/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include "alMain.h" #include "alu.h" #include #include #include #include typedef struct { AudioUnit audioUnit; ALuint frameSize; ALdouble sampleRateRatio; // Ratio of hardware sample rate / requested sample rate AudioStreamBasicDescription format; // This is the OpenAL format as a CoreAudio ASBD AudioConverterRef audioConverter; // Sample rate converter if needed AudioBufferList *bufferList; // Buffer for data coming from the input device ALCvoid *resampleBuffer; // Buffer for returned RingBuffer data when resampling RingBuffer *ring; } ca_data; static const ALCchar ca_device[] = "CoreAudio Default"; static void destroy_buffer_list(AudioBufferList* list) { if(list) { UInt32 i; for(i = 0;i < list->mNumberBuffers;i++) free(list->mBuffers[i].mData); free(list); } } static AudioBufferList* allocate_buffer_list(UInt32 channelCount, UInt32 byteSize) { AudioBufferList *list; list = calloc(1, sizeof(AudioBufferList) + sizeof(AudioBuffer)); if(list) { list->mNumberBuffers = 1; list->mBuffers[0].mNumberChannels = channelCount; list->mBuffers[0].mDataByteSize = byteSize; list->mBuffers[0].mData = malloc(byteSize); if(list->mBuffers[0].mData == NULL) { free(list); list = NULL; } } return list; } static OSStatus ca_callback(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList *ioData) { ALCdevice *device = (ALCdevice*)inRefCon; ca_data *data = (ca_data*)device->ExtraData; aluMixData(device, ioData->mBuffers[0].mData, ioData->mBuffers[0].mDataByteSize / data->frameSize); return noErr; } static OSStatus ca_capture_conversion_callback(AudioConverterRef inAudioConverter, UInt32 *ioNumberDataPackets, AudioBufferList *ioData, AudioStreamPacketDescription **outDataPacketDescription, void* inUserData) { ALCdevice *device = (ALCdevice*)inUserData; ca_data *data = (ca_data*)device->ExtraData; // Read from the ring buffer and store temporarily in a large buffer ReadRingBuffer(data->ring, data->resampleBuffer, (ALsizei)(*ioNumberDataPackets)); // Set the input data ioData->mNumberBuffers = 1; ioData->mBuffers[0].mNumberChannels = data->format.mChannelsPerFrame; ioData->mBuffers[0].mData = data->resampleBuffer; ioData->mBuffers[0].mDataByteSize = (*ioNumberDataPackets) * data->format.mBytesPerFrame; return noErr; } static OSStatus ca_capture_callback(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList *ioData) { ALCdevice *device = (ALCdevice*)inRefCon; ca_data *data = (ca_data*)device->ExtraData; AudioUnitRenderActionFlags flags = 0; OSStatus err; // fill the bufferList with data from the input device err = AudioUnitRender(data->audioUnit, &flags, inTimeStamp, 1, inNumberFrames, data->bufferList); if(err != noErr) { ERR("AudioUnitRender error: %d\n", err); return err; } WriteRingBuffer(data->ring, data->bufferList->mBuffers[0].mData, inNumberFrames); return noErr; } static ALCenum ca_open_playback(ALCdevice *device, const ALCchar *deviceName) { AudioComponentDescription desc; AudioComponent comp; ca_data *data; OSStatus err; if(!deviceName) deviceName = ca_device; else if(strcmp(deviceName, ca_device) != 0) return ALC_INVALID_VALUE; /* open the default output unit */ desc.componentType = kAudioUnitType_Output; desc.componentSubType = kAudioUnitSubType_DefaultOutput; desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; comp = AudioComponentFindNext(NULL, &desc); if(comp == NULL) { ERR("AudioComponentFindNext failed\n"); return ALC_INVALID_VALUE; } data = calloc(1, sizeof(*data)); err = AudioComponentInstanceNew(comp, &data->audioUnit); if(err != noErr) { ERR("AudioComponentInstanceNew failed\n"); free(data); return ALC_INVALID_VALUE; } /* init and start the default audio unit... */ err = AudioUnitInitialize(data->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); AudioComponentInstanceDispose(data->audioUnit); free(data); return ALC_INVALID_VALUE; } al_string_copy_cstr(&device->DeviceName, deviceName); device->ExtraData = data; return ALC_NO_ERROR; } static void ca_close_playback(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; AudioUnitUninitialize(data->audioUnit); AudioComponentInstanceDispose(data->audioUnit); free(data); device->ExtraData = NULL; } static ALCboolean ca_reset_playback(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; AudioStreamBasicDescription streamFormat; AURenderCallbackStruct input; OSStatus err; UInt32 size; err = AudioUnitUninitialize(data->audioUnit); if(err != noErr) ERR("-- AudioUnitUninitialize failed.