etlegacy-libs/openal/Alc/backends/coreaudio.c
2015-12-12 22:07:33 +01:00

718 lines
23 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <alloca.h>
#include "alMain.h"
#include "alu.h"
#include <CoreServices/CoreServices.h>
#include <unistd.h>
#include <AudioUnit/AudioUnit.h>
#include <AudioToolbox/AudioToolbox.h>
typedef struct {
AudioUnit audioUnit;
ALuint frameSize;
ALdouble sampleRateRatio; // Ratio of hardware sample rate / requested sample rate
AudioStreamBasicDescription format; // This is the OpenAL format as a CoreAudio ASBD
AudioConverterRef audioConverter; // Sample rate converter if needed
AudioBufferList *bufferList; // Buffer for data coming from the input device
ALCvoid *resampleBuffer; // Buffer for returned RingBuffer data when resampling
RingBuffer *ring;
} ca_data;
static const ALCchar ca_device[] = "CoreAudio Default";
static void destroy_buffer_list(AudioBufferList* list)
{
if(list)
{
UInt32 i;
for(i = 0;i < list->mNumberBuffers;i++)
free(list->mBuffers[i].mData);
free(list);
}
}
static AudioBufferList* allocate_buffer_list(UInt32 channelCount, UInt32 byteSize)
{
AudioBufferList *list;
list = calloc(1, sizeof(AudioBufferList) + sizeof(AudioBuffer));
if(list)
{
list->mNumberBuffers = 1;
list->mBuffers[0].mNumberChannels = channelCount;
list->mBuffers[0].mDataByteSize = byteSize;
list->mBuffers[0].mData = malloc(byteSize);
if(list->mBuffers[0].mData == NULL)
{
free(list);
list = NULL;
}
}
return list;
}
static OSStatus ca_callback(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp *inTimeStamp,
UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList *ioData)
{
ALCdevice *device = (ALCdevice*)inRefCon;
ca_data *data = (ca_data*)device->ExtraData;
aluMixData(device, ioData->mBuffers[0].mData,
ioData->mBuffers[0].mDataByteSize / data->frameSize);
return noErr;
}
static OSStatus ca_capture_conversion_callback(AudioConverterRef inAudioConverter, UInt32 *ioNumberDataPackets,
AudioBufferList *ioData, AudioStreamPacketDescription **outDataPacketDescription, void* inUserData)
{
ALCdevice *device = (ALCdevice*)inUserData;
ca_data *data = (ca_data*)device->ExtraData;
// Read from the ring buffer and store temporarily in a large buffer
ReadRingBuffer(data->ring, data->resampleBuffer, (ALsizei)(*ioNumberDataPackets));
// Set the input data
ioData->mNumberBuffers = 1;
ioData->mBuffers[0].mNumberChannels = data->format.mChannelsPerFrame;
ioData->mBuffers[0].mData = data->resampleBuffer;
ioData->mBuffers[0].mDataByteSize = (*ioNumberDataPackets) * data->format.mBytesPerFrame;
return noErr;
}
static OSStatus ca_capture_callback(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags,
const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber,
UInt32 inNumberFrames, AudioBufferList *ioData)
{
ALCdevice *device = (ALCdevice*)inRefCon;
ca_data *data = (ca_data*)device->ExtraData;
AudioUnitRenderActionFlags flags = 0;
OSStatus err;
// fill the bufferList with data from the input device
err = AudioUnitRender(data->audioUnit, &flags, inTimeStamp, 1, inNumberFrames, data->bufferList);
if(err != noErr)
{
ERR("AudioUnitRender error: %d\n", err);
return err;
}
WriteRingBuffer(data->ring, data->bufferList->mBuffers[0].mData, inNumberFrames);
return noErr;
}
static ALCenum ca_open_playback(ALCdevice *device, const ALCchar *deviceName)
{
AudioComponentDescription desc;
AudioComponent comp;
ca_data *data;
OSStatus err;
if(!deviceName)
deviceName = ca_device;
else if(strcmp(deviceName, ca_device) != 0)
return ALC_INVALID_VALUE;
/* open the default output unit */
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_DefaultOutput;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
comp = AudioComponentFindNext(NULL, &desc);
if(comp == NULL)
{
ERR("AudioComponentFindNext failed\n");
return ALC_INVALID_VALUE;
}
data = calloc(1, sizeof(*data));
err = AudioComponentInstanceNew(comp, &data->audioUnit);
if(err != noErr)
{
ERR("AudioComponentInstanceNew failed\n");
free(data);
return ALC_INVALID_VALUE;
}
/* init and start the default audio unit... */
err = AudioUnitInitialize(data->audioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
AudioComponentInstanceDispose(data->audioUnit);
free(data);
return ALC_INVALID_VALUE;
}
al_string_copy_cstr(&device->DeviceName, deviceName);
device->ExtraData = data;
return ALC_NO_ERROR;
}
static void ca_close_playback(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
AudioUnitUninitialize(data->audioUnit);
AudioComponentInstanceDispose(data->audioUnit);
