mirror of
https://github.com/DarkPlacesEngine/gmqcc.git
synced 2024-11-24 04:41:25 +00:00
1614 lines
58 KiB
C
1614 lines
58 KiB
C
/*
|
|
* Copyright (C) 2012, 2013, 2014
|
|
* Dale Weiler
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
* of the Software, and to permit persons to whom the Software is furnished to do
|
|
* so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "ast.h"
|
|
#include "parser.h"
|
|
|
|
#define FOLD_STRING_UNTRANSLATE_HTSIZE 1024
|
|
#define FOLD_STRING_DOTRANSLATE_HTSIZE 1024
|
|
|
|
/* The options to use for inexact and arithmetic exceptions */
|
|
#define FOLD_ROUNDING SFLOAT_ROUND_NEAREST_EVEN
|
|
#define FOLD_TINYNESS SFLOAT_TBEFORE
|
|
|
|
/*
|
|
* The constant folder is also responsible for validating if the constant
|
|
* expressions produce valid results. We cannot trust the FPU control
|
|
* unit for these exceptions because setting FPU control words might not
|
|
* work. Systems can set and enforce FPU modes of operation. It's also valid
|
|
* for libc's to simply ignore FPU exceptions. For instance ARM CPUs in
|
|
* glibc. We implement some trivial and IEE 754 conformant functions which
|
|
* emulate those operations. This is an entierly optional compiler feature
|
|
* which shouldn't be enabled for anything other than performing strict
|
|
* passes on constant expressions since it's quite slow.
|
|
*/
|
|
typedef uint32_t sfloat_t;
|
|
|
|
typedef union {
|
|
qcfloat_t f;
|
|
sfloat_t s;
|
|
} sfloat_cast_t;
|
|
|
|
typedef enum {
|
|
SFLOAT_NOEXCEPT = 0,
|
|
SFLOAT_INVALID = 1,
|
|
SFLOAT_DIVBYZERO = 4,
|
|
SFLOAT_OVERFLOW = 8,
|
|
SFLOAT_UNDERFLOW = 16,
|
|
SFLOAT_INEXACT = 32
|
|
} sfloat_exceptionflags_t;
|
|
|
|
typedef enum {
|
|
SFLOAT_ROUND_NEAREST_EVEN,
|
|
SFLOAT_ROUND_DOWN,
|
|
SFLOAT_ROUND_UP,
|
|
SFLOAT_ROUND_TO_ZERO
|
|
} sfloat_roundingmode_t;
|
|
|
|
typedef enum {
|
|
SFLOAT_TAFTER,
|
|
SFLOAT_TBEFORE
|
|
} sfloat_tdetect_t;
|
|
|
|
typedef struct {
|
|
sfloat_roundingmode_t roundingmode;
|
|
sfloat_exceptionflags_t exceptionflags;
|
|
sfloat_tdetect_t tiny;
|
|
} sfloat_state_t;
|
|
|
|
/* Count of leading zero bits before the most-significand 1 bit. */
|
|
#ifdef _MSC_VER
|
|
/* MSVC has an intrinsic for this */
|
|
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
|
|
int r = 0;
|
|
_BitScanForward(&r, x);
|
|
return r;
|
|
}
|
|
# define SFLOAT_CLZ(X, SUB) \
|
|
(sfloat_clz((X)) - (SUB))
|
|
#elif defined(__GNUC__) || defined(__CLANG__)
|
|
/* Clang and GCC have a builtin for this */
|
|
# define SFLOAT_CLZ(X, SUB) \
|
|
(__builtin_clz((X)) - (SUB))
|
|
#else
|
|
/* Native fallback */
|
|
static GMQCC_INLINE uint32_t sfloat_popcnt(uint32_t x) {
|
|
x -= ((x >> 1) & 0x55555555);
|
|
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
|
|
x = (((x >> 4) + x) & 0x0F0F0F0F);
|
|
x += x >> 8;
|
|
x += x >> 16;
|
|
return x & 0x0000003F;
|
|
}
|
|
static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) {
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
return 32 - sfloat_popcnt(x);
|
|
}
|
|
# define SFLOAT_CLZ(X, SUB) \
|
|
(sfloat_clz((X) - (SUB)))
|
|
#endif
|
|
|
|
/* The value of a NaN */
|
|
#define SFLOAT_NAN 0xFFC00000
|
|
/* Test if NaN */
|
|
#define SFLOAT_ISNAN(A) \
|
|
(0xFF000000 < (uint32_t)((A) << 1))
|
|
/* Test if signaling NaN */
|
|
#define SFLOAT_ISSNAN(A) \
|
|
(((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF))
|
|
/* Raise exception */
|
|
#define SFLOAT_RAISE(STATE, FLAGS) \
|
|
((STATE)->exceptionflags = (sfloat_exceptionflags_t)((STATE)->exceptionflags | (FLAGS)))
|
|
/*
|
|
* Shifts `A' right `COUNT' bits. Non-zero bits are stored in LSB. Size
|
|
* sets the arbitrarly-large limit.
|
|
*/
|
|
#define SFLOAT_SHIFT(SIZE, A, COUNT, Z) \
|
|
*(Z) = ((COUNT) == 0) \
|
|
? 1 \
|
|
: (((COUNT) < (SIZE)) \
|
|
? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \
|
|
: ((A) != 0))
|
|
/* Extract fractional component */
|
|
#define SFLOAT_EXTRACT_FRAC(X) \
|
|
((uint32_t)((X) & 0x007FFFFF))
|
|
/* Extract exponent component */
|
|
#define SFLOAT_EXTRACT_EXP(X) \
|
|
((int16_t)((X) >> 23) & 0xFF)
|
|
/* Extract sign bit */
|
|
#define SFLOAT_EXTRACT_SIGN(X) \
|
|
((X) >> 31)
|
|
/* Normalize a subnormal */
|
|
#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \
|
|
(void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(SZ) = 1 - SFLOAT_CLZ((SA), 8))
|
|
/*
|
|
* Pack sign, exponent and significand and produce a float.
|
|
*
|
|
* Integer portions of the significand are added to the exponent. The
|
|
* exponent input should be one less than the result exponent whenever
|
|
* the significand is normalized since normalized significand will
|
|
* always have an integer portion of value one.
