mirror of
https://bitbucket.org/CPMADevs/cnq3
synced 2025-01-22 00:11:20 +00:00
2669 lines
73 KiB
C++
2669 lines
73 KiB
C++
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
#include "tr_local.h"
|
|
|
|
// tr_shader.c -- this file deals with the parsing and definition of shaders
|
|
|
|
static char* s_shaderText = 0;
|
|
|
|
// the shader is parsed into these global variables, then copied into
|
|
// dynamically allocated memory if it is valid.
|
|
static shader_t shader;
|
|
static shaderStage_t stages[MAX_SHADER_STAGES];
|
|
static texModInfo_t texMods[MAX_SHADER_STAGES][TR_MAX_TEXMODS];
|
|
|
|
#define FILE_HASH_SIZE 1024
|
|
static shader_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
#define MAX_SHADERTEXT_HASH 2048
|
|
static char** shaderTextHashTable[MAX_SHADERTEXT_HASH];
|
|
|
|
|
|
static qbool ParseVector( const char** text, int count, float *v )
|
|
{
|
|
int i;
|
|
|
|
// FIXME: spaces are currently required after parens, should change parseext...
|
|
const char* token = COM_ParseExt( text, qfalse );
|
|
if ( strcmp( token, "(" ) ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parenthesis in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
for ( i = 0 ; i < count ; i++ ) {
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing vector element in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
v[i] = atof( token );
|
|
}
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( strcmp( token, ")" ) ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parenthesis in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
NameToAFunc
|
|
===============
|
|
*/
|
|
static unsigned NameToAFunc( const char *funcname )
|
|
{
|
|
if ( !Q_stricmp( funcname, "GT0" ) )
|
|
{
|
|
return GLS_ATEST_GT_0;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "LT128" ) )
|
|
{
|
|
return GLS_ATEST_LT_80;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "GE128" ) )
|
|
{
|
|
return GLS_ATEST_GE_80;
|
|
}
|
|
|
|
ri.Printf( PRINT_WARNING, "WARNING: invalid alphaFunc name '%s' in shader '%s'\n", funcname, shader.name );
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
NameToSrcBlendMode
|
|
===============
|
|
*/
|
|
static int NameToSrcBlendMode( const char *name )
|
|
{
|
|
if ( !Q_stricmp( name, "GL_ONE" ) )
|
|
{
|
|
return GLS_SRCBLEND_ONE;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ZERO" ) )
|
|
{
|
|
return GLS_SRCBLEND_ZERO;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_DST_COLOR" ) )
|
|
{
|
|
return GLS_SRCBLEND_DST_COLOR;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_DST_COLOR" ) )
|
|
{
|
|
return GLS_SRCBLEND_ONE_MINUS_DST_COLOR;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_SRC_ALPHA" ) )
|
|
{
|
|
return GLS_SRCBLEND_SRC_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_SRC_ALPHA" ) )
|
|
{
|
|
return GLS_SRCBLEND_ONE_MINUS_SRC_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_DST_ALPHA" ) )
|
|
{
|
|
return GLS_SRCBLEND_DST_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_DST_ALPHA" ) )
|
|
{
|
|
return GLS_SRCBLEND_ONE_MINUS_DST_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_SRC_ALPHA_SATURATE" ) )
|
|
{
|
|
return GLS_SRCBLEND_ALPHA_SATURATE;
|
|
}
|
|
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown blend mode '%s' in shader '%s', substituting GL_ONE\n", name, shader.name );
|
|
return GLS_SRCBLEND_ONE;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
NameToDstBlendMode
|
|
===============
|
|
*/
|
|
static int NameToDstBlendMode( const char *name )
|
|
{
|
|
if ( !Q_stricmp( name, "GL_ONE" ) )
|
|
{
|
|
return GLS_DSTBLEND_ONE;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ZERO" ) )
|
|
{
|
|
return GLS_DSTBLEND_ZERO;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_SRC_ALPHA" ) )
|
|
{
|
|
return GLS_DSTBLEND_SRC_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_SRC_ALPHA" ) )
|
|
{
|
|
return GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_DST_ALPHA" ) )
|
|
{
|
|
return GLS_DSTBLEND_DST_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_DST_ALPHA" ) )
|
|
{
|
|
return GLS_DSTBLEND_ONE_MINUS_DST_ALPHA;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_SRC_COLOR" ) )
|
|
{
|
|
return GLS_DSTBLEND_SRC_COLOR;
|
|
}
|
|
else if ( !Q_stricmp( name, "GL_ONE_MINUS_SRC_COLOR" ) )
|
|
{
|
|
return GLS_DSTBLEND_ONE_MINUS_SRC_COLOR;
|
|
}
|
|
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown blend mode '%s' in shader '%s', substituting GL_ONE\n", name, shader.name );
|
|
return GLS_DSTBLEND_ONE;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
NameToGenFunc
|
|
===============
|
|
*/
|
|
static genFunc_t NameToGenFunc( const char *funcname )
|
|
{
|
|
if ( !Q_stricmp( funcname, "sin" ) )
|
|
{
|
|
return GF_SIN;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "square" ) )
|
|
{
|
|
return GF_SQUARE;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "triangle" ) )
|
|
{
|
|
return GF_TRIANGLE;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "sawtooth" ) )
|
|
{
|
|
return GF_SAWTOOTH;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "inversesawtooth" ) )
|
|
{
|
|
return GF_INVERSE_SAWTOOTH;
|
|
}
|
|
else if ( !Q_stricmp( funcname, "noise" ) )
|
|
{
|
|
return GF_NOISE;
|
|
}
|
|
|
|
ri.Printf( PRINT_WARNING, "WARNING: invalid genfunc name '%s' in shader '%s'\n", funcname, shader.name );
|
|
return GF_SIN;
|
|
}
|
|
|
|
|
|
static void ParseWaveForm( const char** text, waveForm_t* wave )
|
|
{
|
|
const char* token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing waveform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
wave->func = NameToGenFunc( token );
|
|
|
|
// BASE, AMP, PHASE, FREQ
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing waveform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
wave->base = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing waveform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
wave->amplitude = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing waveform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
wave->phase = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing waveform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
wave->frequency = atof( token );
|
|
}
|
|
|
|
|
|
static void ParseTexMod( const char** text, shaderStage_t *stage )
|
|
{
|
|
const char *token;
|
|
texModInfo_t *tmi;
|
|
|
|
if ( stage->numTexMods == TR_MAX_TEXMODS ) {
|
|
ri.Error( ERR_DROP, "ERROR: too many tcMod stages in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
|
|
tmi = &stage->texMods[stage->numTexMods];
|
|
stage->numTexMods++;
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
|
|
//
|
|
// turb
|
|
//
|
|
if ( !Q_stricmp( token, "turb" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing tcMod turb parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.base = atof( token );
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing tcMod turb in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.amplitude = atof( token );
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing tcMod turb in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.phase = atof( token );
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing tcMod turb in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.frequency = atof( token );
|
|
|
|
tmi->type = TMOD_TURBULENT;
|
|
}
|
|
//
|
|
// scale
|
|
//
|
|
else if ( !Q_stricmp( token, "scale" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing scale parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->scale[0] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing scale parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->scale[1] = atof( token );
|
|
tmi->type = TMOD_SCALE;
|
|
}
|
|
//
|
|
// scroll
|
|
//
|
|
else if ( !Q_stricmp( token, "scroll" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing scale scroll parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->scroll[0] = atof( token );
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing scale scroll parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->scroll[1] = atof( token );
|
|
tmi->type = TMOD_SCROLL;
|
|
}
|
|
//
|
|
// stretch
|
|
//
|
|
else if ( !Q_stricmp( token, "stretch" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing stretch parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.func = NameToGenFunc( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing stretch parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.base = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing stretch parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.amplitude = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing stretch parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.phase = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing stretch parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->wave.frequency = atof( token );
|
|
|
|
tmi->type = TMOD_STRETCH;
|
|
}
|
|
//
|
|
// transform
|
|
//
|
|
else if ( !Q_stricmp( token, "transform" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->matrix[0][0] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->matrix[0][1] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->matrix[1][0] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->matrix[1][1] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->translate[0] = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing transform parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->translate[1] = atof( token );
|
|
|
|
tmi->type = TMOD_TRANSFORM;
|
|
}
|
|
//
|
|
// rotate
|
|
//
|
|
else if ( !Q_stricmp( token, "rotate" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing tcMod rotate parms in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
tmi->rotateSpeed = atof( token );
|
|
tmi->type = TMOD_ROTATE;
|
|
}
|
|
//
|
|
// entityTranslate
|
|
//
|
|
else if ( !Q_stricmp( token, "entityTranslate" ) )
|
|
{
|
|
tmi->type = TMOD_ENTITY_TRANSLATE;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown tcMod '%s' in shader '%s'\n", token, shader.name );
|
|
}
|
|
}
|
