mirror of
https://github.com/etlegacy/etlegacy-libs.git
synced 2024-11-10 23:01:47 +00:00
280 lines
9.3 KiB
C
280 lines
9.3 KiB
C
|
#include "config.h"
|
||
|
|
||
|
#include <xmmintrin.h>
|
||
|
|
||
|
#include "AL/al.h"
|
||
|
#include "AL/alc.h"
|
||
|
#include "alMain.h"
|
||
|
#include "alu.h"
|
||
|
|
||
|
#include "alSource.h"
|
||
|
#include "alAuxEffectSlot.h"
|
||
|
#include "mixer_defs.h"
|
||
|
|
||
|
|
||
|
const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *src, ALuint frac,
|
||
|
ALuint increment, ALfloat *restrict dst, ALuint dstlen)
|
||
|
{
|
||
|
const __m128 sf4 = _mm_set1_ps(state->sf);
|
||
|
const ALuint m = state->m;
|
||
|
const ALint l = state->l;
|
||
|
const ALfloat *fil, *scd, *phd, *spd;
|
||
|
ALuint pi, j_f, i;
|
||
|
ALfloat pf;
|
||
|
ALint j_s;
|
||
|
__m128 r4;
|
||
|
|
||
|
for(i = 0;i < dstlen;i++)
|
||
|
{
|
||
|
// Calculate the phase index and factor.
|
||
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
||
|
pi = frac >> FRAC_PHASE_BITDIFF;
|
||
|
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
|
||
|
#undef FRAC_PHASE_BITDIFF
|
||
|
|
||
|
fil = state->coeffs[pi].filter;
|
||
|
scd = state->coeffs[pi].scDelta;
|
||
|
phd = state->coeffs[pi].phDelta;
|
||
|
spd = state->coeffs[pi].spDelta;
|
||
|
|
||
|
// Apply the scale and phase interpolated filter.
|
||
|
r4 = _mm_setzero_ps();
|
||
|
{
|
||
|
const __m128 pf4 = _mm_set1_ps(pf);
|
||
|
for(j_f = 0,j_s = l;j_f < m;j_f+=4,j_s+=4)
|
||
|
{
|
||
|
const __m128 f4 = _mm_add_ps(
|
||
|
_mm_add_ps(
|
||
|
_mm_load_ps(&fil[j_f]),
|
||
|
_mm_mul_ps(sf4, _mm_load_ps(&scd[j_f]))
|
||
|
),
|
||
|
_mm_mul_ps(
|
||
|
pf4,
|
||
|
_mm_add_ps(
|
||
|
_mm_load_ps(&phd[j_f]),
|
||
|
_mm_mul_ps(sf4, _mm_load_ps(&spd[j_f]))
|
||
|
)
|
||
|
)
|
||
|
);
|
||
|
r4 = _mm_add_ps(r4, _mm_mul_ps(f4, _mm_loadu_ps(&src[j_s])));
|
||
|
}
|
||
|
}
|
||
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
||
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
||
|
dst[i] = _mm_cvtss_f32(r4);
|
||
|
|
||
|
frac += increment;
|
||
|
src += frac>>FRACTIONBITS;
|
||
|
frac &= FRACTIONMASK;
|
||
|
}
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void SetupCoeffs(ALfloat (*restrict OutCoeffs)[2],
|
||
|
const HrtfParams *hrtfparams,
|
||
|
ALuint IrSize, ALuint Counter)
|
||
|
{
|
||
|
const __m128 counter4 = _mm_set1_ps((float)Counter);
|
||
|
__m128 coeffs, step4;
|
||
|
ALuint i;
|
||
|
|
||
|
for(i = 0;i < IrSize;i += 2)
|
||
|
{
|
||
|
step4 = _mm_load_ps(&hrtfparams->CoeffStep[i][0]);
|
||
|
coeffs = _mm_load_ps(&hrtfparams->Coeffs[i][0]);
|
||
|
coeffs = _mm_sub_ps(coeffs, _mm_mul_ps(step4, counter4));
|
||
|
_mm_store_ps(&OutCoeffs[i][0], coeffs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
|
||
|
const ALuint IrSize,
|
||
|
ALfloat (*restrict Coeffs)[2],
|
||
|
const ALfloat (*restrict CoeffStep)[2],
|
||
|
ALfloat left, ALfloat right)
|
||
|
{
|
||
|
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
|
||
|
__m128 coeffs, deltas, imp0, imp1;
|
||
|
__m128 vals = _mm_setzero_ps();
|
||
|
ALuint i;
|
||
|
|
||
|
if((Offset&1))
|
||
|
{
|
||
|
const ALuint o0 = Offset&HRIR_MASK;
|
||
|
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[0][0]);
|
||
|
deltas = _mm_load_ps(&CoeffStep[0][0]);
|
||
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
|
||
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
||
|
coeffs = _mm_add_ps(coeffs, deltas);
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_store_ps(&Coeffs[0][0], coeffs);
|
||
|
_mm_storel_pi((__m64*)&Values[o0][0], vals);
|
||
|
for(i = 1;i < IrSize-1;i += 2)
|
||
|
{
|
||
|
const ALuint o2 = (Offset+i)&HRIR_MASK;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
|
||
|
deltas = _mm_load_ps(&CoeffStep[i+1][0]);
|
||
|
vals = _mm_load_ps(&Values[o2][0]);
|
||
|
imp1 = _mm_mul_ps(lrlr, coeffs);
|
||
|
coeffs = _mm_add_ps(coeffs, deltas);
|
||
|
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_store_ps(&Coeffs[i+1][0], coeffs);
|
||
|
_mm_store_ps(&Values[o2][0], vals);
|
||
|
imp0 = imp1;
|
||
|
}
|
||
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
|
||
|
imp0 = _mm_movehl_ps(imp0, imp0);
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_storel_pi((__m64*)&Values[o1][0], vals);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for(i = 0;i < IrSize;i += 2)
|
||
|
{
|
||
|
const ALuint o = (Offset + i)&HRIR_MASK;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[i][0]);
