etlegacy-libs/openal/Alc/mixer_sse.c

280 lines
9.3 KiB
C

#include "config.h"
#include <xmmintrin.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "mixer_defs.h"
const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *src, ALuint frac,
ALuint increment, ALfloat *restrict dst, ALuint dstlen)
{
const __m128 sf4 = _mm_set1_ps(state->sf);
const ALuint m = state->m;
const ALint l = state->l;
const ALfloat *fil, *scd, *phd, *spd;
ALuint pi, j_f, i;
ALfloat pf;
ALint j_s;
__m128 r4;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
fil = state->coeffs[pi].filter;
scd = state->coeffs[pi].scDelta;
phd = state->coeffs[pi].phDelta;
spd = state->coeffs[pi].spDelta;
// Apply the scale and phase interpolated filter.
r4 = _mm_setzero_ps();
{
const __m128 pf4 = _mm_set1_ps(pf);
for(j_f = 0,j_s = l;j_f < m;j_f+=4,j_s+=4)
{
const __m128 f4 = _mm_add_ps(
_mm_add_ps(
_mm_load_ps(&fil[j_f]),
_mm_mul_ps(sf4, _mm_load_ps(&scd[j_f]))
),
_mm_mul_ps(
pf4,
_mm_add_ps(
_mm_load_ps(&phd[j_f]),
_mm_mul_ps(sf4, _mm_load_ps(&spd[j_f]))
)
)
);
r4 = _mm_add_ps(r4, _mm_mul_ps(f4, _mm_loadu_ps(&src[j_s])));
}
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
dst[i] = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void SetupCoeffs(ALfloat (*restrict OutCoeffs)[2],
const HrtfParams *hrtfparams,
ALuint IrSize, ALuint Counter)
{
const __m128 counter4 = _mm_set1_ps((float)Counter);
__m128 coeffs, step4;
ALuint i;
for(i = 0;i < IrSize;i += 2)
{
step4 = _mm_load_ps(&hrtfparams->CoeffStep[i][0]);
coeffs = _mm_load_ps(&hrtfparams->Coeffs[i][0]);
coeffs = _mm_sub_ps(coeffs, _mm_mul_ps(step4, counter4));
_mm_store_ps(&OutCoeffs[i][0], coeffs);
}
}
static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
const ALuint IrSize,
ALfloat (*restrict Coeffs)[2],
const ALfloat (*restrict CoeffStep)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
__m128 coeffs, deltas, imp0, imp1;
__m128 vals = _mm_setzero_ps();
ALuint i;
if((Offset&1))
{
const ALuint o0 = Offset&HRIR_MASK;
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[0][0]);
deltas = _mm_load_ps(&CoeffStep[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[0][0], coeffs);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALuint o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
deltas = _mm_load_ps(&CoeffStep[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[i+1][0], coeffs);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALuint o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
deltas = _mm_load_ps(&CoeffStep[i][0]);
vals = _mm_load_ps(&Values[o][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
coeffs = _mm_add_ps(coeffs, deltas);
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Coeffs[i][0], coeffs);
_mm_store_ps(&Values[o][0], vals);
}
}
}
static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
const ALuint IrSize,
ALfloat (*restrict Coeffs)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
__m128 vals = _mm_setzero_ps();
__m128 coeffs;
ALuint i;
if((Offset&1))
{
const ALuint o0 = Offset&HRIR_MASK;
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
__m128 imp0, imp1;
coeffs = _mm_load_ps(&Coeffs[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALuint o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALuint o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
vals = _mm_load_ps(&Values[o][0]);
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
_mm_store_ps(&Values[o][0], vals);
}
}
}
#define MixHrtf MixHrtf_SSE
#include "mixer_inc.c"
#undef MixHrtf
void Mix_SSE(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize)
{
ALfloat gain, step;
__m128 gain4;
ALuint c;
for(c = 0;c < OutChans;c++)
{
ALuint pos = 0;
gain = Gains[c].Current;
step = Gains[c].Step;
if(step != 0.0f && Counter > 0)
{
ALuint minsize = minu(BufferSize, Counter);
/* Mix with applying gain steps in aligned multiples of 4. */
if(minsize-pos > 3)
{
__m128 step4;
gain4 = _mm_setr_ps(
gain,
gain + step,
gain + step + step,
gain + step + step + step
);
step4 = _mm_set1_ps(step + step + step + step);
do {
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
gain4 = _mm_add_ps(gain4, step4);
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
pos += 4;
} while(minsize-pos > 3);
/* NOTE: gain4 now represents the next four gains after the
* last four mixed samples, so the lowest element represents
* the next gain to apply.
*/
gain = _mm_cvtss_f32(gain4);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos]*gain;
gain += step;
}
if(pos == Counter)
gain = Gains[c].Target;
Gains[c].Current = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = minu(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
gain4 = _mm_set1_ps(gain);
for(;BufferSize-pos > 3;pos += 4)
{
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}