|
|
|
|
|
static qbool ParseStage( const char** text, shaderStage_t* stage )
|
|
{
|
|
int depthMaskBits = GLS_DEPTHMASK_TRUE, blendSrcBits = 0, blendDstBits = 0, atestBits = 0, depthFuncBits = 0;
|
|
qbool depthMaskExplicit = qfalse;
|
|
|
|
stage->active = qtrue;
|
|
|
|
const char* token;
|
|
while ( 1 )
|
|
{
|
|
token = COM_ParseExt( text, qtrue );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: no matching '}' found\n" );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( token[0] == '}' )
|
|
{
|
|
break;
|
|
}
|
|
//
|
|
// map <name>
|
|
//
|
|
else if ( !Q_stricmp( token, "map" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'map' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "$whiteimage" ) )
|
|
{
|
|
stage->bundle.image[0] = tr.whiteImage;
|
|
continue;
|
|
}
|
|
else if ( !Q_stricmp( token, "$lightmap" ) )
|
|
{
|
|
if ( shader.lightmapIndex < 0 ) {
|
|
stage->bundle.image[0] = tr.whiteImage;
|
|
} else {
|
|
stage->bundle.image[0] = tr.lightmaps[shader.lightmapIndex];
|
|
}
|
|
stage->type = ST_LIGHTMAP;
|
|
/*
|
|
blendSrcBits = GLS_SRCBLEND_DST_COLOR;
|
|
blendDstBits = GLS_DSTBLEND_ZERO;
|
|
// this HAS to match the rgbgen of the previous stage (ie the diffuse)
|
|
// or they can't be collapsed - but the previous stage will have
|
|
// (incorrectly) been defaulted to CGEN_IDENTITY_LIGHTING
|
|
// when both of them SHOULD be CGEN_IDENTITY
|
|
stage->rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
*/
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
stage->bundle.image[0] = R_FindImageFile( token, shader.imgflags, TW_REPEAT );
|
|
if ( !stage->bundle.image[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: R_FindImageFile could not find '%s' in shader '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// clampmap <name>
|
|
//
|
|
else if ( !Q_stricmp( token, "clampmap" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'clampmap' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
stage->bundle.image[0] = R_FindImageFile( token, shader.imgflags, TW_CLAMP_TO_EDGE );
|
|
if ( !stage->bundle.image[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: R_FindImageFile could not find '%s' in shader '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
}
|
|
//
|
|
// animMap <frequency> <image1> .... <imageN>
|
|
//
|
|
else if ( !Q_stricmp( token, "animMap" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'animMmap' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
stage->bundle.imageAnimationSpeed = atof( token );
|
|
|
|
// parse up to MAX_IMAGE_ANIMATIONS animations
|
|
while ( 1 ) {
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
int num = stage->bundle.numImageAnimations;
|
|
if ( num < MAX_IMAGE_ANIMATIONS ) {
|
|
stage->bundle.image[num] = R_FindImageFile( token, shader.imgflags, TW_REPEAT );
|
|
if ( !stage->bundle.image[num] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: R_FindImageFile could not find '%s' in shader '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
stage->bundle.numImageAnimations++;
|
|
}
|
|
}
|
|
}
|
|
else if ( !Q_stricmp( token, "videoMap" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'videoMap' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
stage->bundle.videoMapHandle = ri.CIN_PlayCinematic( token, 0, 0, 256, 256, (CIN_loop | CIN_silent | CIN_shader));
|
|
if (stage->bundle.videoMapHandle != -1) {
|
|
stage->bundle.isVideoMap = qtrue;
|
|
stage->bundle.image[0] = tr.scratchImage[stage->bundle.videoMapHandle];
|
|
}
|
|
}
|
|
//
|
|
// alphafunc <func>
|
|
//
|
|
else if ( !Q_stricmp( token, "alphaFunc" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'alphaFunc' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
atestBits = NameToAFunc( token );
|
|
}
|
|
//
|
|
// depthFunc <func>
|
|
//
|
|
else if ( !Q_stricmp( token, "depthfunc" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameter for 'depthfunc' keyword in shader '%s'\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "lequal" ) )
|
|
{
|
|
depthFuncBits = 0;
|
|
}
|
|
else if ( !Q_stricmp( token, "equal" ) )
|
|
{
|
|
depthFuncBits = GLS_DEPTHFUNC_EQUAL;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown depthfunc '%s' in shader '%s'\n", token, shader.name );
|
|
continue;
|
|
}
|
|
}
|
|
//
|
|
// detail
|
|
//
|
|
else if ( !Q_stricmp( token, "detail" ) )
|
|
{
|
|
stage->isDetail = qtrue;
|
|
}
|
|
//
|
|
// blendfunc <srcFactor> <dstFactor>
|
|
// or blendfunc <add|filter|blend>
|
|
//
|
|
else if ( !Q_stricmp( token, "blendfunc" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parm for blendFunc in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
// check for "simple" blends first
|
|
if ( !Q_stricmp( token, "add" ) ) {
|
|
blendSrcBits = GLS_SRCBLEND_ONE;
|
|
blendDstBits = GLS_DSTBLEND_ONE;
|
|
} else if ( !Q_stricmp( token, "filter" ) ) {
|
|
blendSrcBits = GLS_SRCBLEND_DST_COLOR;
|
|
blendDstBits = GLS_DSTBLEND_ZERO;
|
|
} else if ( !Q_stricmp( token, "blend" ) ) {
|
|
blendSrcBits = GLS_SRCBLEND_SRC_ALPHA;
|
|
blendDstBits = GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA;
|
|
} else {
|
|
// complex double blends
|
|
blendSrcBits = NameToSrcBlendMode( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parm for blendFunc in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
blendDstBits = NameToDstBlendMode( token );
|
|
}
|
|
|
|
// clear depth mask for blended surfaces
|
|
if ( !depthMaskExplicit )
|
|
{
|
|
depthMaskBits = 0;
|
|
}
|
|
}
|
|
//
|
|
// rgbGen
|
|
//
|
|
else if ( !Q_stricmp( token, "rgbGen" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameters for rgbGen in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "wave" ) )
|
|
{
|
|
ParseWaveForm( text, &stage->rgbWave );
|
|
stage->rgbGen = CGEN_WAVEFORM;
|
|
}
|
|
else if ( !Q_stricmp( token, "const" ) )
|
|
{
|
|
vec3_t color;
|
|
ParseVector( text, 3, color );
|
|
stage->constantColor[0] = 255 * color[0];
|
|
stage->constantColor[1] = 255 * color[1];
|
|
stage->constantColor[2] = 255 * color[2];
|
|
stage->rgbGen = CGEN_CONST;
|
|
}
|
|
else if ( !Q_stricmp( token, "identity" ) )
|
|
{
|
|
stage->rgbGen = CGEN_IDENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "identityLighting" ) )
|
|
{
|
|
stage->rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
}
|
|
else if ( !Q_stricmp( token, "entity" ) )
|
|
{
|
|
stage->rgbGen = CGEN_ENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "oneMinusEntity" ) )
|
|
{
|
|
stage->rgbGen = CGEN_ONE_MINUS_ENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "vertex" ) )
|
|
{
|
|
stage->rgbGen = CGEN_VERTEX;
|
|
if ( stage->alphaGen == 0 ) {
|
|
stage->alphaGen = AGEN_VERTEX;
|
|
}
|
|
}
|
|
else if ( !Q_stricmp( token, "exactVertex" ) )
|
|
{
|
|
stage->rgbGen = CGEN_EXACT_VERTEX;
|
|
}
|
|
else if ( !Q_stricmp( token, "lightingDiffuse" ) )
|
|
{
|
|
stage->rgbGen = CGEN_LIGHTING_DIFFUSE;
|
|
}
|
|
else if ( !Q_stricmp( token, "oneMinusVertex" ) )
|
|
{
|
|
stage->rgbGen = CGEN_ONE_MINUS_VERTEX;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown rgbGen parameter '%s' in shader '%s'\n", token, shader.name );
|
|
continue;
|
|
}
|
|
}
|
|
//
|
|
// alphaGen
|
|
//
|
|
else if ( !Q_stricmp( token, "alphaGen" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parameters for alphaGen in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "wave" ) )
|
|
{
|
|
ParseWaveForm( text, &stage->alphaWave );
|
|
stage->alphaGen = AGEN_WAVEFORM;
|
|
}
|
|
else if ( !Q_stricmp( token, "const" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
stage->constantColor[3] = 255 * atof( token );
|
|
stage->alphaGen = AGEN_CONST;
|
|
}
|
|
else if ( !Q_stricmp( token, "identity" ) )
|
|
{
|
|
stage->alphaGen = AGEN_IDENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "entity" ) )
|
|
{
|
|
stage->alphaGen = AGEN_ENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "oneMinusEntity" ) )
|
|
{
|
|
stage->alphaGen = AGEN_ONE_MINUS_ENTITY;
|
|
}
|
|
else if ( !Q_stricmp( token, "vertex" ) )
|
|
{
|
|
stage->alphaGen = AGEN_VERTEX;
|
|
}
|
|
else if ( !Q_stricmp( token, "lightingSpecular" ) )
|
|
{
|
|
stage->alphaGen = AGEN_LIGHTING_SPECULAR;
|
|
}
|
|
else if ( !Q_stricmp( token, "oneMinusVertex" ) )
|
|
{
|
|
stage->alphaGen = AGEN_ONE_MINUS_VERTEX;
|
|
}
|
|
else if ( !Q_stricmp( token, "portal" ) )
|
|
{
|
|
stage->alphaGen = AGEN_PORTAL;
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
shader.portalRange = 256;
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing range parameter for alphaGen portal in shader '%s', defaulting to 256\n", shader.name );
|
|
}
|
|
else
|
|
{
|
|
shader.portalRange = atof( token );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown alphaGen parameter '%s' in shader '%s'\n", token, shader.name );
|
|
continue;
|
|
}
|
|
}
|
|
//
|
|
// tcGen <function>
|
|
//
|
|
else if ( !Q_stricmp(token, "texgen") || !Q_stricmp( token, "tcGen" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing texgen parm in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "environment" ) )
|
|
{
|
|
stage->tcGen = TCGEN_ENVIRONMENT_MAPPED;
|
|
}
|
|
else if ( !Q_stricmp( token, "lightmap" ) )
|
|
{
|
|
stage->tcGen = TCGEN_LIGHTMAP;
|
|
}
|
|
else if ( !Q_stricmp( token, "texture" ) || !Q_stricmp( token, "base" ) )
|
|
{
|
|
stage->tcGen = TCGEN_TEXTURE;
|
|
}
|
|
else if ( !Q_stricmp( token, "vector" ) )
|
|
{
|
|
ParseVector( text, 3, stage->tcGenVectors[0] );
|
|
ParseVector( text, 3, stage->tcGenVectors[1] );
|
|
stage->tcGen = TCGEN_VECTOR;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown texgen parm in shader '%s'\n", shader.name );
|
|
}
|
|
}
|
|
//
|
|
// tcMod <type> <...>
|
|
//
|
|
else if ( !Q_stricmp( token, "tcMod" ) )
|
|
{
|
|
ParseTexMod( text, stage );
|
|
continue;
|
|
}
|
|
//
|
|
// depthmask
|
|
//
|
|
else if ( !Q_stricmp( token, "depthwrite" ) )
|
|
{
|
|
depthMaskBits = GLS_DEPTHMASK_TRUE;
|
|
depthMaskExplicit = qtrue;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown parameter '%s' in shader '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
//
|
|
