (l = cl_dlights, i=0 ; i<MAX_DLIGHTS ; i++, l++)
{
if (!l->radius || l->noppl)
continue;
if (l->color[0]<0)
continue; //quick check for darklight
if (l->isstatic)
{
if (!r_shadow_realtime_world.value)
continue;
}
mins[0] = l->origin[0] - l->radius;
mins[1] = l->origin[1] - l->radius;
mins[2] = l->origin[2] - l->radius;
maxs[0] = l->origin[0] + l->radius;
maxs[1] = l->origin[1] + l->radius;
maxs[2] = l->origin[2] + l->radius;
if (R_CullBox(mins, maxs))
continue;
// if (R_CullSphere(l->origin, l->radius*1.1))
// continue;
#if 1
if (!maxshadowlights--)
continue;
#else
VectorSubtract(l->origin, r_refdef.vieworg, mins)
l->dist = Length(mins);
VectorNormalize(mins);
l->dist*=1-sqrt(DotProduct(vpn, mins)*DotProduct(vpn, mins));
l->next = lc;
lc = l;
maxshadowlights--;
}
while (maxshadowlights<0)//ooer... we exceeded our quota... strip the furthest ones out.
{
furthest = lc->dist;
furthestprev=NULL;
for (l = lc; l->next; l = l->next)
{
if (l->next->dist > furthest)
{
furthest = l->next->dist;
furthestprev = l;
}
}
if (furthestprev)
furthestprev->next = furthestprev->next->next;
else
lc = lc->next;
maxshadowlights++;
}
for (l = lc; l; l = l->next) //we now have our quotaed list
{
#endif
if(!l->isstatic)
{
l->color[0]*=10;
l->color[1]*=10;
l->color[2]*=10;
}
TRACE(("dbg: calling PPL_AddLight\n"));
PPL_AddLight(l);
if(!l->isstatic)
{
l->color[0]/=10;
l->color[1]/=10;
l->color[2]/=10;
}
}
glEnable(GL_TEXTURE_2D);
}
glDisableClientState(GL_COLOR_ARRAY);
}
#endif
// if (qglGetError())
// Con_Printf("GL Error on shadow lighting\n");
TRACE(("dbg: calling PPL_DrawEntFullBrights\n"));
PPL_DrawEntFullBrights();
// if (qglGetError())
// Con_Printf("GL Error on fullbrights/details\n");
// Con_Printf("%i %i %i\n", shadowsurfcount, shadowedgecount, shadowlightfaces);
shadowsurfcount = 0;
shadowedgecount = 0;
shadowlightfaces = 0;
R_IBrokeTheArrays();
}
#endif