|
|
*/
|
|
#define SFLOAT_PACK(SIGN, EXP, SIG) \
|
|
(sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG))
|
|
|
|
/* Calculate NaN. If either operands are signaling then raise invalid */
|
|
static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
|
|
bool isnan_a = SFLOAT_ISNAN(a);
|
|
bool issnan_a = SFLOAT_ISSNAN(a);
|
|
bool isnan_b = SFLOAT_ISNAN(b);
|
|
bool issnan_b = SFLOAT_ISSNAN(b);
|
|
|
|
a |= 0x00400000;
|
|
b |= 0x00400000;
|
|
|
|
if (issnan_a | issnan_b)
|
|
SFLOAT_RAISE(state, SFLOAT_INEXACT);
|
|
if (issnan_a) {
|
|
if (issnan_b)
|
|
goto larger;
|
|
return isnan_b ? b : a;
|
|
} else if (isnan_a) {
|
|
if (issnan_b | !isnan_b)
|
|
return a;
|
|
larger:
|
|
if ((uint32_t)(a << 1) < (uint32_t)(b << 1)) return b;
|
|
if ((uint32_t)(b << 1) < (uint32_t)(a << 1)) return a;
|
|
return (a < b) ? a : b;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
/* Round and pack */
|
|
static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
|
|
sfloat_roundingmode_t mode = state->roundingmode;
|
|
bool even = !!(mode == SFLOAT_ROUND_NEAREST_EVEN);
|
|
unsigned char increment = 0x40;
|
|
unsigned char bits = sig_z & 0x7F;
|
|
|
|
if (!even) {
|
|
if (mode == SFLOAT_ROUND_TO_ZERO)
|
|
increment = 0;
|
|
else {
|
|
increment = 0x7F;
|
|
if (sign_z) {
|
|
if (mode == SFLOAT_ROUND_UP)
|
|
increment = 0;
|
|
} else {
|
|
if (mode == SFLOAT_ROUND_DOWN)
|
|
increment = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (0xFD <= (uint16_t)exp_z) {
|
|
if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) {
|
|
SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT);
|
|
return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0);
|
|
}
|
|
if (exp_z < 0) {
|
|
/* Check for underflow */
|
|
bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000);
|
|
SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z);
|
|
exp_z = 0;
|
|
bits = sig_z & 0x7F;
|
|
if (tiny && bits)
|
|
SFLOAT_RAISE(state, SFLOAT_UNDERFLOW);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Significand has point between bits 30 and 29, 7 bits to the left of
|
|
* the usual place. This shifted significand has to be normalized
|
|
* or smaller, if it isn't the exponent must be zero, in which case
|
|
* no rounding occurs since the result will be a subnormal.
|
|
*/
|
|
if (bits)
|
|
SFLOAT_RAISE(state, SFLOAT_INEXACT);
|
|
sig_z = (sig_z + increment) >> 7;
|
|
sig_z &= ~(((bits ^ 0x40) == 0) & even);
|
|
if (sig_z == 0)
|
|
exp_z = 0;
|
|
return SFLOAT_PACK(sign_z, exp_z, sig_z);
|
|
}
|
|
|
|
/* Normalized round and pack */
|
|
static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) {
|
|
unsigned char c = SFLOAT_CLZ(sig_z, 1);
|
|
return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c);
|
|
}
|
|
|
|
static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
|
|
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
|
|
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
|
|
int16_t exp_z = 0;
|
|
int16_t exp_d = exp_a - exp_b;
|
|
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6;
|
|
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6;
|
|
uint32_t sig_z = 0;
|
|
|
|
if (0 < exp_d) {
|
|
if (exp_a == 0xFF)
|
|
return sig_a ? sfloat_propagate_nan(state, a, b) : a;
|
|
if (exp_b == 0)
|
|
--exp_d;
|
|
else
|
|
sig_b |= 0x20000000;
|
|
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
|
|
exp_z = exp_a;
|
|
} else if (exp_d < 0) {
|
|
if (exp_b == 0xFF)
|
|
return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0);
|
|
if (exp_a == 0)
|
|
++exp_d;
|
|
else
|
|
sig_a |= 0x20000000;
|
|
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
|
|
exp_z = exp_b;
|
|
} else {
|
|
if (exp_a == 0xFF)
|
|
return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a;
|
|
if (exp_a == 0)
|
|
return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6);
|
|
sig_z = 0x40000000 + sig_a + sig_b;
|
|
exp_z = exp_a;
|
|
goto end;
|
|
}
|
|
sig_a |= 0x20000000;
|
|
sig_z = (sig_a + sig_b) << 1;
|
|
--exp_z;
|
|
if ((int32_t)sig_z < 0) {
|
|
sig_z = sig_a + sig_b;
|
|
++exp_z;
|
|
}
|
|
end:
|
|
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
|
|
}
|
|
|
|
static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) {
|
|
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
|
|
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
|
|
int16_t exp_z = 0;
|
|
int16_t exp_d = exp_a - exp_b;
|
|
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7;
|
|
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7;
|
|
uint32_t sig_z = 0;
|
|
|
|
if (0 < exp_d) goto exp_greater_a;
|
|
if (exp_d < 0) goto exp_greater_b;
|
|
|
|
if (exp_a == 0xFF) {
|
|
if (sig_a | sig_b)
|
|
return sfloat_propagate_nan(state, a, b);
|
|
SFLOAT_RAISE(state, SFLOAT_INVALID);
|
|
return SFLOAT_NAN;
|
|
}
|
|
|
|
if (exp_a == 0)
|
|
exp_a = exp_b = 1;
|
|
|
|
if (sig_b < sig_a) goto greater_a;
|
|
if (sig_a < sig_b) goto greater_b;
|
|
|
|
return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0);
|
|
|
|
exp_greater_b:
|
|
if (exp_b == 0xFF)
|
|
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0);
|
|
if (exp_a == 0)
|
|
++exp_d;
|
|
else
|
|
sig_a |= 0x40000000;
|
|
SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a);
|
|
sig_b |= 0x40000000;
|
|
greater_b:
|
|
sig_z = sig_b - sig_a;
|
|
exp_z = exp_b;
|
|
sign_z ^= 1;
|
|
goto end;
|
|
|
|
exp_greater_a:
|
|
if (exp_a == 0xFF)
|
|
return (sig_a) ? sfloat_propagate_nan(state, a, b) : a;
|
|
if (exp_b == 0)
|
|
--exp_d;
|
|
else
|
|
sig_b |= 0x40000000;
|
|
SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b);
|
|
sig_a |= 0x40000000;
|
|
greater_a:
|
|
sig_z = sig_a - sig_b;
|
|
exp_z = exp_a;
|
|
|
|
end:
|
|
--exp_z;
|
|
return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z);
|
|
}
|
|
|
|
static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