// if cgen isn't explicitly specified, use either identity or identitylighting
|
|
//
|
|
if ( stage->rgbGen == CGEN_BAD ) {
|
|
if ( blendSrcBits == 0 ||
|
|
blendSrcBits == GLS_SRCBLEND_ONE ||
|
|
blendSrcBits == GLS_SRCBLEND_SRC_ALPHA ) {
|
|
stage->rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
} else {
|
|
stage->rgbGen = CGEN_IDENTITY;
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// implicitly assume that a GL_ONE GL_ZERO blend mask disables blending
|
|
//
|
|
if ( ( blendSrcBits == GLS_SRCBLEND_ONE ) &&
|
|
( blendDstBits == GLS_DSTBLEND_ZERO ) )
|
|
{
|
|
blendDstBits = blendSrcBits = 0;
|
|
depthMaskBits = GLS_DEPTHMASK_TRUE;
|
|
}
|
|
|
|
// decide which agens we can skip
|
|
if ( stage->alphaGen == AGEN_IDENTITY ) {
|
|
if ( stage->rgbGen == CGEN_IDENTITY
|
|
|| stage->rgbGen == CGEN_LIGHTING_DIFFUSE ) {
|
|
stage->alphaGen = AGEN_SKIP;
|
|
}
|
|
}
|
|
|
|
//
|
|
// compute state bits
|
|
//
|
|
stage->stateBits = depthMaskBits | depthFuncBits |
|
|
blendSrcBits | blendDstBits |
|
|
atestBits;
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
ParseDeform
|
|
|
|
deformVertexes wave <spread> <waveform> <base> <amplitude> <phase> <frequency>
|
|
deformVertexes normal <frequency> <amplitude>
|
|
deformVertexes move <vector> <waveform> <base> <amplitude> <phase> <frequency>
|
|
deformVertexes bulge <bulgeWidth> <bulgeHeight> <bulgeSpeed>
|
|
deformVertexes projectionShadow
|
|
deformVertexes autoSprite
|
|
deformVertexes autoSprite2
|
|
deformVertexes text[0-7]
|
|
===============
|
|
*/
|
|
static void ParseDeform( const char** text )
|
|
{
|
|
const char* token;
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deform parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
|
|
if ( shader.numDeforms == MAX_SHADER_DEFORMS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: MAX_SHADER_DEFORMS in '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
|
|
deformStage_t* ds = &shader.deforms[ shader.numDeforms ];
|
|
shader.numDeforms++;
|
|
|
|
if ( !Q_stricmp( token, "autosprite" ) ) {
|
|
ds->deformation = DEFORM_AUTOSPRITE;
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "autosprite2" ) ) {
|
|
ds->deformation = DEFORM_AUTOSPRITE2;
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmpn( token, "text", 4 ) ) {
|
|
int n;
|
|
|
|
n = token[4] - '0';
|
|
if ( n < 0 || n > 7 ) {
|
|
n = 0;
|
|
}
|
|
ds->deformation = deform_t(DEFORM_TEXT0 + n);
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "bulge" ) ) {
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes bulge parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->bulgeWidth = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes bulge parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->bulgeHeight = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes bulge parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->bulgeSpeed = atof( token );
|
|
|
|
ds->deformation = DEFORM_BULGE;
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "wave" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
|
|
if ( atof( token ) != 0 )
|
|
{
|
|
ds->deformationSpread = 1.0f / atof( token );
|
|
}
|
|
else
|
|
{
|
|
ds->deformationSpread = 100.0f;
|
|
ri.Printf( PRINT_WARNING, "WARNING: illegal div value of 0 in deformVertexes command for shader '%s'\n", shader.name );
|
|
}
|
|
|
|
ParseWaveForm( text, &ds->deformationWave );
|
|
ds->deformation = DEFORM_WAVE;
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "normal" ) )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->deformationWave.amplitude = atof( token );
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->deformationWave.frequency = atof( token );
|
|
|
|
ds->deformation = DEFORM_NORMALS;
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "move" ) ) {
|
|
int i;
|
|
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing deformVertexes parm in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
ds->moveVector[i] = atof( token );
|
|
}
|
|
|
|
ParseWaveForm( text, &ds->deformationWave );
|
|
ds->deformation = DEFORM_MOVE;
|
|
return;
|
|
}
|
|
|
|
//ri.Printf( PRINT_WARNING, "WARNING: unknown deformVertexes subtype '%s' found in shader '%s'\n", token, shader.name );
|
|
ri.Error( ERR_FATAL, "unknown deformVertexes subtype '%s' found in shader '%s'\n", token, shader.name );
|
|
}
|
|
|
|
|
|
// skyParms <outerbox> <cloudheight> <innerbox>
|
|
|
|
static void ParseSkyParms( const char** text )
|
|
{
|
|
static const char* suf[6] = { "rt", "lf", "bk", "ft", "up", "dn" };
|
|
const char* token;
|
|
char pathname[MAX_QPATH];
|
|
int i;
|
|
|
|
// outerbox
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: 'skyParms' missing parameter in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
if ( strcmp( token, "-" ) ) {
|
|
for (i = 0; i < 6; ++i) {
|
|
Com_sprintf( pathname, sizeof(pathname), "%s_%s.tga", token, suf[i] );
|
|
shader.sky.outerbox[i] = R_FindImageFile( pathname, IMG_NOMIPMAP | IMG_NOPICMIP, TW_CLAMP_TO_EDGE );
|
|
if ( !shader.sky.outerbox[i] ) {
|
|
shader.sky.outerbox[i] = tr.defaultImage;
|
|
}
|
|
}
|
|
}
|
|
|
|
// cloudheight
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: 'skyParms' missing parameter in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
shader.sky.cloudHeight = atof( token );
|
|
if ( !shader.sky.cloudHeight ) {
|
|
shader.sky.cloudHeight = 512;
|
|
}
|
|
R_InitSkyTexCoords( shader.sky.cloudHeight );
|
|
|
|
// innerbox
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: 'skyParms' missing parameter in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
if ( strcmp( token, "-" ) ) {
|
|
for (i = 0; i < 6; ++i) {
|
|
Com_sprintf( pathname, sizeof(pathname), "%s_%s.tga", token, suf[i] );
|
|
shader.sky.innerbox[i] = R_FindImageFile( pathname, IMG_NOMIPMAP | IMG_NOPICMIP, TW_REPEAT );
|
|
if ( !shader.sky.innerbox[i] ) {
|
|
shader.sky.innerbox[i] = tr.defaultImage;
|
|
}
|
|
}
|
|
}
|
|
|
|
shader.sort = SS_ENVIRONMENT;
|
|
shader.isSky = qtrue;
|
|
}
|
|
|
|
|
|
static void ParseSort( const char** text )
|
|
{
|
|
const char* token;
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing sort parameter in shader '%s'\n", shader.name );
|
|
return;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "portal" ) ) {
|
|
shader.sort = SS_PORTAL;
|
|
} else if ( !Q_stricmp( token, "sky" ) ) {
|
|
shader.sort = SS_ENVIRONMENT;
|
|
} else if ( !Q_stricmp( token, "opaque" ) ) {
|
|
shader.sort = SS_OPAQUE;
|
|
}else if ( !Q_stricmp( token, "decal" ) ) {
|
|
shader.sort = SS_DECAL;
|
|
} else if ( !Q_stricmp( token, "seeThrough" ) ) {
|
|
shader.sort = SS_SEE_THROUGH;
|
|
} else if ( !Q_stricmp( token, "banner" ) ) {
|
|
shader.sort = SS_BANNER;
|
|
} else if ( !Q_stricmp( token, "additive" ) ) {
|
|
shader.sort = SS_BLEND1;
|
|
} else if ( !Q_stricmp( token, "nearest" ) ) {
|
|
shader.sort = SS_NEAREST;
|
|
} else if ( !Q_stricmp( token, "underwater" ) ) {
|
|
shader.sort = SS_UNDERWATER;
|
|
} else {
|
|
shader.sort = atof( token );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// this table is also present in q3map
|
|
|
|
typedef struct {
|
|
const char* name;
|
|
int clearSolid, surfaceFlags, contents;
|
|
} infoParm_t;
|
|
|
|
static infoParm_t infoParms[] = {
|
|
// server relevant contents
|
|
{"water", 1, 0, CONTENTS_WATER },
|
|
{"slime", 1, 0, CONTENTS_SLIME }, // mildly damaging
|
|
{"lava", 1, 0, CONTENTS_LAVA }, // very damaging
|
|
{"playerclip", 1, 0, CONTENTS_PLAYERCLIP },
|
|
{"monsterclip", 1, 0, CONTENTS_MONSTERCLIP },
|
|
{"nodrop", 1, 0, int(CONTENTS_NODROP) }, // don't drop items or leave bodies (death fog, lava, etc)
|
|
{"nonsolid", 1, SURF_NONSOLID, 0}, // clears the solid flag
|
|
|
|
// utility relevant attributes
|
|
{"origin", 1, 0, CONTENTS_ORIGIN }, // center of rotating brushes
|
|
{"trans", 0, 0, CONTENTS_TRANSLUCENT }, // don't eat contained surfaces
|
|
{"detail", 0, 0, CONTENTS_DETAIL }, // don't include in structural bsp
|
|
{"structural", 0, 0, CONTENTS_STRUCTURAL }, // force into structural bsp even if trnas
|
|
{"areaportal", 1, 0, CONTENTS_AREAPORTAL }, // divides areas
|
|
{"clusterportal", 1,0, CONTENTS_CLUSTERPORTAL }, // for bots
|
|
{"donotenter", 1, 0, CONTENTS_DONOTENTER }, // for bots
|
|
|
|
{"fog", 1, 0, CONTENTS_FOG}, // carves surfaces entering
|
|
{"sky", 0, SURF_SKY, 0 }, // emit light from an environment map
|
|
{"lightfilter", 0, SURF_LIGHTFILTER, 0 }, // filter light going through it
|
|
{"alphashadow", 0, SURF_ALPHASHADOW, 0 }, // test light on a per-pixel basis
|
|
{"hint", 0, SURF_HINT, 0 }, // use as a primary splitter
|
|
|
|
// server attributes
|
|
{"slick", 0, SURF_SLICK, 0 },
|
|
{"noimpact", 0, SURF_NOIMPACT, 0 }, // don't make impact explosions or marks
|
|
{"nomarks", 0, SURF_NOMARKS, 0 }, // don't make impact marks, but still explode
|
|
{"ladder", 0, SURF_LADDER, 0 },
|
|
{"nodamage", 0, SURF_NODAMAGE, 0 },
|
|
{"metalsteps", 0, SURF_METALSTEPS,0 },
|
|
{"flesh", 0, SURF_FLESH, 0 },
|
|
{"nosteps", 0, SURF_NOSTEPS, 0 },
|
|
|
|
// drawsurf attributes
|
|
{"nodraw", 0, SURF_NODRAW, 0 }, // don't generate a drawsurface (or a lightmap)
|
|
{"pointlight", 0, SURF_POINTLIGHT, 0 }, // sample lighting at vertexes
|
|
{"nolightmap", 0, SURF_NOLIGHTMAP,0 }, // don't generate a lightmap
|
|
{"nodlight", 0, SURF_NODLIGHT, 0 }, // don't ever add dynamic lights
|
|
{"dust", 0, SURF_DUST, 0} // leave a dust trail when walking on this surface
|
|
};
|
|
|
|
|
|
// surfaceparm <name>
|
|
|
|
static void ParseSurfaceParm( const char** text )
|
|
{
|
|
const char* token;
|
|
int numInfoParms = sizeof(infoParms) / sizeof(infoParms[0]);
|
|
int i;
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
for ( i = 0 ; i < numInfoParms ; i++ ) {
|
|
if ( !Q_stricmp( token, infoParms[i].name ) ) {
|
|
shader.surfaceFlags |= infoParms[i].surfaceFlags;
|
|
shader.contentFlags |= infoParms[i].contents;
|
|
#if 0
|
|
if ( infoParms[i].clearSolid ) {
|
|
si->contents &= ~CONTENTS_SOLID;
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// the current text pointer is at the explicit text definition of the shader.