free(data);
device->ExtraData = NULL;
}
static ALCboolean ca_reset_playback(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
AudioStreamBasicDescription streamFormat;
AURenderCallbackStruct input;
OSStatus err;
UInt32 size;
err = AudioUnitUninitialize(data->audioUnit);
if(err != noErr)
ERR("-- AudioUnitUninitialize failed.\n");
/* retrieve default output unit's properties (output side) */
size = sizeof(AudioStreamBasicDescription);
err = AudioUnitGetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 0, &streamFormat, &size);
if(err != noErr || size != sizeof(AudioStreamBasicDescription))
{
ERR("AudioUnitGetProperty failed\n");
return ALC_FALSE;
}
#if 0
TRACE("Output streamFormat of default output unit -\n");
TRACE(" streamFormat.mFramesPerPacket = %d\n", streamFormat.mFramesPerPacket);
TRACE(" streamFormat.mChannelsPerFrame = %d\n", streamFormat.mChannelsPerFrame);
TRACE(" streamFormat.mBitsPerChannel = %d\n", streamFormat.mBitsPerChannel);
TRACE(" streamFormat.mBytesPerPacket = %d\n", streamFormat.mBytesPerPacket);
TRACE(" streamFormat.mBytesPerFrame = %d\n", streamFormat.mBytesPerFrame);
TRACE(" streamFormat.mSampleRate = %5.0f\n", streamFormat.mSampleRate);
#endif
/* set default output unit's input side to match output side */
err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, size);
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
if(device->Frequency != streamFormat.mSampleRate)
{
device->UpdateSize = (ALuint)((ALuint64)device->UpdateSize *
streamFormat.mSampleRate /
device->Frequency);
device->Frequency = streamFormat.mSampleRate;
}
/* FIXME: How to tell what channels are what in the output device, and how
* to specify what we're giving? eg, 6.0 vs 5.1 */
switch(streamFormat.mChannelsPerFrame)
{
case 1:
device->FmtChans = DevFmtMono;
break;
case 2:
device->FmtChans = DevFmtStereo;
break;
case 4:
device->FmtChans = DevFmtQuad;
break;
case 6:
device->FmtChans = DevFmtX51;
break;
case 7:
device->FmtChans = DevFmtX61;
break;
case 8:
device->FmtChans = DevFmtX71;
break;
default:
ERR("Unhandled channel count (%d), using Stereo\n", streamFormat.mChannelsPerFrame);
device->FmtChans = DevFmtStereo;
streamFormat.mChannelsPerFrame = 2;
break;
}
SetDefaultWFXChannelOrder(device);
/* use channel count and sample rate from the default output unit's current
* parameters, but reset everything else */
streamFormat.mFramesPerPacket = 1;
streamFormat.mFormatFlags = 0;
switch(device->FmtType)
{
case DevFmtUByte:
device->FmtType = DevFmtByte;
/* fall-through */
case DevFmtByte:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 8;
break;
case DevFmtUShort:
device->FmtType = DevFmtShort;
/* fall-through */
case DevFmtShort:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 16;
break;
case DevFmtUInt:
device->FmtType = DevFmtInt;
/* fall-through */
case DevFmtInt:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger;
streamFormat.mBitsPerChannel = 32;
break;
case DevFmtFloat:
streamFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat;
streamFormat.mBitsPerChannel = 32;
break;
}
streamFormat.mBytesPerFrame = streamFormat.mChannelsPerFrame *
streamFormat.mBitsPerChannel / 8;
streamFormat.mBytesPerPacket = streamFormat.mBytesPerFrame;
streamFormat.mFormatID = kAudioFormatLinearPCM;
streamFormat.mFormatFlags |= kAudioFormatFlagsNativeEndian |
kLinearPCMFormatFlagIsPacked;
err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, sizeof(AudioStreamBasicDescription));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
/* setup callback */
data->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType);
input.inputProc = ca_callback;
input.inputProcRefCon = device;
err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &input, sizeof(AURenderCallbackStruct));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
return ALC_FALSE;
}
/* init the default audio unit... */
err = AudioUnitInitialize(data->audioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static ALCboolean ca_start_playback(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
OSStatus err;
err = AudioOutputUnitStart(data->audioUnit);
if(err != noErr)
{
ERR("AudioOutputUnitStart failed\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static void ca_stop_playback(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
OSStatus err;
err = AudioOutputUnitStop(data->audioUnit);
if(err != noErr)
ERR("AudioOutputUnitStop failed\n");
}
static ALCenum ca_open_capture(ALCdevice *device, const ALCchar *deviceName)