|
|
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
|
|
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
|
|
return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a)
|
|
: sfloat_sub_impl(state, a, b, sign_a);
|
|
}
|
|
|
|
static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
|
|
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
|
|
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
|
|
return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a)
|
|
: sfloat_add_impl(state, a, b, sign_a);
|
|
}
|
|
|
|
static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
|
|
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
|
|
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
|
|
int16_t exp_z = 0;
|
|
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
|
|
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
|
|
uint32_t sig_z = 0;
|
|
uint64_t sig_z64 = 0;
|
|
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
|
|
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
|
|
bool sign_z = sign_a ^ sign_b;
|
|
|
|
if (exp_a == 0xFF) {
|
|
if (sig_a || ((exp_b == 0xFF) && sig_b))
|
|
return sfloat_propagate_nan(state, a, b);
|
|
if ((exp_b | sig_b) == 0) {
|
|
SFLOAT_RAISE(state, SFLOAT_INVALID);
|
|
return SFLOAT_NAN;
|
|
}
|
|
return SFLOAT_PACK(sign_z, 0xFF, 0);
|
|
}
|
|
if (exp_b == 0xFF) {
|
|
if (sig_b)
|
|
return sfloat_propagate_nan(state, a, b);
|
|
if ((exp_a | sig_a) == 0) {
|
|
SFLOAT_RAISE(state, SFLOAT_INVALID);
|
|
return SFLOAT_NAN;
|
|
}
|
|
return SFLOAT_PACK(sign_z, 0xFF, 0);
|
|
}
|
|
if (exp_a == 0) {
|
|
if (sig_a == 0)
|
|
return SFLOAT_PACK(sign_z, 0, 0);
|
|
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
|
|
}
|
|
if (exp_b == 0) {
|
|
if (sig_b == 0)
|
|
return SFLOAT_PACK(sign_z, 0, 0);
|
|
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
|
|
}
|
|
exp_z = exp_a + exp_b - 0x7F;
|
|
sig_a = (sig_a | 0x00800000) << 7;
|
|
sig_b = (sig_b | 0x00800000) << 8;
|
|
SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64);
|
|
sig_z = sig_z64;
|
|
if (0 <= (int32_t)(sig_z << 1)) {
|
|
sig_z <<= 1;
|
|
--exp_z;
|
|
}
|
|
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
|
|
}
|
|
|
|
static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) {
|
|
int16_t exp_a = SFLOAT_EXTRACT_EXP(a);
|
|
int16_t exp_b = SFLOAT_EXTRACT_EXP(b);
|
|
int16_t exp_z = 0;
|
|
uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a);
|
|
uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b);
|
|
uint32_t sig_z = 0;
|
|
bool sign_a = SFLOAT_EXTRACT_SIGN(a);
|
|
bool sign_b = SFLOAT_EXTRACT_SIGN(b);
|
|
bool sign_z = sign_a ^ sign_b;
|
|
|
|
if (exp_a == 0xFF) {
|
|
if (sig_a)
|
|
return sfloat_propagate_nan(state, a, b);
|
|
if (exp_b == 0xFF) {
|
|
if (sig_b)
|
|
return sfloat_propagate_nan(state, a, b);
|
|
SFLOAT_RAISE(state, SFLOAT_INVALID);
|
|
return SFLOAT_NAN;
|
|
}
|
|
return SFLOAT_PACK(sign_z, 0xFF, 0);
|
|
}
|
|
if (exp_b == 0xFF)
|
|
return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0);
|
|
if (exp_b == 0) {
|
|
if (sig_b == 0) {
|
|
if ((exp_a | sig_a) == 0) {
|
|
SFLOAT_RAISE(state, SFLOAT_INVALID);
|
|
return SFLOAT_NAN;
|
|
}
|
|
SFLOAT_RAISE(state, SFLOAT_DIVBYZERO);
|
|
return SFLOAT_PACK(sign_z, 0xFF, 0);
|
|
}
|
|
SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b);
|
|
}
|
|
if (exp_a == 0) {
|
|
if (sig_a == 0)
|
|
return SFLOAT_PACK(sign_z, 0, 0);
|
|
SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a);
|
|
}
|
|
exp_z = exp_a - exp_b + 0x7D;
|
|
sig_a = (sig_a | 0x00800000) << 7;
|
|
sig_b = (sig_b | 0x00800000) << 8;
|
|
if (sig_b <= (sig_a + sig_a)) {
|
|
sig_a >>= 1;
|
|
++exp_z;
|
|
}
|
|
sig_z = (((uint64_t)sig_a) << 32) / sig_b;
|
|
if ((sig_z & 0x3F) == 0)
|
|
sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32);
|
|
return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z);
|
|
}
|
|
|
|
static GMQCC_INLINE void sfloat_check(lex_ctx_t ctx, sfloat_state_t *state, const char *vec) {
|
|
/* Exception comes from vector component */
|
|
if (vec) {
|
|
if (state->exceptionflags & SFLOAT_DIVBYZERO)
|
|
compile_error(ctx, "division by zero in `%s' component", vec);
|
|
if (state->exceptionflags & SFLOAT_INVALID)
|
|
compile_error(ctx, "undefined (inf) in `%s' component", vec);
|
|
if (state->exceptionflags & SFLOAT_OVERFLOW)
|
|
compile_error(ctx, "arithmetic overflow in `%s' component", vec);
|
|
if (state->exceptionflags & SFLOAT_UNDERFLOW)
|
|
compile_error(ctx, "arithmetic underflow in `%s' component", vec);
|
|
return;
|
|
}
|
|
if (state->exceptionflags & SFLOAT_DIVBYZERO)
|
|
compile_error(ctx, "division by zero");
|
|
if (state->exceptionflags & SFLOAT_INVALID)
|
|
compile_error(ctx, "undefined (inf)");
|
|
if (state->exceptionflags & SFLOAT_OVERFLOW)
|
|
compile_error(ctx, "arithmetic overflow");
|
|
if (state->exceptionflags & SFLOAT_UNDERFLOW)
|
|
compile_error(ctx, "arithmetic underflow");
|
|
}
|
|
|
|
static GMQCC_INLINE void sfloat_init(sfloat_state_t *state) {
|
|
state->exceptionflags = SFLOAT_NOEXCEPT;
|
|
state->roundingmode = FOLD_ROUNDING;
|
|
state->tiny = FOLD_TINYNESS;
|
|
}
|
|
|
|
/*
|
|
* There is two stages to constant folding in GMQCC: there is the parse
|
|
* stage constant folding, where, witht he help of the AST, operator
|
|
* usages can be constant folded. Then there is the constant folding
|
|
* in the IR for things like eliding if statements, can occur.
|
|
*
|
|
* This file is thus, split into two parts.
|
|
*/
|
|
|
|
#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT)
|
|
#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR)
|
|
#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING)
|
|
#define isfloats(X,Y) (isfloat (X) && isfloat (Y))
|
|
|
|
/*
|
|
* Implementation of basic vector math for vec3_t, for trivial constant
|
|
* folding.