|
|
// parse it into the global shader variable. later functions will optimize it.
|
|
|
|
static qbool ParseShader( const char** text )
|
|
{
|
|
const char* token;
|
|
int s = 0;
|
|
|
|
token = COM_ParseExt( text, qtrue );
|
|
if ( token[0] != '{' )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: expecting '{', found '%s' instead in shader '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
while ( 1 )
|
|
{
|
|
token = COM_ParseExt( text, qtrue );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: no concluding '}' in shader %s\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
// end of shader definition
|
|
if ( token[0] == '}' )
|
|
{
|
|
break;
|
|
}
|
|
// stage definition
|
|
else if ( token[0] == '{' )
|
|
{
|
|
if ( s >= MAX_SHADER_STAGES ) {
|
|
ri.Error( ERR_DROP, "too many stages in shader %s\n", shader.name );
|
|
return qfalse;
|
|
}
|
|
|
|
if ( !ParseStage( text, &stages[s] ) )
|
|
{
|
|
return qfalse;
|
|
}
|
|
stages[s].active = qtrue;
|
|
s++;
|
|
|
|
continue;
|
|
}
|
|
// skip stuff that only the QuakeEdRadient needs
|
|
else if ( !Q_stricmpn( token, "qer", 3 ) ) {
|
|
SkipRestOfLine( text );
|
|
continue;
|
|
}
|
|
else if ( !Q_stricmp( token, "deformVertexes" ) ) {
|
|
ParseDeform( text );
|
|
continue;
|
|
}
|
|
else if ( !Q_stricmp( token, "tesssize" ) ) {
|
|
SkipRestOfLine( text );
|
|
continue;
|
|
}
|
|
else if ( !Q_stricmp( token, "clampTime" ) ) {
|
|
token = COM_ParseExt( text, qfalse );
|
|
if (token[0]) {
|
|
shader.clampTime = atof(token);
|
|
}
|
|
}
|
|
// skip stuff that only the q3map needs
|
|
else if ( !Q_stricmpn( token, "q3map", 5 ) ) {
|
|
SkipRestOfLine( text );
|
|
continue;
|
|
}
|
|
// skip stuff that only q3map or the server needs
|
|
else if ( !Q_stricmp( token, "surfaceParm" ) ) {
|
|
ParseSurfaceParm( text );
|
|
continue;
|
|
}
|
|
// no mip maps
|
|
else if ( !Q_stricmp( token, "nomipmaps" ) )
|
|
{
|
|
shader.imgflags |= IMG_NOMIPMAP | IMG_NOPICMIP;
|
|
continue;
|
|
}
|
|
// no picmip adjustment
|
|
else if ( !Q_stricmp( token, "nopicmip" ) )
|
|
{
|
|
shader.imgflags |= IMG_NOPICMIP;
|
|
continue;
|
|
}
|
|
// polygonOffset
|
|
else if ( !Q_stricmp( token, "polygonOffset" ) )
|
|
{
|
|
shader.polygonOffset = qtrue;
|
|
continue;
|
|
}
|
|
// entityMergable, allowing sprite surfaces from multiple entities
|
|
// to be merged into one batch. This is a savings for smoke
|
|
// puffs and blood, but can't be used for anything where the
|
|
// shader calcs (not the surface function) reference the entity color or scroll
|
|
else if ( !Q_stricmp( token, "entityMergable" ) )
|
|
{
|
|
shader.entityMergable = qtrue;
|
|
continue;
|
|
}
|
|
// fogParms
|
|
else if ( !Q_stricmp( token, "fogParms" ) )
|
|
{
|
|
if ( !ParseVector( text, 3, shader.fogParms.color ) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( !token[0] )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing parm for 'fogParms' keyword in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
shader.fogParms.depthForOpaque = atof( token );
|
|
|
|
// skip any old gradient directions
|
|
SkipRestOfLine( text );
|
|
continue;
|
|
}
|
|
// portal
|
|
else if ( !Q_stricmp(token, "portal") )
|
|
{
|
|
shader.sort = SS_PORTAL;
|
|
continue;
|
|
}
|
|
// skyparms <cloudheight> <outerbox> <innerbox>
|
|
else if ( !Q_stricmp( token, "skyparms" ) )
|
|
{
|
|
ParseSkyParms( text );
|
|
continue;
|
|
}
|
|
// light <value> determines flaring in q3map, not needed here
|
|
else if ( !Q_stricmp(token, "light") )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
continue;
|
|
}
|
|
// cull <face>
|
|
else if ( !Q_stricmp( token, "cull") )
|
|
{
|
|
token = COM_ParseExt( text, qfalse );
|
|
if ( token[0] == 0 )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: missing cull parms in shader '%s'\n", shader.name );
|
|
continue;
|
|
}
|
|
|
|
if ( !Q_stricmp( token, "none" ) || !Q_stricmp( token, "twosided" ) || !Q_stricmp( token, "disable" ) )
|
|
{
|
|
shader.cullType = CT_TWO_SIDED;
|
|
}
|
|
else if ( !Q_stricmp( token, "back" ) || !Q_stricmp( token, "backside" ) || !Q_stricmp( token, "backsided" ) )
|
|
{
|
|
shader.cullType = CT_BACK_SIDED;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: invalid cull parm '%s' in shader '%s'\n", token, shader.name );
|
|
}
|
|
continue;
|
|
}
|
|
// sort
|
|
else if ( !Q_stricmp( token, "sort" ) )
|
|
{
|
|
ParseSort( text );
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: unknown general shader parameter '%s' in '%s'\n", token, shader.name );
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
//
|
|
// ignore shaders that don't have any stages, unless it is a sky or fog
|
|
//
|
|
if ( s == 0 && !shader.isSky && !(shader.contentFlags & CONTENTS_FOG ) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
shader.explicitlyDefined = qtrue;
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
/*
|
|
Positions the most recently created shader in the tr.sortedShaders[] array
|
|
such that the shader->sort key is sorted relative to the other shaders.