{
AudioStreamBasicDescription requestedFormat; // The application requested format
AudioStreamBasicDescription hardwareFormat; // The hardware format
AudioStreamBasicDescription outputFormat; // The AudioUnit output format
AURenderCallbackStruct input;
AudioComponentDescription desc;
AudioDeviceID inputDevice;
UInt32 outputFrameCount;
UInt32 propertySize;
AudioObjectPropertyAddress propertyAddress;
UInt32 enableIO;
AudioComponent comp;
ca_data *data;
OSStatus err;
if(!deviceName)
deviceName = ca_device;
else if(strcmp(deviceName, ca_device) != 0)
return ALC_INVALID_VALUE;
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_HALOutput;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
// Search for component with given description
comp = AudioComponentFindNext(NULL, &desc);
if(comp == NULL)
{
ERR("AudioComponentFindNext failed\n");
return ALC_INVALID_VALUE;
}
data = calloc(1, sizeof(*data));
device->ExtraData = data;
// Open the component
err = AudioComponentInstanceNew(comp, &data->audioUnit);
if(err != noErr)
{
ERR("AudioComponentInstanceNew failed\n");
goto error;
}
// Turn off AudioUnit output
enableIO = 0;
err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, 0, &enableIO, sizeof(ALuint));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
goto error;
}
// Turn on AudioUnit input
enableIO = 1;
err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, 1, &enableIO, sizeof(ALuint));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
goto error;
}
// Get the default input device
propertySize = sizeof(AudioDeviceID);
propertyAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;
propertyAddress.mScope = kAudioObjectPropertyScopeGlobal;
propertyAddress.mElement = kAudioObjectPropertyElementMaster;
err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &propertyAddress, 0, NULL, &propertySize, &inputDevice);
if(err != noErr)
{
ERR("AudioObjectGetPropertyData failed\n");
goto error;
}
if(inputDevice == kAudioDeviceUnknown)
{
ERR("No input device found\n");
goto error;
}
// Track the input device
err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &inputDevice, sizeof(AudioDeviceID));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
goto error;
}
// set capture callback
input.inputProc = ca_capture_callback;
input.inputProcRefCon = device;
err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &input, sizeof(AURenderCallbackStruct));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
goto error;
}
// Initialize the device
err = AudioUnitInitialize(data->audioUnit);
if(err != noErr)
{
ERR("AudioUnitInitialize failed\n");
goto error;
}
// Get the hardware format
propertySize = sizeof(AudioStreamBasicDescription);
err = AudioUnitGetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 1, &hardwareFormat, &propertySize);
if(err != noErr || propertySize != sizeof(AudioStreamBasicDescription))
{
ERR("AudioUnitGetProperty failed\n");
goto error;
}
// Set up the requested format description
switch(device->FmtType)
{
case DevFmtUByte:
requestedFormat.mBitsPerChannel = 8;
requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked;
break;
case DevFmtShort:
requestedFormat.mBitsPerChannel = 16;
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtInt:
requestedFormat.mBitsPerChannel = 32;
requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked;
break;
case DevFmtFloat:
requestedFormat.mBitsPerChannel = 32;
requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked;
break;
case DevFmtByte:
case DevFmtUShort:
case DevFmtUInt:
ERR("%s samples not supported\n", DevFmtTypeString(device->FmtType));
goto error;
}
switch(device->FmtChans)
{
case DevFmtMono:
requestedFormat.mChannelsPerFrame = 1;
break;
case DevFmtStereo:
requestedFormat.mChannelsPerFrame = 2;
break;
case DevFmtQuad:
case DevFmtX51:
case DevFmtX51Rear:
case DevFmtX61:
case DevFmtX71:
case DevFmtBFormat3D:
ERR("%s not supported\n", DevFmtChannelsString(device->FmtChans));
goto error;
}
requestedFormat.mBytesPerFrame = requestedFormat.mChannelsPerFrame * requestedFormat.mBitsPerChannel / 8;
requestedFormat.mBytesPerPacket = requestedFormat.mBytesPerFrame;
requestedFormat.mSampleRate = device->Frequency;
requestedFormat.mFormatID = kAudioFormatLinearPCM;
requestedFormat.mReserved = 0;
requestedFormat.mFramesPerPacket = 1;
// save requested format description for later use
data->format = requestedFormat;
data->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType);