|
|
*
|
|
* TODO: gcc/clang hinting for autovectorization
|
|
*/
|
|
typedef enum {
|
|
VEC_COMP_X = 1 << 0,
|
|
VEC_COMP_Y = 1 << 1,
|
|
VEC_COMP_Z = 1 << 2
|
|
} vec3_comp_t;
|
|
|
|
typedef struct {
|
|
sfloat_cast_t x;
|
|
sfloat_cast_t y;
|
|
sfloat_cast_t z;
|
|
} vec3_soft_t;
|
|
|
|
typedef struct {
|
|
vec3_comp_t faults;
|
|
sfloat_state_t state[3];
|
|
} vec3_soft_state_t;
|
|
|
|
static GMQCC_INLINE vec3_soft_t vec3_soft_convert(vec3_t vec) {
|
|
vec3_soft_t soft;
|
|
soft.x.f = vec.x;
|
|
soft.y.f = vec.y;
|
|
soft.z.f = vec.z;
|
|
return soft;
|
|
}
|
|
|
|
static GMQCC_INLINE bool vec3_soft_exception(vec3_soft_state_t *vstate, size_t index) {
|
|
sfloat_exceptionflags_t flags = vstate->state[index].exceptionflags;
|
|
if (flags & SFLOAT_DIVBYZERO) return true;
|
|
if (flags & SFLOAT_INVALID) return true;
|
|
if (flags & SFLOAT_OVERFLOW) return true;
|
|
if (flags & SFLOAT_UNDERFLOW) return true;
|
|
return false;
|
|
}
|
|
|
|
static GMQCC_INLINE void vec3_soft_eval(vec3_soft_state_t *state,
|
|
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t),
|
|
vec3_t a,
|
|
vec3_t b)
|
|
{
|
|
vec3_soft_t sa = vec3_soft_convert(a);
|
|
vec3_soft_t sb = vec3_soft_convert(b);
|
|
callback(&state->state[0], sa.x.s, sb.x.s);
|
|
if (vec3_soft_exception(state, 0)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_X);
|
|
callback(&state->state[1], sa.y.s, sb.y.s);
|
|
if (vec3_soft_exception(state, 1)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Y);
|
|
callback(&state->state[2], sa.z.s, sb.z.s);
|
|
if (vec3_soft_exception(state, 2)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Z);
|
|
}
|
|
|
|
static GMQCC_INLINE void vec3_check_except(vec3_t a,
|
|
vec3_t b,
|
|
lex_ctx_t ctx,
|
|
sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t))
|
|
{
|
|
vec3_soft_state_t state;
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
|
|
return;
|
|
|
|
sfloat_init(&state.state[0]);
|
|
sfloat_init(&state.state[1]);
|
|
sfloat_init(&state.state[2]);
|
|
|
|
vec3_soft_eval(&state, callback, a, b);
|
|
if (state.faults & VEC_COMP_X) sfloat_check(ctx, &state.state[0], "x");
|
|
if (state.faults & VEC_COMP_Y) sfloat_check(ctx, &state.state[1], "y");
|
|
if (state.faults & VEC_COMP_Z) sfloat_check(ctx, &state.state[2], "z");
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_add(lex_ctx_t ctx, vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
vec3_check_except(a, b, ctx, &sfloat_add);
|
|
out.x = a.x + b.x;
|
|
out.y = a.y + b.y;
|
|
out.z = a.z + b.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_sub(lex_ctx_t ctx, vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
vec3_check_except(a, b, ctx, &sfloat_sub);
|
|
out.x = a.x - b.x;
|
|
out.y = a.y - b.y;
|
|
out.z = a.z - b.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) {
|
|
vec3_t out;
|
|
out.x = -a.x;
|
|
out.y = -a.y;
|
|
out.z = -a.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b));
|
|
out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b));
|
|
out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b));
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_not(vec3_t a) {
|
|
vec3_t out;
|
|
out.x = -1-a.x;
|
|
out.y = -1-a.y;
|
|
out.z = -1-a.z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE qcfloat_t vec3_mulvv(lex_ctx_t ctx, vec3_t a, vec3_t b) {
|
|
vec3_soft_t sa;
|
|
vec3_soft_t sb;
|
|
sfloat_state_t s[5];
|
|
sfloat_t r[5];
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
|
|
goto end;
|
|
|
|
sa = vec3_soft_convert(a);
|
|
sb = vec3_soft_convert(b);
|
|
|
|
sfloat_init(&s[0]);
|
|
sfloat_init(&s[1]);
|
|
sfloat_init(&s[2]);
|
|
sfloat_init(&s[3]);
|
|
sfloat_init(&s[4]);
|
|
|
|
r[0] = sfloat_mul(&s[0], sa.x.s, sb.x.s);
|
|
r[1] = sfloat_mul(&s[1], sa.y.s, sb.y.s);
|
|
r[2] = sfloat_mul(&s[2], sa.z.s, sb.z.s);
|
|
r[3] = sfloat_add(&s[3], r[0], r[1]);
|
|
r[4] = sfloat_add(&s[4], r[3], r[2]);
|
|
|
|
sfloat_check(ctx, &s[0], NULL);
|
|
sfloat_check(ctx, &s[1], NULL);
|
|
sfloat_check(ctx, &s[2], NULL);
|
|
sfloat_check(ctx, &s[3], NULL);
|
|
sfloat_check(ctx, &s[4], NULL);
|
|
|
|
end:
|
|
return (a.x * b.x + a.y * b.y + a.z * b.z);
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_mulvf(lex_ctx_t ctx, vec3_t a, qcfloat_t b) {
|
|
vec3_t out;
|
|
vec3_soft_t sa;
|
|
sfloat_cast_t sb;
|
|
sfloat_state_t s[3];
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
|
|
goto end;
|
|
|
|
sa = vec3_soft_convert(a);
|
|
sb.f = b;
|
|
sfloat_init(&s[0]);
|
|
sfloat_init(&s[1]);
|
|
sfloat_init(&s[2]);
|
|
|
|
sfloat_mul(&s[0], sa.x.s, sb.s);
|
|
sfloat_mul(&s[1], sa.y.s, sb.s);
|
|
sfloat_mul(&s[2], sa.z.s, sb.s);
|
|
|
|
sfloat_check(ctx, &s[0], "x");
|
|
sfloat_check(ctx, &s[1], "y");
|
|
sfloat_check(ctx, &s[2], "z");
|
|
|
|
end:
|
|
out.x = a.x * b;
|
|
out.y = a.y * b;
|
|
out.z = a.z * b;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) {
|
|
return a.x == b.x &&
|
|
a.y == b.y &&
|
|
a.z == b.z;
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) {
|
|
vec3_t out;
|
|
out.x = x;
|
|
out.y = y;
|
|
out.z = z;
|
|
return out;
|
|
}
|
|
|
|
static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) {
|
|
return (!a.x && !a.y && !a.z);
|
|
}
|
|
|
|
static GMQCC_INLINE bool vec3_pbool(vec3_t a) {
|
|
return (a.x || a.y || a.z);
|
|
}
|
|
|
|
static GMQCC_INLINE vec3_t vec3_cross(lex_ctx_t ctx, vec3_t a, vec3_t b) {
|
|
vec3_t out;
|
|
vec3_soft_t sa;
|
|
vec3_soft_t sb;
|
|
sfloat_t r[9];
|
|
sfloat_state_t s[9];
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
|
|
goto end;
|
|
|
|
sa = vec3_soft_convert(a);
|
|
sb = vec3_soft_convert(b);
|
|
|
|
sfloat_init(&s[0]);
|
|
sfloat_init(&s[1]);
|
|
sfloat_init(&s[2]);
|
|
sfloat_init(&s[3]);
|
|
sfloat_init(&s[4]);
|
|
sfloat_init(&s[5]);
|
|
sfloat_init(&s[6]);
|
|
sfloat_init(&s[7]);
|
|
sfloat_init(&s[8]);
|
|
|
|
r[0] = sfloat_mul(&s[0], sa.y.s, sb.z.s);
|
|
r[1] = sfloat_mul(&s[1], sa.z.s, sb.y.s);
|
|
r[2] = sfloat_mul(&s[2], sa.z.s, sb.x.s);
|
|
r[3] = sfloat_mul(&s[3], sa.x.s, sb.z.s);
|
|
r[4] = sfloat_mul(&s[4], sa.x.s, sb.y.s);
|
|
r[5] = sfloat_mul(&s[5], sa.y.s, sb.x.s);
|
|
r[6] = sfloat_sub(&s[6], r[0], r[1]);
|
|