\n"); /* retrieve default output unit's properties (output side) */ size = sizeof(AudioStreamBasicDescription); err = AudioUnitGetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 0, &streamFormat, &size); if(err != noErr || size != sizeof(AudioStreamBasicDescription)) { ERR("AudioUnitGetProperty failed\n"); return ALC_FALSE; } #if 0 TRACE("Output streamFormat of default output unit -\n"); TRACE(" streamFormat.mFramesPerPacket = %d\n", streamFormat.mFramesPerPacket); TRACE(" streamFormat.mChannelsPerFrame = %d\n", streamFormat.mChannelsPerFrame); TRACE(" streamFormat.mBitsPerChannel = %d\n", streamFormat.mBitsPerChannel); TRACE(" streamFormat.mBytesPerPacket = %d\n", streamFormat.mBytesPerPacket); TRACE(" streamFormat.mBytesPerFrame = %d\n", streamFormat.mBytesPerFrame); TRACE(" streamFormat.mSampleRate = %5.0f\n", streamFormat.mSampleRate); #endif /* set default output unit's input side to match output side */ err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, size); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } if(device->Frequency != streamFormat.mSampleRate) { device->UpdateSize = (ALuint)((ALuint64)device->UpdateSize * streamFormat.mSampleRate / device->Frequency); device->Frequency = streamFormat.mSampleRate; } /* FIXME: How to tell what channels are what in the output device, and how * to specify what we're giving? eg, 6.0 vs 5.1 */ switch(streamFormat.mChannelsPerFrame) { case 1: device->FmtChans = DevFmtMono; break; case 2: device->FmtChans = DevFmtStereo; break; case 4: device->FmtChans = DevFmtQuad; break; case 6: device->FmtChans = DevFmtX51; break; case 7: device->FmtChans = DevFmtX61; break; case 8: device->FmtChans = DevFmtX71; break; default: ERR("Unhandled channel count (%d), using Stereo\n", streamFormat.mChannelsPerFrame); device->FmtChans = DevFmtStereo; streamFormat.mChannelsPerFrame = 2; break; } SetDefaultWFXChannelOrder(device); /* use channel count and sample rate from the default output unit's current * parameters, but reset everything else */ streamFormat.mFramesPerPacket = 1; streamFormat.mFormatFlags = 0; switch(device->FmtType) { case DevFmtUByte: device->FmtType = DevFmtByte; /* fall-through */ case DevFmtByte: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 8; break; case DevFmtUShort: device->FmtType = DevFmtShort; /* fall-through */ case DevFmtShort: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 16; break; case DevFmtUInt: device->FmtType = DevFmtInt; /* fall-through */ case DevFmtInt: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsSignedInteger; streamFormat.mBitsPerChannel = 32; break; case DevFmtFloat: streamFormat.mFormatFlags = kLinearPCMFormatFlagIsFloat; streamFormat.mBitsPerChannel = 32; break; } streamFormat.mBytesPerFrame = streamFormat.mChannelsPerFrame * streamFormat.mBitsPerChannel / 8; streamFormat.mBytesPerPacket = streamFormat.mBytesPerFrame; streamFormat.mFormatID = kAudioFormatLinearPCM; streamFormat.mFormatFlags |= kAudioFormatFlagsNativeEndian | kLinearPCMFormatFlagIsPacked; err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &streamFormat, sizeof(AudioStreamBasicDescription)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } /* setup callback */ data->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType); input.inputProc = ca_callback; input.inputProcRefCon = device; err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &input, sizeof(AURenderCallbackStruct)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); return ALC_FALSE; } /* init the default audio unit... */ err = AudioUnitInitialize(data->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); return ALC_FALSE; } return ALC_TRUE; } static ALCboolean ca_start_playback(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; OSStatus err; err = AudioOutputUnitStart(data->audioUnit); if(err != noErr) { ERR("AudioOutputUnitStart failed\n"); return ALC_FALSE; } return ALC_TRUE; } static void ca_stop_playback(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; OSStatus err; err = AudioOutputUnitStop(data->audioUnit); if(err != noErr) ERR("AudioOutputUnitStop failed\n"); } static ALCenum ca_open_capture(ALCdevice *device, const ALCchar *deviceName) { AudioStreamBasicDescription requestedFormat; // The application requested format AudioStreamBasicDescription hardwareFormat; // The hardware format AudioStreamBasicDescription outputFormat; // The