|
|
|
|
Sets shader->sortedIndex
|
|
*/
|
|
static void SortNewShader()
|
|
{
|
|
shader_t* newShader = tr.shaders[ tr.numShaders - 1 ];
|
|
float sort = newShader->sort;
|
|
|
|
int i;
|
|
for ( i = tr.numShaders - 2 ; i >= 0 ; i-- ) {
|
|
if ( tr.sortedShaders[ i ]->sort <= sort ) {
|
|
break;
|
|
}
|
|
tr.sortedShaders[i+1] = tr.sortedShaders[i];
|
|
tr.sortedShaders[i+1]->sortedIndex++;
|
|
}
|
|
|
|
newShader->sortedIndex = i+1;
|
|
tr.sortedShaders[i+1] = newShader;
|
|
}
|
|
|
|
|
|
static shader_t* GeneratePermanentShader()
|
|
{
|
|
if ( tr.numShaders == MAX_SHADERS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: GeneratePermanentShader - MAX_SHADERS hit\n");
|
|
return tr.defaultShader;
|
|
}
|
|
|
|
shader_t* newShader = RI_New<shader_t>();
|
|
*newShader = shader;
|
|
|
|
if ( shader.sort <= SS_OPAQUE ) {
|
|
newShader->fogPass = FP_EQUAL;
|
|
} else if ( shader.contentFlags & CONTENTS_FOG ) {
|
|
newShader->fogPass = FP_LE;
|
|
}
|
|
|
|
tr.shaders[ tr.numShaders ] = newShader;
|
|
newShader->index = tr.numShaders;
|
|
|
|
tr.sortedShaders[ tr.numShaders ] = newShader;
|
|
newShader->sortedIndex = tr.numShaders;
|
|
|
|
tr.numShaders++;
|
|
|
|
for ( int i = 0; i < newShader->numStages; ++i ) {
|
|
if ( !stages[i].active ) {
|
|
newShader->numStages = i;
|
|
break;
|
|
}
|
|
newShader->stages[i] = RI_New<shaderStage_t>();
|
|
*newShader->stages[i] = stages[i];
|
|
|
|
int n = newShader->stages[i]->numTexMods;
|
|
newShader->stages[i]->texMods = RI_New<texModInfo_t>( n );
|
|
Com_Memcpy( newShader->stages[i]->texMods, stages[i].texMods, n * sizeof( texModInfo_t ) );
|
|
}
|
|
|
|
SortNewShader();
|
|
|
|
int hash = Q_FileHash(newShader->name, FILE_HASH_SIZE);
|
|
newShader->next = hashTable[hash];
|
|
hashTable[hash] = newShader;
|
|
|
|
return newShader;
|
|
}
|
|
|
|
|
|
/*
|
|
========================================================================================
|
|
|
|
SHADER OPTIMIZATION AND FOGGING
|
|
|
|
========================================================================================
|
|
*/
|
|
|
|
|
|
typedef struct {
|
|
int blendA;
|
|
int blendB;
|
|
texEnv_t multitextureEnv;
|
|
int multitextureBlend;
|
|
} collapse_t;
|
|
|
|
static const collapse_t collapse[] = {
|
|
// the most common (and most worthwhile) collapse is for DxLM shaders
|
|
{ 0, GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO,
|
|
TE_MODULATE, 0 },
|
|
|
|
{ 0, GLS_DSTBLEND_SRC_COLOR | GLS_SRCBLEND_ZERO,
|
|
TE_MODULATE, 0 },
|
|
|
|
{ GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR,
|
|
TE_MODULATE, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR },
|
|
|
|
{ GLS_DSTBLEND_SRC_COLOR | GLS_SRCBLEND_ZERO, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR,
|
|
TE_MODULATE, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR },
|
|
|
|
{ GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR, GLS_DSTBLEND_SRC_COLOR | GLS_SRCBLEND_ZERO,
|
|
TE_MODULATE, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR },
|
|
|
|
{ GLS_DSTBLEND_SRC_COLOR | GLS_SRCBLEND_ZERO, GLS_DSTBLEND_SRC_COLOR | GLS_SRCBLEND_ZERO,
|
|
TE_MODULATE, GLS_DSTBLEND_ZERO | GLS_SRCBLEND_DST_COLOR },
|
|
|
|
{ 0, GLS_DSTBLEND_ONE | GLS_SRCBLEND_ONE,
|
|
TE_ADD, 0 },
|
|
|
|
{ GLS_DSTBLEND_ONE | GLS_SRCBLEND_ONE, GLS_DSTBLEND_ONE | GLS_SRCBLEND_ONE,
|
|
TE_ADD, GLS_DSTBLEND_ONE | GLS_SRCBLEND_ONE },
|
|
#if 0
|
|
{ 0, GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_SRCBLEND_SRC_ALPHA,
|
|
TE_DECAL, 0 },
|
|
#endif
|
|
{ -1 }
|
|
};
|
|
|
|
/*
|
|
================
|
|
CollapseMultitexture
|
|
|
|
Attempt to combine two stages into a single multitexture stage
|
|
FIXME: I think modulated add + modulated add collapses incorrectly
|
|
=================
|
|
*/
|
|
static qbool CollapseMultitexture( void ) {
|
|
int abits, bbits;
|
|
int i;
|
|
|
|
// make sure both stages are active
|
|
if ( !stages[0].active || !stages[1].active ) {
|
|
return qfalse;
|
|
}
|
|
|
|
abits = stages[0].stateBits;
|
|
bbits = stages[1].stateBits;
|
|
|
|
// make sure that both stages have identical state other than blend modes
|
|
if ( ( abits & ~( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS | GLS_DEPTHMASK_TRUE ) ) !=
|
|
( bbits & ~( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS | GLS_DEPTHMASK_TRUE ) ) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
abits &= ( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS );
|
|
bbits &= ( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS );
|
|
|
|
// search for a valid multitexture blend function
|
|
for ( i = 0; collapse[i].blendA != -1 ; i++ ) {
|
|
if ( abits == collapse[i].blendA
|
|
&& bbits == collapse[i].blendB ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// nothing found
|
|
if ( collapse[i].blendA == -1 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
// make sure waveforms have identical parameters
|
|
if ( ( stages[0].rgbGen != stages[1].rgbGen ) ||
|
|
( stages[0].alphaGen != stages[1].alphaGen ) ) {
|
|
return qfalse;
|
|
}
|
|
|
|
// an add collapse can only have identity colors
|
|
if ( collapse[i].multitextureEnv == TE_ADD && stages[0].rgbGen != CGEN_IDENTITY ) {
|
|
return qfalse;
|
|
}
|
|
|
|
if ( stages[0].rgbGen == CGEN_WAVEFORM )
|
|
{
|
|
if ( memcmp( &stages[0].rgbWave,
|
|
&stages[1].rgbWave,
|
|
sizeof( stages[0].rgbWave ) ) )
|
|
{
|
|
return qfalse;
|
|
}
|
|
}
|
|
if ( stages[0].alphaGen == AGEN_WAVEFORM )
|
|
{
|
|
if ( memcmp( &stages[0].alphaWave,
|
|
&stages[1].alphaWave,
|
|
sizeof( stages[0].alphaWave ) ) )
|
|
{
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
|
|
return qfalse;
|
|
/*
|
|
// set the new blend state bits
|
|
shader.multitextureEnv = collapse[i].multitextureEnv;
|
|
stages[0].stateBits &= ~( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS );
|
|
stages[0].stateBits |= collapse[i].multitextureBlend;
|
|
|
|
//
|
|
// move down subsequent shaders
|
|
//
|
|
memmove( &stages[1], &stages[2], sizeof( stages[0] ) * ( MAX_SHADER_STAGES - 2 ) );
|
|
Com_Memset( &stages[MAX_SHADER_STAGES-1], 0, sizeof( stages[0] ) );
|
|
|
|
return qtrue;
|
|
*/
|
|
}
|
|
|
|
|
|
/*
|
|
collapses can be a bit tricky, so we set a few simplifying groundrules:
|
|
first off, GL_REPLACE and GL_DECAL are almost completely pointless
|
|
since they're just subsets of GL_MODULATE. the only time they can ever
|
|
have value is in a multi-add collapse where one layer is modulated by
|
|
an rgbgen but the other needs to maintain identity colors
|
|
*/
|
|
|
|
#define GLS_BLEND_BITS (GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS)
|
|
|
|
static void CollapseStages()
|
|
{
|
|
int i;
|
|
// NEVER reference the global stages[] etc in here, only these locals
|
|
int numStages = shader.numStages;
|
|
shaderStage_t* aStages = &stages[0];
|
|
|
|
#define CollapseFailure { ++aStages; --numStages; continue; }
|
|
|
|
while (numStages >= 2) {
|
|
int abits = aStages[0].stateBits;
|
|
int bbits = aStages[1].stateBits;
|
|
|
|
if ( ( abits & ~(GLS_BLEND_BITS | GLS_DEPTHMASK_TRUE) ) !=
|
|
( bbits & ~(GLS_BLEND_BITS | GLS_DEPTHMASK_TRUE) ) )
|
|
CollapseFailure;
|
|
|
|
if ( ( aStages[0].rgbGen != aStages[1].rgbGen ) || ( aStages[0].alphaGen != aStages[1].alphaGen ) )
|
|
CollapseFailure;
|
|
|
|
abits &= GLS_BLEND_BITS;
|
|
bbits &= GLS_BLEND_BITS;
|
|
|
|
for ( i = 0; collapse[i].blendA != -1; ++i ) {
|
|
if ( (abits == collapse[i].blendA) && (bbits == collapse[i].blendB) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( collapse[i].blendA == -1 )
|
|
CollapseFailure;
|
|
|
|
// Check that all colors are opaque white on the second stage
|
|
// because the stage iterator can't currently specify
|
|
// another color array.
|
|
// Example shader broken without this extra test:
|
|
// "textures/sfx/diamond2cjumppad"
|
|
// The ring pulses in and out instead of only out.
|
|
|
|
// These cases must always be rejected because they depend
|
|
// on time elapsed, camera position, entity colors, etc.
|
|
if ( aStages[1].rgbGen == CGEN_LIGHTING_DIFFUSE ||
|
|
aStages[1].rgbGen == CGEN_WAVEFORM ||
|
|
aStages[1].rgbGen == CGEN_ENTITY ||
|
|
aStages[1].rgbGen == CGEN_ONE_MINUS_ENTITY ||
|
|
aStages[1].alphaGen == AGEN_WAVEFORM ||
|
|
aStages[1].alphaGen == AGEN_LIGHTING_SPECULAR ||
|
|
aStages[1].alphaGen == AGEN_ENTITY ||
|
|
aStages[1].alphaGen == AGEN_ONE_MINUS_ENTITY ||
|
|
aStages[1].alphaGen == AGEN_PORTAL )
|
|
CollapseFailure;
|
|
|
|
// For the remaining cases, we generate and test the colors.