r[7] = sfloat_sub(&s[7], r[2], r[3]);
|
|
r[8] = sfloat_sub(&s[8], r[4], r[5]);
|
|
|
|
sfloat_check(ctx, &s[0], NULL);
|
|
sfloat_check(ctx, &s[1], NULL);
|
|
sfloat_check(ctx, &s[2], NULL);
|
|
sfloat_check(ctx, &s[3], NULL);
|
|
sfloat_check(ctx, &s[4], NULL);
|
|
sfloat_check(ctx, &s[5], NULL);
|
|
sfloat_check(ctx, &s[6], "x");
|
|
sfloat_check(ctx, &s[7], "y");
|
|
sfloat_check(ctx, &s[8], "z");
|
|
|
|
end:
|
|
out.x = a.y * b.z - a.z * b.y;
|
|
out.y = a.z * b.x - a.x * b.z;
|
|
out.z = a.x * b.y - a.y * b.x;
|
|
return out;
|
|
}
|
|
|
|
static lex_ctx_t fold_ctx(fold_t *fold) {
|
|
lex_ctx_t ctx;
|
|
if (fold->parser->lex)
|
|
return parser_ctx(fold->parser);
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
return ctx;
|
|
}
|
|
|
|
static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) {
|
|
switch (v->expression.vtype) {
|
|
case TYPE_FLOAT:
|
|
return !!v->constval.vfloat;
|
|
case TYPE_INTEGER:
|
|
return !!v->constval.vint;
|
|
case TYPE_VECTOR:
|
|
if (OPTS_FLAG(CORRECT_LOGIC))
|
|
return vec3_pbool(v->constval.vvec);
|
|
return !!(v->constval.vvec.x);
|
|
case TYPE_STRING:
|
|
if (!v->constval.vstring)
|
|
return false;
|
|
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
|
|
return true;
|
|
return !!v->constval.vstring[0];
|
|
default:
|
|
compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type");
|
|
break;
|
|
}
|
|
return !!v->constval.vfunc;
|
|
}
|
|
|
|
/* Handy macros to determine if an ast_value can be constant folded. */
|
|
#define fold_can_1(X) \
|
|
(ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \
|
|
((ast_expression*)(X))->vtype != TYPE_FUNCTION)
|
|
|
|
#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y))
|
|
|
|
#define fold_immvalue_float(E) ((E)->constval.vfloat)
|
|
#define fold_immvalue_vector(E) ((E)->constval.vvec)
|
|
#define fold_immvalue_string(E) ((E)->constval.vstring)
|
|
|
|
fold_t *fold_init(parser_t *parser) {
|
|
fold_t *fold = (fold_t*)mem_a(sizeof(fold_t));
|
|
fold->parser = parser;
|
|
fold->imm_float = NULL;
|
|
fold->imm_vector = NULL;
|
|
fold->imm_string = NULL;
|
|
fold->imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE);
|
|
fold->imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE);
|
|
|
|
/*
|
|
* prime the tables with common constant values at constant
|
|
* locations.
|
|
*/
|
|
(void)fold_constgen_float (fold, 0.0f, false);
|
|
(void)fold_constgen_float (fold, 1.0f, false);
|
|
(void)fold_constgen_float (fold, -1.0f, false);
|
|
(void)fold_constgen_float (fold, 2.0f, false);
|
|
|
|
(void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f));
|
|
(void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f));
|
|
|
|
return fold;
|
|
}
|
|
|
|
bool fold_generate(fold_t *fold, ir_builder *ir) {
|
|
/* generate globals for immediate folded values */
|
|
size_t i;
|
|
ast_value *cur;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); ++i)
|
|
if (!ast_global_codegen ((cur = fold->imm_float[i]), ir, false)) goto err;
|
|
for (i = 0; i < vec_size(fold->imm_vector); ++i)
|
|
if (!ast_global_codegen((cur = fold->imm_vector[i]), ir, false)) goto err;
|
|
for (i = 0; i < vec_size(fold->imm_string); ++i)
|
|
if (!ast_global_codegen((cur = fold->imm_string[i]), ir, false)) goto err;
|
|
|
|
return true;
|
|
|
|
err:
|
|
con_out("failed to generate global %s\n", cur->name);
|
|
ir_builder_delete(ir);
|
|
return false;
|
|
}
|
|
|
|
void fold_cleanup(fold_t *fold) {
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); ++i) ast_delete(fold->imm_float[i]);
|
|
for (i = 0; i < vec_size(fold->imm_vector); ++i) ast_delete(fold->imm_vector[i]);
|
|
for (i = 0; i < vec_size(fold->imm_string); ++i) ast_delete(fold->imm_string[i]);
|
|
|
|
vec_free(fold->imm_float);
|
|
vec_free(fold->imm_vector);
|
|
vec_free(fold->imm_string);
|
|
|
|
util_htdel(fold->imm_string_untranslate);
|
|
util_htdel(fold->imm_string_dotranslate);
|
|
|
|
mem_d(fold);
|
|
}
|
|
|
|
ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value, bool inexact) {
|
|
ast_value *out = NULL;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_float); i++) {
|
|
if (!memcmp(&fold->imm_float[i]->constval.vfloat, &value, sizeof(qcfloat_t)))
|
|
return (ast_expression*)fold->imm_float[i];
|
|
}
|
|
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT);
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->inexact = inexact;
|
|
out->constval.vfloat = value;
|
|
|
|
vec_push(fold->imm_float, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
ast_expression *fold_constgen_vector(fold_t *fold, vec3_t value) {
|
|
ast_value *out;
|
|
size_t i;
|
|
|
|
for (i = 0; i < vec_size(fold->imm_vector); i++) {
|
|
if (vec3_cmp(fold->imm_vector[i]->constval.vvec, value))
|
|
return (ast_expression*)fold->imm_vector[i];
|
|
}
|
|
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_VECTOR);
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->constval.vvec = value;
|
|
|
|
vec_push(fold->imm_vector, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool translate) {
|
|
hash_table_t *table = (translate) ? fold->imm_string_untranslate : fold->imm_string_dotranslate;
|
|
ast_value *out = NULL;
|
|
size_t hash = util_hthash(table, str);
|
|
|
|
if ((out = (ast_value*)util_htgeth(table, str, hash)))
|
|
return (ast_expression*)out;
|
|
|
|
if (translate) {
|
|
char name[32];
|
|
util_snprintf(name, sizeof(name), "dotranslate_%lu", (unsigned long)(fold->parser->translated++));
|
|
out = ast_value_new(parser_ctx(fold->parser), name, TYPE_STRING);
|
|
out->expression.flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */
|
|
} else
|
|
out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_STRING);
|
|
|
|
out->cvq = CV_CONST;
|
|
out->hasvalue = true;
|
|
out->isimm = true;
|
|
out->constval.vstring = parser_strdup(str);
|
|
|
|
vec_push(fold->imm_string, out);
|
|
util_htseth(table, str, hash, out);
|
|
|
|
return (ast_expression*)out;
|
|
}
|
|
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) {
|
|
/*
|
|
* vector-component constant folding works by matching the component sets
|
|
* to eliminate expensive operations on whole-vectors (3 components at runtime).