AudioUnit output format AURenderCallbackStruct input; AudioComponentDescription desc; AudioDeviceID inputDevice; UInt32 outputFrameCount; UInt32 propertySize; AudioObjectPropertyAddress propertyAddress; UInt32 enableIO; AudioComponent comp; ca_data *data; OSStatus err; if(!deviceName) deviceName = ca_device; else if(strcmp(deviceName, ca_device) != 0) return ALC_INVALID_VALUE; desc.componentType = kAudioUnitType_Output; desc.componentSubType = kAudioUnitSubType_HALOutput; desc.componentManufacturer = kAudioUnitManufacturer_Apple; desc.componentFlags = 0; desc.componentFlagsMask = 0; // Search for component with given description comp = AudioComponentFindNext(NULL, &desc); if(comp == NULL) { ERR("AudioComponentFindNext failed\n"); return ALC_INVALID_VALUE; } data = calloc(1, sizeof(*data)); device->ExtraData = data; // Open the component err = AudioComponentInstanceNew(comp, &data->audioUnit); if(err != noErr) { ERR("AudioComponentInstanceNew failed\n"); goto error; } // Turn off AudioUnit output enableIO = 0; err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, 0, &enableIO, sizeof(ALuint)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Turn on AudioUnit input enableIO = 1; err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, 1, &enableIO, sizeof(ALuint)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Get the default input device propertySize = sizeof(AudioDeviceID); propertyAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice; propertyAddress.mScope = kAudioObjectPropertyScopeGlobal; propertyAddress.mElement = kAudioObjectPropertyElementMaster; err = AudioObjectGetPropertyData(kAudioObjectSystemObject, &propertyAddress, 0, NULL, &propertySize, &inputDevice); if(err != noErr) { ERR("AudioObjectGetPropertyData failed\n"); goto error; } if(inputDevice == kAudioDeviceUnknown) { ERR("No input device found\n"); goto error; } // Track the input device err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &inputDevice, sizeof(AudioDeviceID)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // set capture callback input.inputProc = ca_capture_callback; input.inputProcRefCon = device; err = AudioUnitSetProperty(data->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &input, sizeof(AURenderCallbackStruct)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Initialize the device err = AudioUnitInitialize(data->audioUnit); if(err != noErr) { ERR("AudioUnitInitialize failed\n"); goto error; } // Get the hardware format propertySize = sizeof(AudioStreamBasicDescription); err = AudioUnitGetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 1, &hardwareFormat, &propertySize); if(err != noErr || propertySize != sizeof(AudioStreamBasicDescription)) { ERR("AudioUnitGetProperty failed\n"); goto error; } // Set up the requested format description switch(device->FmtType) { case DevFmtUByte: requestedFormat.mBitsPerChannel = 8; requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked; break; case DevFmtShort: requestedFormat.mBitsPerChannel = 16; requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked; break; case DevFmtInt: requestedFormat.mBitsPerChannel = 32; requestedFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagsNativeEndian | kAudioFormatFlagIsPacked; break; case DevFmtFloat: requestedFormat.mBitsPerChannel = 32; requestedFormat.mFormatFlags = kAudioFormatFlagIsPacked; break; case DevFmtByte: case DevFmtUShort: case DevFmtUInt: ERR("%s samples not supported\n", DevFmtTypeString(device->FmtType)); goto error; } switch(device->FmtChans) { case DevFmtMono: requestedFormat.mChannelsPerFrame = 1; break; case DevFmtStereo: requestedFormat.mChannelsPerFrame = 2; break; case DevFmtQuad: case DevFmtX51: case DevFmtX51Rear: case DevFmtX61: case DevFmtX71: case DevFmtBFormat3D: ERR("%s not supported\n", DevFmtChannelsString(device->FmtChans)); goto error; } requestedFormat.mBytesPerFrame = requestedFormat.mChannelsPerFrame * requestedFormat.mBitsPerChannel / 8; requestedFormat.mBytesPerPacket = requestedFormat.mBytesPerFrame; requestedFormat.mSampleRate = device->Frequency; requestedFormat.mFormatID = kAudioFormatLinearPCM; requestedFormat.mReserved = 0; requestedFormat.mFramesPerPacket = 1; // save requested format description for later use data->format = requestedFormat; data->frameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType); // Use intermediate format for sample rate conversion (outputFormat) // Set