|
|
R_ComputeColors( &aStages[1], tess.svars[0], 0, tess.numVertexes );
|
|
const int* colors = (const int*)tess.svars[0].colors;
|
|
const int colorCount = tess.numVertexes;
|
|
int allOnes = -1;
|
|
for ( int c = 0; c < colorCount; ++c )
|
|
allOnes &= colors[c];
|
|
if ( allOnes != -1 )
|
|
CollapseFailure;
|
|
|
|
aStages[0].stateBits &= ~GLS_BLEND_BITS;
|
|
aStages[0].stateBits |= collapse[i].multitextureBlend;
|
|
aStages[1].mtEnv = collapse[i].multitextureEnv;
|
|
aStages[0].mtStages = 1;
|
|
aStages += 2;
|
|
numStages -= 2;
|
|
}
|
|
|
|
#undef CollapseFailure
|
|
}
|
|
|
|
|
|
static void FindLightingStages()
|
|
{
|
|
int i;
|
|
|
|
for ( i = 0; i < ST_MAX; ++i )
|
|
shader.lightingStages[i] = -1;
|
|
|
|
for ( i = 0; i < shader.numStages; ++i ) {
|
|
stageType_t type = stages[i].type;
|
|
#if defined(_DEBUG)
|
|
//if ( (shader.lightingStages[type] != -1) && (type != ST_DIFFUSE) )
|
|
// ri.Printf( PRINT_WARNING, "Duplicate stagetype %d in shader %s\n", type, shader.name );
|
|
#endif
|
|
// the LAST at-least-partially-opaque layer is the one we want to use as the diffuse
|
|
// because of things like the T4 weapon spawn points etc
|
|
if (type == ST_DIFFUSE) {
|
|
if (stages[i].tcGen != TCGEN_TEXTURE)
|
|
continue;
|
|
if ((stages[i].stateBits & GLS_BLEND_BITS) == (GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE))
|
|
continue;
|
|
}
|
|
|
|
shader.lightingStages[ type ] = i;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
VertexLightingCollapse
|
|
|
|
If vertex lighting is enabled, only render a single pass,
|
|
trying to guess which is the correct one to best approximate
|
|
what it is supposed to look like.
|
|
=================
|
|
*/
|
|
static void VertexLightingCollapse( void ) {
|
|
int stage;
|
|
shaderStage_t *bestStage;
|
|
int bestImageRank;
|
|
int rank;
|
|
|
|
// if we aren't opaque, just use the first pass
|
|
if ( shader.sort == SS_OPAQUE ) {
|
|
|
|
// pick the best texture for the single pass
|
|
bestStage = &stages[0];
|
|
bestImageRank = -999999;
|
|
|
|
for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ ) {
|
|
shaderStage_t *pStage = &stages[stage];
|
|
|
|
if ( !pStage->active ) {
|
|
break;
|
|
}
|
|
rank = 0;
|
|
|
|
if ( pStage->type == ST_LIGHTMAP ) {
|
|
rank -= 100;
|
|
}
|
|
if ( pStage->tcGen != TCGEN_TEXTURE ) {
|
|
rank -= 5;
|
|
}
|
|
if ( pStage->numTexMods ) {
|
|
rank -= 5;
|
|
}
|
|
if ( pStage->rgbGen != CGEN_IDENTITY && pStage->rgbGen != CGEN_IDENTITY_LIGHTING ) {
|
|
rank -= 3;
|
|
}
|
|
|
|
if ( rank > bestImageRank ) {
|
|
bestImageRank = rank;
|
|
bestStage = pStage;
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( &stages[0], bestStage, sizeof( shaderStage_t ) );
|
|
stages[0].stateBits &= ~( GLS_DSTBLEND_BITS | GLS_SRCBLEND_BITS );
|
|
stages[0].stateBits |= GLS_DEPTHMASK_TRUE;
|
|
if ( shader.lightmapIndex == LIGHTMAP_NONE ) {
|
|
stages[0].rgbGen = CGEN_LIGHTING_DIFFUSE;
|
|
} else {
|
|
stages[0].rgbGen = CGEN_EXACT_VERTEX;
|
|
}
|
|
stages[0].alphaGen = AGEN_SKIP;
|
|
} else {
|
|
// don't use a lightmap (tesla coils)
|
|
if ( stages[0].type == ST_LIGHTMAP ) {
|
|
stages[0] = stages[1];
|
|
}
|
|
|
|
// if we were in a cross-fade cgen, hack it to normal
|
|
if ( stages[0].rgbGen == CGEN_ONE_MINUS_ENTITY || stages[1].rgbGen == CGEN_ONE_MINUS_ENTITY ) {
|
|
stages[0].rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
}
|
|
if ( ( stages[0].rgbGen == CGEN_WAVEFORM && stages[0].rgbWave.func == GF_SAWTOOTH )
|
|
&& ( stages[1].rgbGen == CGEN_WAVEFORM && stages[1].rgbWave.func == GF_INVERSE_SAWTOOTH ) ) {
|
|
stages[0].rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
}
|
|
if ( ( stages[0].rgbGen == CGEN_WAVEFORM && stages[0].rgbWave.func == GF_INVERSE_SAWTOOTH )
|
|
&& ( stages[1].rgbGen == CGEN_WAVEFORM && stages[1].rgbWave.func == GF_SAWTOOTH ) ) {
|
|
stages[0].rgbGen = CGEN_IDENTITY_LIGHTING;
|
|
}
|
|
}
|
|
|
|
for ( stage = 1; stage < MAX_SHADER_STAGES; stage++ ) {
|
|
shaderStage_t *pStage = &stages[stage];
|
|
|
|
if ( !pStage->active ) {
|
|
break;
|
|
}
|
|
|
|
Com_Memset( pStage, 0, sizeof( *pStage ) );
|
|
}
|
|
}
|
|
|
|
|
|
static qbool IsAdditiveBlend()
|
|
{
|
|
for (int i = 0; i < shader.numStages; ++i) {
|
|
if (!stages[i].active)
|
|
continue;
|
|
|
|
const int bits = stages[i].stateBits;
|
|
if ((bits & GLS_SRCBLEND_BITS) != GLS_SRCBLEND_ONE ||
|
|
(bits & GLS_DSTBLEND_BITS) != GLS_DSTBLEND_ONE ||
|
|
(bits & GLS_DEPTHMASK_TRUE) != 0)
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
static qbool IsNormalBlend()
|
|
{
|
|
for (int i = 0; i < shader.numStages; ++i) {
|
|
if (!stages[i].active)
|
|
continue;
|
|
|
|
const int bits = stages[i].stateBits;
|
|
if ((bits & GLS_SRCBLEND_BITS) != GLS_SRCBLEND_SRC_ALPHA ||
|
|
(bits & GLS_DSTBLEND_BITS) != GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ||
|
|
(bits & GLS_DEPTHMASK_TRUE) != 0)
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
static void ProcessSoftSprite()
|
|
{
|
|
struct ssShader {
|
|
const char* name;
|
|
float distance;
|
|
float offset;
|
|
};
|
|
|
|
const ssShader ssShaders[] = {
|
|
{ "rocketExplosion", 24.0f },
|
|
{ "rocketExplosionNPM", 24.0f },
|
|
{ "grenadeExplosion", 24.0f },
|
|
{ "grenadeExplosionNPM", 24.0f },
|
|
{ "grenadeCPMA_NPM", 24.0f },
|
|
{ "grenadeCPMA", 24.0f },
|
|
{ "bloodTrail", 24.0f },
|
|
{ "sprites/particleSmoke", 24.0f },
|
|
{ "plasmaExplosion", 8.0f, 4.0f },
|
|
{ "plasmaExplosionNPM", 8.0f, 4.0f },
|
|
{ "plasmanewExplosion", 8.0f, 4.0f },
|
|
{ "plasmanewExplosionNPM", 8.0f, 4.0f },
|
|
{ "bulletExplosion", 8.0f, 4.0f },
|
|
{ "bulletExplosionNPM", 8.0f, 4.0f },
|
|
{ "railExplosion", 8.0f },
|
|
{ "railExplosionNPM", 8.0f },
|
|
{ "bfgExplosion", 8.0f },
|
|
{ "bfgExplosionNPM", 8.0f },
|
|
{ "bloodExplosion", 8.0f },
|
|
{ "bloodExplosionNPM", 8.0f },
|
|
{ "smokePuff", 8.0f },
|
|
{ "smokePuffNPM", 8.0f },
|
|
{ "shotgunSmokePuff", 8.0f },
|
|
{ "shotgunSmokePuffNPM", 8.0f }
|
|
};
|
|
|
|
shader.softSprite = SST_NONE;
|
|
|
|
if (!glInfo.softSpriteSupport)
|
|
return;
|
|
|
|
if (shader.sort <= SS_OPAQUE)
|
|
return;
|
|
|
|
int activeStages = 0;
|
|
for (int i = 0; i < shader.numStages; ++i) {
|
|
if (stages[i].active)
|
|
++activeStages;
|
|
}
|
|
|
|
if (activeStages <= 0)
|
|
return;
|
|
|
|
qbool found = qfalse;
|
|
for (int i = 0; i < ARRAY_LEN(ssShaders); ++i) {
|
|
if (!Q_stricmp(shader.name, ssShaders[i].name)) {
|
|
shader.softSpriteDistance = 1.0f / ssShaders[i].distance;
|
|
shader.softSpriteOffset = ssShaders[i].offset;
|
|
found = qtrue;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return;
|
|
|
|
if (IsAdditiveBlend())
|
|
shader.softSprite = SST_ADDITIVE;
|
|
else if (IsNormalBlend())
|
|
shader.softSprite = SST_BLEND;
|
|
}
|
|
|
|
|
|
static qbool UsesInternalLightmap( const shaderStage_t* stage )
|
|
{
|
|
return
|
|
stage->active &&
|
|
stage->type == ST_LIGHTMAP;
|
|
}
|
|
|
|
|
|
static qbool UsesExternalLightmap( const shaderStage_t* stage )
|
|
{
|
|
return
|
|
stage->active &&
|
|
stage->type == ST_DIFFUSE &&
|
|
!stage->bundle.isVideoMap &&
|
|
stage->bundle.numImageAnimations <= 1 &&
|
|
stage->bundle.image[0] != NULL &&
|
|
(stage->bundle.image[0]->flags & IMG_EXTLMATLAS) != 0;
|
|
}
|
|
|
|
|
|
// returns a freshly allocated shader with info
|
|
// copied from the current global working shader
|
|
|
|
static shader_t* FinishShader()
|
|
{
|
|
int stage;
|
|
qbool hasLightmapStage = qfalse;
|
|
|
|
//
|
|
// set polygon offset
|
|
//
|
|
if ( shader.polygonOffset && !shader.sort ) {
|
|
shader.sort = SS_DECAL;
|
|
}
|
|
|
|
//
|
|
// set appropriate stage information
|
|
//
|
|
for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ ) {
|
|
shaderStage_t *pStage = &stages[stage];
|
|
|
|
if ( !pStage->active ) {
|
|
break;
|
|
}
|
|
|
|
// check for a missing texture
|
|
if ( !pStage->bundle.image[0] ) {
|
|
ri.Printf( PRINT_WARNING, "Shader %s has a stage with no image\n", shader.name );
|
|
pStage->active = qfalse;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// ditch this stage if it's detail and detail textures are disabled
|
|
//