|
|
* to achive this effect in a clean manner this function generalizes the
|
|
* values through the use of a set paramater, which is used as an indexing method
|
|
* for creating the elided ast binary expression.
|
|
*
|
|
* Consider 'n 0 0' where y, and z need to be tested for 0, and x is
|
|
* used as the value in a binary operation generating an INSTR_MUL instruction,
|
|
* to acomplish the indexing of the correct component value we use set[0], set[1], set[2]
|
|
* as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because
|
|
* of how ASCII works we can easily deliniate:
|
|
* vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a
|
|
* literal value of 2, using this 2, we know that taking the address of vec->x (float)
|
|
* and indxing it with this literal will yeild the immediate address of that component
|
|
*
|
|
* Of course more work needs to be done to generate the correct index for the ast_member_new
|
|
* call, which is no problem: set[0]-'x' suffices that job.
|
|
*/
|
|
qcfloat_t x = (&vec.x)[set[0]-'x'];
|
|
qcfloat_t y = (&vec.x)[set[1]-'x'];
|
|
qcfloat_t z = (&vec.x)[set[2]-'x'];
|
|
|
|
if (!y && !z) {
|
|
ast_expression *out;
|
|
++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS];
|
|
out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL);
|
|
out->node.keep = false;
|
|
((ast_member*)out)->rvalue = true;
|
|
if (x != -1.0f)
|
|
return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x, false), out);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, -fold_immvalue_float(a), false);
|
|
} else if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, !fold_immvalue_float(a), false);
|
|
} else if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a)), false);
|
|
} else if (isstring(a)) {
|
|
if (fold_can_1(a)) {
|
|
if (OPTS_FLAG(TRUE_EMPTY_STRINGS))
|
|
return fold_constgen_float(fold, !fold_immvalue_string(a), false);
|
|
else
|
|
return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a), false);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool fold_check_except_float(sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t),
|
|
fold_t *fold,
|
|
ast_value *a,
|
|
ast_value *b)
|
|
{
|
|
sfloat_state_t s;
|
|
sfloat_cast_t ca;
|
|
sfloat_cast_t cb;
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES))
|
|
return false;
|
|
|
|
sfloat_init(&s);
|
|
ca.f = fold_immvalue_float(a);
|
|
cb.f = fold_immvalue_float(b);
|
|
|
|
callback(&s, ca.s, cb.s);
|
|
if (s.exceptionflags == 0)
|
|
return false;
|
|
|
|
if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS))
|
|
goto inexact_possible;
|
|
|
|
sfloat_check(fold_ctx(fold), &s, NULL);
|
|
|
|
inexact_possible:
|
|
return s.exceptionflags & SFLOAT_INEXACT;
|
|
}
|
|
|
|
static bool fold_check_inexact_float(fold_t *fold, ast_value *a, ast_value *b) {
|
|
lex_ctx_t ctx = fold_ctx(fold);
|
|
if (!OPTS_WARN(WARN_INEXACT_COMPARES))
|
|
return false;
|
|
if (!a->inexact && !b->inexact)
|
|
return false;
|
|
return compile_warning(ctx, WARN_INEXACT_COMPARES, "inexact value in comparison");
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
bool inexact = fold_check_except_float(&sfloat_add, fold, a, b);
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b), inexact);
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_add(fold_ctx(fold),
|
|
fold_immvalue_vector(a),
|
|
fold_immvalue_vector(b)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
bool inexact = fold_check_except_float(&sfloat_sub, fold, a, b);
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b), inexact);
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_sub(fold_ctx(fold),
|
|
fold_immvalue_vector(a),
|
|
fold_immvalue_vector(b)));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(b), fold_immvalue_float(a)));
|
|
} else {
|
|
if (fold_can_2(a, b)) {
|
|
bool inexact = fold_check_except_float(&sfloat_mul, fold, a, b);
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b), inexact);
|
|
}
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (isfloat(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
} else {
|
|
if (fold_can_2(a, b)) {
|
|
return fold_constgen_float(fold, vec3_mulvv(fold_ctx(fold), fold_immvalue_vector(a), fold_immvalue_vector(b)), false);
|
|
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) {
|
|
ast_expression *out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out;
|
|
} else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) {
|
|
ast_expression *out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out;
|
|
if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
bool inexact = fold_check_except_float(&sfloat_div, fold, a, b);
|
|
return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b), inexact);
|
|
} else if (fold_can_1(b)) {
|
|
return (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_MUL_F,
|
|
(ast_expression*)a,
|
|
fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false)
|
|
);
|
|
}
|
|
} else if (isvector(a)) {
|
|
if (fold_can_2(a, b)) {
|
|
return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b)));
|
|
} else {
|
|
return (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_MUL_VF,
|
|
(ast_expression*)a,
|
|
(fold_can_1(b))
|
|
? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false)
|
|
: (ast_expression*)ast_binary_new(
|
|
fold_ctx(fold),
|
|
INSTR_DIV_F,
|
|
(ast_expression*)fold->imm_float[1],
|
|
(ast_expression*)b
|
|
)
|
|
);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) {
|
|
return (fold_can_2(a, b))
|
|
? fold_constgen_float(fold, fmod(fold_immvalue_float(a), fold_immvalue_float(b)), false)
|
|
: NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b))), false);
|
|
} else {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b))), false);
|
|
} else {
|
|