|
||
|
deltas = _mm_load_ps(&CoeffStep[i][0]);
|
||
|
vals = _mm_load_ps(&Values[o][0]);
|
||
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
||
|
coeffs = _mm_add_ps(coeffs, deltas);
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_store_ps(&Coeffs[i][0], coeffs);
|
||
|
_mm_store_ps(&Values[o][0], vals);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
|
||
|
const ALuint IrSize,
|
||
|
ALfloat (*restrict Coeffs)[2],
|
||
|
ALfloat left, ALfloat right)
|
||
|
{
|
||
|
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
|
||
|
__m128 vals = _mm_setzero_ps();
|
||
|
__m128 coeffs;
|
||
|
ALuint i;
|
||
|
|
||
|
if((Offset&1))
|
||
|
{
|
||
|
const ALuint o0 = Offset&HRIR_MASK;
|
||
|
const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
|
||
|
__m128 imp0, imp1;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[0][0]);
|
||
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
|
||
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_storel_pi((__m64*)&Values[o0][0], vals);
|
||
|
for(i = 1;i < IrSize-1;i += 2)
|
||
|
{
|
||
|
const ALuint o2 = (Offset+i)&HRIR_MASK;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
|
||
|
vals = _mm_load_ps(&Values[o2][0]);
|
||
|
imp1 = _mm_mul_ps(lrlr, coeffs);
|
||
|
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_store_ps(&Values[o2][0], vals);
|
||
|
imp0 = imp1;
|
||
|
}
|
||
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
|
||
|
imp0 = _mm_movehl_ps(imp0, imp0);
|
||
|
vals = _mm_add_ps(imp0, vals);
|
||
|
_mm_storel_pi((__m64*)&Values[o1][0], vals);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for(i = 0;i < IrSize;i += 2)
|
||
|
{
|
||
|
const ALuint o = (Offset + i)&HRIR_MASK;
|
||
|
|
||
|
coeffs = _mm_load_ps(&Coeffs[i][0]);
|
||
|
vals = _mm_load_ps(&Values[o][0]);
|
||
|
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
|
||
|
_mm_store_ps(&Values[o][0], vals);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define MixHrtf MixHrtf_SSE
|
||
|
#include "mixer_inc.c"
|
||
|
#undef MixHrtf
|
||
|
|
||
|
|
||
|
void Mix_SSE(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
|
||
|
MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize)
|
||
|
{
|
||
|
ALfloat gain, step;
|
||
|
__m128 gain4;
|
||
|
ALuint c;
|
||
|
|
||
|
for(c = 0;c < OutChans;c++)
|
||
|
{
|
||
|
ALuint pos = 0;
|
||
|
gain = Gains[c].Current;
|
||
|
step = Gains[c].Step;
|
||
|
if(step != 0.0f && Counter > 0)
|
||
|
{
|
||
|
ALuint minsize = minu(BufferSize, Counter);
|
||
|
/* Mix with applying gain steps in aligned multiples of 4. */
|
||
|
if(minsize-pos > 3)
|
||
|
{
|
||
|
__m128 step4;
|
||
|
gain4 = _mm_setr_ps(
|
||
|
gain,
|
||
|
gain + step,
|
||
|
gain + step + step,
|
||
|
gain + step + step + step
|
||
|
);
|
||
|
step4 = _mm_set1_ps(step + step + step + step);
|
||
|
do {
|
||
|
const __m128 val4 = _mm_load_ps(&data[pos]);
|
||
|
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
|
||
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
||
|
gain4 = _mm_add_ps(gain4, step4);
|
||
|
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
|
||
|
pos += 4;
|
||
|
} while(minsize-pos > 3);
|
||
|
/* NOTE: gain4 now represents the next four gains after the
|
||
|
* last four mixed samples, so the lowest element represents
|
||
|
* the next gain to apply.
|
||
|
*/
|
||
|
gain = _mm_cvtss_f32(gain4);
|
||
|
}
|
||
|
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
|
||
|
for(;pos < minsize;pos++)
|
||
|
{
|
||
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
||
|
gain += step;
|
||
|
}
|
||
|
if(pos == Counter)
|
||
|
gain = Gains[c].Target;
|
||
|
Gains[c].Current = gain;
|
||
|
|
||
|
/* Mix until pos is aligned with 4 or the mix is done. */
|
||
|
minsize = minu(BufferSize, (pos+3)&~3);
|
||
|
for(;pos < minsize;pos++)
|
||
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
||
|
}
|
||
|
|
||
|
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
|
||
|
continue;
|
||
|
gain4 = _mm_set1_ps(gain);
|
||
|
for(;BufferSize-pos > 3;pos += 4)
|
||
|
{
|
||
|
const __m128 val4 = _mm_load_ps(&data[pos]);
|
||
|
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
|
||
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
||
|
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
|
||
|
}
|
||
|
for(;pos < BufferSize;pos++)
|
||
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
||
|
}
|
||
|
}
|