|
|
if ( pStage->isDetail && !r_detailTextures->integer ) {
|
|
const int toMove = MAX_SHADER_STAGES - stage - 1;
|
|
memmove( pStage, pStage + 1, sizeof( *pStage ) * toMove );
|
|
Com_Memset( &stages[MAX_SHADER_STAGES - 1], 0, sizeof( *pStage ) );
|
|
stage--;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// default texture coordinate generation
|
|
//
|
|
if ( pStage->type == ST_LIGHTMAP ) {
|
|
if ( pStage->tcGen == TCGEN_BAD ) {
|
|
pStage->tcGen = TCGEN_LIGHTMAP;
|
|
}
|
|
hasLightmapStage = qtrue;
|
|
} else {
|
|
if ( pStage->tcGen == TCGEN_BAD ) {
|
|
pStage->tcGen = TCGEN_TEXTURE;
|
|
}
|
|
}
|
|
|
|
//
|
|
// determine sort order and fog color adjustment
|
|
//
|
|
if ( ( pStage->stateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) ) &&
|
|
( stages[0].stateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) ) ) {
|
|
int blendSrcBits = pStage->stateBits & GLS_SRCBLEND_BITS;
|
|
int blendDstBits = pStage->stateBits & GLS_DSTBLEND_BITS;
|
|
|
|
// fog color adjustment only works for blend modes that have a contribution
|
|
// that aproaches 0 as the modulate values aproach 0 --
|
|
// GL_ONE, GL_ONE
|
|
// GL_ZERO, GL_ONE_MINUS_SRC_COLOR
|
|
// GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
|
|
|
|
// modulate, additive
|
|
if ( ( ( blendSrcBits == GLS_SRCBLEND_ONE ) && ( blendDstBits == GLS_DSTBLEND_ONE ) ) ||
|
|
( ( blendSrcBits == GLS_SRCBLEND_ZERO ) && ( blendDstBits == GLS_DSTBLEND_ONE_MINUS_SRC_COLOR ) ) ) {
|
|
pStage->adjustColorsForFog = ACFF_MODULATE_RGB;
|
|
}
|
|
// strict blend
|
|
else if ( ( blendSrcBits == GLS_SRCBLEND_SRC_ALPHA ) && ( blendDstBits == GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ) )
|
|
{
|
|
pStage->adjustColorsForFog = ACFF_MODULATE_ALPHA;
|
|
}
|
|
// premultiplied alpha
|
|
else if ( ( blendSrcBits == GLS_SRCBLEND_ONE ) && ( blendDstBits == GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ) )
|
|
{
|
|
pStage->adjustColorsForFog = ACFF_MODULATE_RGBA;
|
|
} else {
|
|
// we can't adjust this one correctly, so it won't be exactly correct in fog
|
|
}
|
|
|
|
// don't screw with sort order if this is a portal or environment
|
|
if ( !shader.sort ) {
|
|
// see through item, like a grill or grate
|
|
if ( pStage->stateBits & GLS_DEPTHMASK_TRUE ) {
|
|
shader.sort = SS_SEE_THROUGH;
|
|
} else {
|
|
shader.sort = SS_BLEND0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// there are times when you will need to manually apply a sort to
|
|
// opaque alpha tested shaders that have later blend passes
|
|
if ( !shader.sort ) {
|
|
shader.sort = SS_OPAQUE;
|
|
}
|
|
|
|
//
|
|
// if we are in r_vertexLight mode, never use a lightmap texture
|
|
//
|
|
if ( stage > 1 && r_vertexLight->integer && !r_uiFullScreen->integer ) {
|
|
VertexLightingCollapse();
|
|
stage = 1;
|
|
hasLightmapStage = qfalse;
|
|
}
|
|
|
|
//
|
|
// look for multitexture potential
|
|
//
|
|
if ( stage > 1 && CollapseMultitexture() ) {
|
|
stage--;
|
|
}
|
|
|
|
shader.numStages = stage;
|
|
|
|
FindLightingStages();
|
|
|
|
CollapseStages();
|
|
|
|
if ( r_fullbright->integer ) {
|
|
// we replace the lightmap texture with the white texture
|
|
for ( int i = 0; i < shader.numStages; ++i ) {
|
|
if ( UsesInternalLightmap( &stages[i] ) || UsesExternalLightmap( &stages[i] ) ) {
|
|
stages[i].type = ST_DIFFUSE;
|
|
stages[i].bundle.image[0] = tr.fullBrightImage;
|
|
}
|
|
}
|
|
} else if (
|
|
r_lightmap->integer &&
|
|
( shader.contentFlags & CONTENTS_TRANSLUCENT ) == 0 &&
|
|
shader.sort <= SS_OPAQUE ) {
|
|
// we reduce it down to a single lightmap stage with the same state bits as
|
|
// the current first stage (if the shader uses a lightmap at all)
|
|
|
|
// @NOTE: we ignore all surfaces that aren't fully opaque because:
|
|
// a) it's hard to know what level of uniform opacity would emulate the original look best
|
|
// b) alpha-tested surfaces that have been turned into alpha-blended ones can't just use any given sort key:
|
|
// you can always find or design a case that won't work correctly
|
|
// for decals entirely pressed against opaque surfaces, we could use a keyword ("polygonoffset" or something new)
|
|
// to know that we should not draw them at all, but we just shouldn't trust level designers
|
|
|
|
// look for "real" lightmaps first (straight from the .bsp file itself)
|
|
int stageIndex = -1;
|
|
for ( int i = 0; i < shader.numStages; ++i ) {
|
|
if ( UsesInternalLightmap( &stages[i] ) ) {
|
|
stageIndex = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( stageIndex == -1 ) {
|
|
// look for external lightmaps
|
|
for ( int i = 0; i < shader.numStages; ++i ) {
|
|
if ( UsesExternalLightmap( &stages[i] ) ) {
|
|
stageIndex = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const int stateBits = stages[0].stateBits;
|
|
if ( stageIndex > 0 )
|
|
memcpy( stages, stages + stageIndex, sizeof( stages[0] ) );
|
|
|
|
if ( stageIndex >= 0 ) {
|
|
for ( int i = 1; i < shader.numStages; ++i ) {
|
|
stages[i].active = qfalse;
|
|
}
|
|
stages[0].stateBits = stateBits;
|
|
stages[0].mtStages = 0;
|
|
shader.lightingStages[ST_DIFFUSE] = 0; // for working dynamic lights
|
|
shader.lightingStages[ST_LIGHTMAP] = 0;
|
|
shader.numStages = 1;
|
|
}
|
|
}
|
|
|
|
/* !!!
|
|
if ( shader.lightmapIndex >= 0 && !hasLightmapStage ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: shader '%s' has lightmap but no lightmap stage!\n", shader.name );
|
|
// this causes every instance of the same shader, i.e. EVERY SURFACE, to count as a new shader
|
|
//shader.lightmapIndex = LIGHTMAP_NONE;
|
|
// even without that, 3ex will still create dozens of dupes per shader in lightmap mode
|
|
// because of mismatches between the bsp lightmap indexes and the shader files not having lightmap stages
|
|
}
|
|
*/
|
|
|
|
// non-sky fog-only shaders don't have any normal passes
|
|
if ( !shader.isSky && stage == 0 ) {
|
|
shader.sort = SS_FOG;
|
|
}
|
|
|
|
ProcessSoftSprite();
|
|
|
|
return GeneratePermanentShader();
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
|
|
// searches the combined text of ALL shader files for the given shader name
|
|
// return the body of the shader if found, else NULL
|
|
|
|
static const char* FindShaderInShaderText( const char* shadername )
|
|
{
|
|
const int hash = Q_FileHash( shadername, MAX_SHADERTEXT_HASH );
|
|
|
|
// since the hash table always contains all loaded shaders
|
|
// there's no need to actually scan through s_shaderText itself
|
|
for (int i = 0; shaderTextHashTable[hash][i]; i++) {
|
|
const char* p = shaderTextHashTable[hash][i];
|
|
const char* const token = COM_ParseExt( &p, qtrue );
|
|
|
|
if ( !Q_stricmp( token, shadername ) ) {
|
|
return p;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
struct vertexLightReplacementShader_t {
|
|
const char* mapName;
|
|
const char* shaderName;
|
|
const char* newShaderName;
|
|
int shaderNameHash;
|
|
};
|
|
|
|
static const vertexLightReplacementShader_t g_replacementShaders[] = {
|
|
{ "pukka3tourney2", "textures/pukka3tourney2/acid_lm", "textures/pukka3tourney2/acid_vertex", 418 }
|
|
};
|
|
|
|
|
|
/*
|
|
===============
|
|
R_FindShader
|
|
|
|
Will always return a valid shader, but it might be the
|
|
default shader if the real one can't be found.
|
|
|
|
In the interest of not requiring an explicit shader text entry to
|
|
be defined for every single image used in the game, three default
|
|
shader behaviors can be auto-created for any image:
|
|
|
|
If lightmapIndex == LIGHTMAP_NONE, then the image will have
|
|
dynamic diffuse lighting applied to it, as appropriate for most
|
|
entity skin surfaces.
|
|
|
|
If lightmapIndex == LIGHTMAP_2D, then the image will be used
|
|
for 2D rendering unless an explicit shader is found
|
|
|
|
If lightmapIndex == LIGHTMAP_BY_VERTEX, then the image will use
|
|
the vertex rgba modulate values, as appropriate for misc_model
|
|
pre-lit surfaces.
|
|
|
|
Other lightmapIndex values will have a lightmap stage created
|
|
and src*dest blending applied with the texture, as appropriate for
|
|
most world construction surfaces.