if (isvector(b)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
} else {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b))), false);
|
|
} else {
|
|
if (fold_can_2(a, b)) {
|
|
if (isvector(b))
|
|
return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b)));
|
|
else
|
|
return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b) && isfloats(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) * powf(2.0f, fold_immvalue_float(b))), false);
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b) && isfloats(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) / powf(2.0f, fold_immvalue_float(b))), false);
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) {
|
|
if (fold_can_2(a, b)) {
|
|
if (OPTS_FLAG(PERL_LOGIC)) {
|
|
if (expr)
|
|
return (fold_immediate_true(fold, a)) ? (ast_expression*)a : (ast_expression*)b;
|
|
else
|
|
return (fold_immediate_true(fold, a)) ? (ast_expression*)b : (ast_expression*)a;
|
|
} else {
|
|
return fold_constgen_float (
|
|
fold,
|
|
((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b))
|
|
: (fold_immediate_true(fold, a) && fold_immediate_true(fold, b)))
|
|
? 1
|
|
: 0,
|
|
false
|
|
);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) {
|
|
if (fold_can_1(a)) {
|
|
return fold_immediate_true(fold, a)
|
|
? (ast_expression*)b
|
|
: (ast_expression*)c;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b)), false);
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a,b)) {
|
|
fold_check_inexact_float(fold, a, b);
|
|
if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2];
|
|
if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0];
|
|
if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_ltgt(fold_t *fold, ast_value *a, ast_value *b, bool lt) {
|
|
if (fold_can_2(a, b)) {
|
|
fold_check_inexact_float(fold, a, b);
|
|
return (lt) ? (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) < fold_immvalue_float(b))]
|
|
: (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) > fold_immvalue_float(b))];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) {
|
|
if (fold_can_2(a, b)) {
|
|
if (isfloat(a) && isfloat(b)) {
|
|
float la = fold_immvalue_float(a);
|
|
float lb = fold_immvalue_float(b);
|
|
fold_check_inexact_float(fold, a, b);
|
|
return (ast_expression*)fold->imm_float[!(ne ? la == lb : la != lb)];
|
|
} if (isvector(a) && isvector(b)) {
|
|
vec3_t la = fold_immvalue_vector(a);
|
|
vec3_t lb = fold_immvalue_vector(b);
|
|
return (ast_expression*)fold->imm_float[!(ne ? vec3_cmp(la, lb) : !vec3_cmp(la, lb))];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) {
|
|
if (isfloat(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_float(fold, -1-fold_immvalue_float(a), false);
|
|
} else {
|
|
if (isvector(a)) {
|
|
if (fold_can_1(a))
|
|
return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) {
|
|
if (fold_can_2(a, b))
|
|
return fold_constgen_vector(fold, vec3_cross(fold_ctx(fold),
|
|
fold_immvalue_vector(a),
|
|
fold_immvalue_vector(b)));
|
|
return NULL;
|
|
}
|
|
|
|
ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) {
|
|
ast_value *a = (ast_value*)opexprs[0];
|
|
ast_value *b = (ast_value*)opexprs[1];
|
|
ast_value *c = (ast_value*)opexprs[2];
|
|
ast_expression *e = NULL;
|
|
|
|
/* can a fold operation be applied to this operator usage? */
|
|
if (!info->folds)
|
|
return NULL;
|
|
|
|
switch(info->operands) {
|
|
case 3: if(!c) return NULL;
|
|
case 2: if(!b) return NULL;
|
|
case 1:
|
|
if(!a) {
|
|
compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* we could use a boolean and default case but ironically gcc produces
|
|
* invalid broken assembly from that operation. clang/tcc get it right,
|
|
* but interestingly ignore compiling this to a jump-table when I do that,
|
|
* this happens to be the most efficent method, since you have per-level
|
|
* granularity on the pointer check happening only for the case you check
|
|
* it in. Opposed to the default method which would involve a boolean and
|
|
* pointer check after wards.
|
|
*/
|
|
#define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \
|
|
case opid##ARGS ARGS_OPID: \
|
|
if ((e = fold_op_##OP ARGS_FOLD)) { \
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD]; \
|
|
} \
|
|
return e
|
|
|
|
switch(info->id) {
|
|
fold_op_case(2, ('-', 'P'), neg, (fold, a));
|
|
fold_op_case(2, ('!', 'P'), not, (fold, a));
|
|
fold_op_case(1, ('+'), add, (fold, a, b));
|
|
fold_op_case(1, ('-'), sub, (fold, a, b));
|
|
fold_op_case(1, ('*'), mul, (fold, a, b));
|
|
fold_op_case(1, ('/'), div, (fold, a, b));
|
|
fold_op_case(1, ('%'), mod, (fold, a, b));
|
|
fold_op_case(1, ('|'), bor, (fold, a, b));
|
|
fold_op_case(1, ('&'), band, (fold, a, b));
|
|
fold_op_case(1, ('^'), xor, (fold, a, b));
|
|
fold_op_case(1, ('<'), ltgt, (fold, a, b, true));
|
|
fold_op_case(1, ('>'), ltgt, (fold, a, b, false));
|
|
fold_op_case(2, ('<', '<'), lshift, (fold, a, b));
|
|
fold_op_case(2, ('>', '>'), rshift, (fold, a, b));
|
|
fold_op_case(2, ('|', '|'), andor, (fold, a, b, true));
|
|
fold_op_case(2, ('&', '&'), andor, (fold, a, b, false));
|
|
fold_op_case(2, ('?', ':'), tern, (fold, a, b, c));
|
|
fold_op_case(2, ('*', '*'), exp, (fold, a, b));
|
|
fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b));
|
|
fold_op_case(2, ('!', '='), cmp, (fold, a, b, true));
|
|
fold_op_case(2, ('=', '='), cmp, (fold, a, b, false));
|
|
fold_op_case(2, ('~', 'P'), bnot, (fold, a));
|
|
fold_op_case(2, ('>', '<'), cross, (fold, a, b));
|
|
}
|
|
#undef fold_op_case
|
|
compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Constant folding for compiler intrinsics, simaler approach to operator
|
|
* folding, primarly: individual functions for each intrinsics to fold,
|
|
* and a generic selection function.