sample rate to the same as hardware for resampling later outputFormat = requestedFormat; outputFormat.mSampleRate = hardwareFormat.mSampleRate; // Determine sample rate ratio for resampling data->sampleRateRatio = outputFormat.mSampleRate / device->Frequency; // The output format should be the requested format, but using the hardware sample rate // This is because the AudioUnit will automatically scale other properties, except for sample rate err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, (void *)&outputFormat, sizeof(outputFormat)); if(err != noErr) { ERR("AudioUnitSetProperty failed\n"); goto error; } // Set the AudioUnit output format frame count outputFrameCount = device->UpdateSize * data->sampleRateRatio; err = AudioUnitSetProperty(data->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Output, 0, &outputFrameCount, sizeof(outputFrameCount)); if(err != noErr) { ERR("AudioUnitSetProperty failed: %d\n", err); goto error; } // Set up sample converter err = AudioConverterNew(&outputFormat, &requestedFormat, &data->audioConverter); if(err != noErr) { ERR("AudioConverterNew failed: %d\n", err); goto error; } // Create a buffer for use in the resample callback data->resampleBuffer = malloc(device->UpdateSize * data->frameSize * data->sampleRateRatio); // Allocate buffer for the AudioUnit output data->bufferList = allocate_buffer_list(outputFormat.mChannelsPerFrame, device->UpdateSize * data->frameSize * data->sampleRateRatio); if(data->bufferList == NULL) goto error; data->ring = CreateRingBuffer(data->frameSize, (device->UpdateSize * data->sampleRateRatio) * device->NumUpdates); if(data->ring == NULL) goto error; al_string_copy_cstr(&device->DeviceName, deviceName); return ALC_NO_ERROR; error: DestroyRingBuffer(data->ring); free(data->resampleBuffer); destroy_buffer_list(data->bufferList); if(data->audioConverter) AudioConverterDispose(data->audioConverter); if(data->audioUnit) AudioComponentInstanceDispose(data->audioUnit); free(data); device->ExtraData = NULL; return ALC_INVALID_VALUE; } static void ca_close_capture(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; DestroyRingBuffer(data->ring); free(data->resampleBuffer); destroy_buffer_list(data->bufferList); AudioConverterDispose(data->audioConverter); AudioComponentInstanceDispose(data->audioUnit); free(data); device->ExtraData = NULL; } static void ca_start_capture(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; OSStatus err = AudioOutputUnitStart(data->audioUnit); if(err != noErr) ERR("AudioOutputUnitStart failed\n"); } static void ca_stop_capture(ALCdevice *device) { ca_data *data = (ca_data*)device->ExtraData; OSStatus err = AudioOutputUnitStop(data->audioUnit); if(err != noErr) ERR("AudioOutputUnitStop failed\n"); } static ALCenum ca_capture_samples(ALCdevice *device, ALCvoid *buffer, ALCuint samples) { ca_data *data = (ca_data*)device->ExtraData; AudioBufferList *list; UInt32 frameCount; OSStatus err; // If no samples are requested, just return if(samples == 0) return ALC_NO_ERROR; // Allocate a temporary AudioBufferList to use as the return resamples data list = alloca(sizeof(AudioBufferList) + sizeof(AudioBuffer)); // Point the resampling buffer to the capture buffer list->mNumberBuffers = 1; list->mBuffers[0].mNumberChannels = data->format.mChannelsPerFrame; list->mBuffers[0].mDataByteSize = samples * data->frameSize; list->mBuffers[0].mData = buffer; // Resample into another AudioBufferList frameCount = samples; err = AudioConverterFillComplexBuffer(data->audioConverter, ca_capture_conversion_callback, device, &frameCount, list, NULL); if(err != noErr) { ERR("AudioConverterFillComplexBuffer error: %d\n", err); return ALC_INVALID_VALUE; } return ALC_NO_ERROR; } static ALCuint ca_available_samples(ALCdevice *device) { ca_data *data = device->ExtraData; return RingBufferSize(data->ring) / data->sampleRateRatio; } static const BackendFuncs ca_funcs = { ca_open_playback, ca_close_playback, ca_reset_playback, ca_start_playback, ca_stop_playback, ca_open_capture, ca_close_capture, ca_start_capture, ca_stop_capture, ca_capture_samples, ca_available_samples }; ALCboolean alc_ca_init(BackendFuncs *func_list) { *func_list = ca_funcs; return ALC_TRUE; } void alc_ca_deinit(void) { } void alc_ca_probe(enum DevProbe type) { switch(type) { case ALL_DEVICE_PROBE: AppendAllDevicesList(ca_device); break; case CAPTURE_DEVICE_PROBE: AppendCaptureDeviceList(ca_device); break; } }