// Use intermediate format for sample rate conversion (outputFormat)
// Set sample rate to the same as hardware for resampling later
outputFormat = requestedFormat;
outputFormat.mSampleRate = hardwareFormat.mSampleRate;
// Determine sample rate ratio for resampling
data->sampleRateRatio = outputFormat.mSampleRate / device->Frequency;
// The output format should be the requested format, but using the hardware sample rate
// This is because the AudioUnit will automatically scale other properties, except for sample rate
err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, (void *)&outputFormat, sizeof(outputFormat));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed\n");
goto error;
}
// Set the AudioUnit output format frame count
outputFrameCount = device->UpdateSize * data->sampleRateRatio;
err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Output, 0, &outputFrameCount, sizeof(outputFrameCount));
if(err != noErr)
{
ERR("AudioUnitSetProperty failed: %d\n", err);
goto error;
}
// Set up sample converter
err = AudioConverterNew(&outputFormat, &requestedFormat, &data->audioConverter);
if(err != noErr)
{
ERR("AudioConverterNew failed: %d\n", err);
goto error;
}
// Create a buffer for use in the resample callback
data->resampleBuffer = malloc(device->UpdateSize * data->frameSize * data->sampleRateRatio);
// Allocate buffer for the AudioUnit output
data->bufferList = allocate_buffer_list(outputFormat.mChannelsPerFrame, device->UpdateSize * data->frameSize * data->sampleRateRatio);
if(data->bufferList == NULL)
goto error;
data->ring = CreateRingBuffer(data->frameSize, (device->UpdateSize * data->sampleRateRatio) * device->NumUpdates);
if(data->ring == NULL)
goto error;
al_string_copy_cstr(&device->DeviceName, deviceName);
return ALC_NO_ERROR;
error:
DestroyRingBuffer(data->ring);
free(data->resampleBuffer);
destroy_buffer_list(data->bufferList);
if(data->audioConverter)
AudioConverterDispose(data->audioConverter);
if(data->audioUnit)
AudioComponentInstanceDispose(data->audioUnit);
free(data);
device->ExtraData = NULL;
return ALC_INVALID_VALUE;
}
static void ca_close_capture(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
DestroyRingBuffer(data->ring);
free(data->resampleBuffer);
destroy_buffer_list(data->bufferList);
AudioConverterDispose(data->audioConverter);
AudioComponentInstanceDispose(data->audioUnit);
free(data);
device->ExtraData = NULL;
}
static void ca_start_capture(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
OSStatus err = AudioOutputUnitStart(data->audioUnit);
if(err != noErr)
ERR("AudioOutputUnitStart failed\n");
}
static void ca_stop_capture(ALCdevice *device)
{
ca_data *data = (ca_data*)device->ExtraData;
OSStatus err = AudioOutputUnitStop(data->audioUnit);
if(err != noErr)
ERR("AudioOutputUnitStop failed\n");
}
static ALCenum ca_capture_samples(ALCdevice *device, ALCvoid *buffer, ALCuint samples)
{
ca_data *data = (ca_data*)device->ExtraData;
AudioBufferList *list;
UInt32 frameCount;
OSStatus err;
// If no samples are requested, just return
if(samples == 0)
return ALC_NO_ERROR;
// Allocate a temporary AudioBufferList to use as the return resamples data
list = alloca(sizeof(AudioBufferList) + sizeof(AudioBuffer));
// Point the resampling buffer to the capture buffer
list->mNumberBuffers = 1;
list->mBuffers[0].mNumberChannels = data->format.mChannelsPerFrame;
list->mBuffers[0].mDataByteSize = samples * data->frameSize;
list->mBuffers[0].mData = buffer;
// Resample into another AudioBufferList
frameCount = samples;
err = AudioConverterFillComplexBuffer(data->audioConverter, ca_capture_conversion_callback,
device, &frameCount, list, NULL);
if(err != noErr)
{
ERR("AudioConverterFillComplexBuffer error: %d\n", err);
return ALC_INVALID_VALUE;
}
return ALC_NO_ERROR;
}
static ALCuint ca_available_samples(ALCdevice *device)
{
ca_data *data = device->ExtraData;
return RingBufferSize(data->ring) / data->sampleRateRatio;
}
static const BackendFuncs ca_funcs = {
ca_open_playback,
ca_close_playback,
ca_reset_playback,
ca_start_playback,
ca_stop_playback,
ca_open_capture,
ca_close_capture,
ca_start_capture,
ca_stop_capture,
ca_capture_samples,
ca_available_samples
};
ALCboolean alc_ca_init(BackendFuncs *func_list)
{
*func_list = ca_funcs;
return ALC_TRUE;
}
void alc_ca_deinit(void)
{
}
void alc_ca_probe(enum DevProbe type)
{
switch(type)
{
case ALL_DEVICE_PROBE:
AppendAllDevicesList(ca_device);
break;
case CAPTURE_DEVICE_PROBE:
AppendCaptureDeviceList(ca_device);
break;
}
}