|
|
*/
|
|
static GMQCC_INLINE ast_expression *fold_intrin_isfinite(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, isfinite(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_isinf(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, isinf(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, isnan(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_isnormal(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, isnormal(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_signbit(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, signbit(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intirn_acosh(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, acoshf(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_asinh(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, asinhf(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_atanh(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, (float)atanh(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, expf(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_exp2(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, exp2f(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_expm1(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, expm1f(fold_immvalue_float(a)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) {
|
|
return fold_constgen_float(fold, fmodf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) {
|
|
return fold_constgen_float(fold, powf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false);
|
|
}
|
|
static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *a) {
|
|
return fold_constgen_float(fold, fabsf(fold_immvalue_float(a)), false);
|
|
}
|
|
|
|
|
|
ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) {
|
|
ast_expression *ret = NULL;
|
|
ast_value *a = (ast_value*)arg[0];
|
|
ast_value *b = (ast_value*)arg[1];
|
|
|
|
if (!strcmp(intrin, "isfinite")) ret = fold_intrin_isfinite(fold, a);
|
|
if (!strcmp(intrin, "isinf")) ret = fold_intrin_isinf(fold, a);
|
|
if (!strcmp(intrin, "isnan")) ret = fold_intrin_isnan(fold, a);
|
|
if (!strcmp(intrin, "isnormal")) ret = fold_intrin_isnormal(fold, a);
|
|
if (!strcmp(intrin, "signbit")) ret = fold_intrin_signbit(fold, a);
|
|
if (!strcmp(intrin, "acosh")) ret = fold_intirn_acosh(fold, a);
|
|
if (!strcmp(intrin, "asinh")) ret = fold_intrin_asinh(fold, a);
|
|
if (!strcmp(intrin, "atanh")) ret = fold_intrin_atanh(fold, a);
|
|
if (!strcmp(intrin, "exp")) ret = fold_intrin_exp(fold, a);
|
|
if (!strcmp(intrin, "exp2")) ret = fold_intrin_exp2(fold, a);
|
|
if (!strcmp(intrin, "expm1")) ret = fold_intrin_expm1(fold, a);
|
|
if (!strcmp(intrin, "mod")) ret = fold_intrin_mod(fold, a, b);
|
|
if (!strcmp(intrin, "pow")) ret = fold_intrin_pow(fold, a, b);
|
|
if (!strcmp(intrin, "fabs")) ret = fold_intrin_fabs(fold, a);
|
|
|
|
if (ret)
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD];
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are all the actual constant folding methods that happen in between
|
|
* the AST/IR stage of the compiler , i.e eliminating branches for const
|
|
* expressions, which is the only supported thing so far. We undefine the
|
|
* testing macros here because an ir_value is differant than an ast_value.
|
|
*/
|
|
#undef expect
|
|
#undef isfloat
|
|
#undef isstring
|
|
#undef isvector
|
|
#undef fold_immvalue_float
|
|
#undef fold_immvalue_string
|
|
#undef fold_immvalue_vector
|
|
#undef fold_can_1
|
|
#undef fold_can_2
|
|
|
|
#define isfloat(X) ((X)->vtype == TYPE_FLOAT)
|
|
/*#define isstring(X) ((X)->vtype == TYPE_STRING)*/
|
|
/*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/
|
|
#define fold_immvalue_float(X) ((X)->constval.vfloat)
|
|
#define fold_immvalue_vector(X) ((X)->constval.vvec)
|
|
/*#define fold_immvalue_string(X) ((X)->constval.vstring)*/
|
|
#define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST)
|
|
/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/
|
|
|
|
static ast_expression *fold_superfluous(ast_expression *left, ast_expression *right, int op) {
|
|
ast_expression *swapped = NULL; /* using this as bool */
|
|
ast_value *load;
|
|
|
|
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) {
|
|
swapped = left;
|
|
left = right;
|
|
right = swapped;
|
|
}
|
|
|
|
if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right)))
|
|
return NULL;
|
|
|
|
switch (op) {
|
|
case INSTR_DIV_F:
|
|
if (swapped)
|
|
return NULL;
|
|
case INSTR_MUL_F:
|
|
if (fold_immvalue_float(load) == 1.0f) {
|
|
++opts_optimizationcount[OPTIM_PEEPHOLE];
|
|
ast_unref(right);
|
|
return left;
|
|
}
|
|
break;
|
|
|
|
|
|
case INSTR_SUB_F:
|
|
if (swapped)
|
|
return NULL;
|
|
case INSTR_ADD_F:
|
|
if (fold_immvalue_float(load) == 0.0f) {
|
|
++opts_optimizationcount[OPTIM_PEEPHOLE];
|
|
ast_unref(right);
|
|
return left;
|
|
}
|
|
break;
|
|
|
|
case INSTR_MUL_V:
|
|
if (vec3_cmp(fold_immvalue_vector(load), vec3_create(1, 1, 1))) {
|
|
++opts_optimizationcount[OPTIM_PEEPHOLE];
|
|
ast_unref(right);
|
|
return left;
|
|
}
|
|
break;
|
|
|
|
case INSTR_SUB_V:
|
|
if (swapped)
|
|
return NULL;
|
|
case INSTR_ADD_V:
|
|
if (vec3_cmp(fold_immvalue_vector(load), vec3_create(0, 0, 0))) {
|
|
++opts_optimizationcount[OPTIM_PEEPHOLE];
|
|
ast_unref(right);
|
|
return left;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
ast_expression *fold_binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) {
|
|
ast_expression *ret = fold_superfluous(left, right, op);
|
|
if (ret)
|
|
return ret;
|
|
return (ast_expression*)ast_binary_new(ctx, op, left, right);
|
|
}
|
|
|
|
static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) {
|
|
if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) {
|
|
ast_expression_codegen *cgen;
|
|
ir_block *elide;
|
|
ir_value *dummy;
|
|
bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true);
|
|
bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false);
|
|
ast_expression *path = (istrue) ? branch->on_true :
|
|
(isfalse) ? branch->on_false : NULL;
|
|
if (!path) {
|
|
/*
|
|
* no path to take implies that the evaluation is if(0) and there
|
|
* is no else block. so eliminate all the code.
|
|
*/
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
|
|
return true;
|
|
}
|
|
|
|
if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse")))))
|
|
return false;
|
|
if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy))
|
|
return false;
|
|
if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide))
|
|
return false;
|
|
/*
|
|
* now the branch has been eliminated and the correct block for the constant evaluation
|
|
* is expanded into the current block for the function.
|
|
*/
|
|
func->curblock = elide;
|
|
++opts_optimizationcount[OPTIM_CONST_FOLD_DCE];
|
|
return true;
|
|
}
|
|
return -1; /* nothing done */
|
|
}
|
|
|
|
int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) {
|
|
return fold_cond(condval, func, (ast_ifthen*)branch);
|
|
}
|
|
|
|
int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) {
|
|
return fold_cond(condval, func, branch);
|
|
}
|