|
|
|
|
===============
|
|
*/
|
|
shader_t* R_FindShader( const char *name, int lightmapIndex, qbool mipRawImage )
|
|
{
|
|
char strippedName[MAX_QPATH];
|
|
char fileName[MAX_QPATH];
|
|
int hash;
|
|
shader_t *sh;
|
|
|
|
if ( name[0] == 0 ) {
|
|
return tr.defaultShader;
|
|
}
|
|
|
|
// use (fullbright) vertex lighting if the bsp file doesn't have lightmaps
|
|
if ( lightmapIndex >= 0 && lightmapIndex >= tr.numLightmaps )
|
|
lightmapIndex = LIGHTMAP_BY_VERTEX;
|
|
|
|
COM_StripExtension(name, strippedName, sizeof(strippedName));
|
|
|
|
hash = Q_FileHash(strippedName, FILE_HASH_SIZE);
|
|
|
|
// replace some known shaders with more fit versions for r_vertexLight
|
|
if (r_vertexLight->integer) {
|
|
const int replacementCount = ARRAY_LEN(g_replacementShaders);
|
|
for (int i = 0; i < replacementCount; ++i) {
|
|
const vertexLightReplacementShader_t* const vlrs = g_replacementShaders + i;
|
|
if (vlrs->shaderNameHash == hash &&
|
|
strcmp(vlrs->mapName, R_GetMapName()) == 0 &&
|
|
strcmp(vlrs->shaderName, name) == 0) {
|
|
name = vlrs->newShaderName;
|
|
COM_StripExtension(name, strippedName, sizeof(strippedName));
|
|
hash = Q_FileHash(strippedName, FILE_HASH_SIZE);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// see if the shader is already loaded
|
|
//
|
|
for (sh = hashTable[hash]; sh; sh = sh->next) {
|
|
// NOTE: if there was no shader or image available with the name strippedName
|
|
// then a default shader is created with lightmapIndex == LIGHTMAP_NONE, so we
|
|
// have to check all default shaders otherwise for every call to R_FindShader
|
|
// with that same strippedName a new default shader is created.
|
|
if ( (sh->lightmapIndex == lightmapIndex || sh->defaultShader) &&
|
|
!Q_stricmp(sh->name, strippedName)) {
|
|
return sh;
|
|
}
|
|
}
|
|
|
|
// clear the global shader
|
|
Com_Memset( &shader, 0, sizeof( shader ) );
|
|
Com_Memset( &stages, 0, sizeof( stages ) );
|
|
Q_strncpyz(shader.name, strippedName, sizeof(shader.name));
|
|
shader.lightmapIndex = lightmapIndex;
|
|
for ( int i = 0 ; i < MAX_SHADER_STAGES ; i++ ) {
|
|
stages[i].texMods = texMods[i];
|
|
}
|
|
|
|
//
|
|
// attempt to define shader from an explicit parameter file
|
|
//
|
|
const char* shaderText = FindShaderInShaderText( strippedName );
|
|
if ( shaderText ) {
|
|
#if 0 // enable this when building a pak file to get a global list of all explicit shaders
|
|
ri.Printf( PRINT_ALL, "*SHADER* %s\n", name );
|
|
#endif
|
|
if ( !ParseShader( &shaderText ) ) {
|
|
// had errors, so use default shader
|
|
shader.defaultShader = qtrue;
|
|
}
|
|
sh = FinishShader();
|
|
return sh;
|
|
}
|
|
|
|
// if not defined in the in-memory shader descriptions,
|
|
// look for a raw texture (saves needing shaders for trivial opaque surfs)
|
|
//
|
|
Q_strncpyz( fileName, name, sizeof( fileName ) );
|
|
COM_DefaultExtension( fileName, sizeof( fileName ), ".tga" );
|
|
|
|
const image_t* image;
|
|
if (mipRawImage)
|
|
image = R_FindImageFile( fileName, 0, TW_REPEAT );
|
|
else
|
|
image = R_FindImageFile( fileName, IMG_NOMIPMAP | IMG_NOPICMIP, TW_CLAMP_TO_EDGE );
|
|
|
|
if ( !image ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Couldn't find image for shader %s\n", name );
|
|
shader.defaultShader = qtrue;
|
|
return FinishShader();
|
|
}
|
|
|
|
// create the default shading commands
|
|
|
|
stages[0].active = qtrue;
|
|
stages[0].type = ST_DIFFUSE;
|
|
stages[0].bundle.image[0] = image;
|
|
|
|
if ( shader.lightmapIndex == LIGHTMAP_BROKEN ) {
|
|
stages[0].rgbGen = CGEN_VERTEX;
|
|
stages[0].alphaGen = AGEN_VERTEX;
|
|
stages[0].stateBits = GLS_DEFAULT;
|
|
} else if ( shader.lightmapIndex == LIGHTMAP_NONE ) {
|
|
// dynamic colors at vertexes
|
|
stages[0].rgbGen = CGEN_LIGHTING_DIFFUSE;
|
|
stages[0].stateBits = GLS_DEFAULT;
|
|
} else if ( shader.lightmapIndex == LIGHTMAP_BY_VERTEX ) {
|
|
// explicit colors at vertexes
|
|
stages[0].rgbGen = CGEN_EXACT_VERTEX;
|
|
stages[0].alphaGen = AGEN_SKIP;
|
|
stages[0].stateBits = GLS_DEFAULT;
|
|
} else if ( shader.lightmapIndex == LIGHTMAP_2D ) {
|
|
// GUI elements
|
|
stages[0].rgbGen = CGEN_VERTEX;
|
|
stages[0].alphaGen = AGEN_VERTEX;
|
|
stages[0].stateBits = GLS_DEPTHTEST_DISABLE |
|
|
GLS_SRCBLEND_SRC_ALPHA |
|
|
GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA;
|
|
} else {
|
|
// two pass lightmap
|
|
stages[0].rgbGen = CGEN_IDENTITY;
|
|
stages[0].stateBits = GLS_DEFAULT;
|
|
|
|
stages[1].active = qtrue;
|
|
stages[1].type = ST_LIGHTMAP;
|
|
stages[1].bundle.image[0] = tr.lightmaps[shader.lightmapIndex];
|
|
stages[1].rgbGen = CGEN_IDENTITY; // lightmaps are scaled on creation for identitylight
|
|
stages[1].stateBits = GLS_DEFAULT | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO;
|
|
}
|
|
|
|
return FinishShader();
|
|
}
|
|
|
|
|
|
// KHB !!! this code is stupid
|
|
// shaders registered from raw data should be "anonymous" and unsearchable
|
|
// because they don't have the supercession concept of "real" shaders
|
|
|
|
qhandle_t RE_RegisterShaderFromImage( const char* name, const image_t* image )
|
|
{
|
|
const shader_t* sh;
|
|
|
|
// see if the shader is already loaded
|
|
int hash = Q_FileHash(name, FILE_HASH_SIZE);
|
|
for (sh = hashTable[hash]; sh; sh = sh->next) {
|
|
// NOTE: if there was no shader or image available with the name strippedName
|
|
// then a default shader is created with lightmapIndex == LIGHTMAP_NONE, so we
|
|
// have to check all default shaders otherwise for every call to R_FindShader
|
|
// with that same strippedName a new default shader is created.
|
|
if ((sh->lightmapIndex == LIGHTMAP_2D || sh->defaultShader) && !Q_stricmp(sh->name, name)) {
|
|
return sh->index;
|
|
}
|
|
}
|
|
|
|
// clear the global shader
|
|
Com_Memset( &shader, 0, sizeof( shader ) );
|
|
Com_Memset( &stages, 0, sizeof( stages ) );
|
|
Q_strncpyz(shader.name, name, sizeof(shader.name));
|
|
shader.lightmapIndex = LIGHTMAP_2D;
|
|
for (int i = 0; i < MAX_SHADER_STAGES; ++i) {
|
|
stages[i].texMods = texMods[i];
|
|
}
|
|
|
|
// create the default shading commands: this can only ever be a 2D/UI shader
|
|
stages[0].bundle.image[0] = image;
|
|
stages[0].active = qtrue;
|
|
stages[0].rgbGen = CGEN_VERTEX;
|
|
stages[0].alphaGen = AGEN_VERTEX;
|
|
stages[0].stateBits = GLS_DEPTHTEST_DISABLE | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA;
|
|
|
|
sh = FinishShader();
|
|
return sh->index;
|
|
}
|
|
|
|
|
|
// we want to return 0 if the shader failed to load for some reason
|
|
// but R_FindShader should still keep a name allocated for it
|
|
// so we can fail quickly if something tries to register it again
|
|
|
|
static qhandle_t RE_RegisterShaderInternal( const char* name, int lightmapIndex, qbool mip )
|
|
{
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
ri.Printf( PRINT_WARNING, "RE_RegisterShader: name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
const shader_t* sh = R_FindShader( name, lightmapIndex, mip );
|
|
return sh->defaultShader ? 0 : sh->index;
|
|
}
|
|
|
|
|
|
/*
|
|
these are the exported shader entry points for the rest of the system
|
|
they always return a valid index, ie the default shader if there's a problem
|
|
|
|
should really only be used for explicit shaders, because there is no
|
|
way to ask for different implicit lighting modes (vertex, lightmap, etc)
|
|
*/
|
|
|
|
qhandle_t RE_RegisterShader( const char* name )
|
|
{
|
|
return RE_RegisterShaderInternal( name, LIGHTMAP_2D, qtrue );
|
|
}
|
|
|
|
|
|
// for menu graphics that should never be picmiped
|
|
|
|
qhandle_t RE_RegisterShaderNoMip( const char* name )
|
|
{
|
|
return RE_RegisterShaderInternal( name, LIGHTMAP_2D, qfalse );
|
|
}
|
|
|
|
|
|
// when a handle is passed in by another module, this range checks
|
|
// it and returns a valid (possibly default) shader_t to be used internally
|
|
|
|
const shader_t* R_GetShaderByHandle( qhandle_t hShader )
|
|
{
|
|
if ((hShader < 0) || (hShader >= tr.numShaders)) {
|
|
ri.Printf( PRINT_WARNING, "R_GetShaderByHandle: out of range hShader '%d'\n", hShader );
|
|
return tr.defaultShader;
|
|
}
|
|
return tr.shaders[hShader];
|
|
}
|
|
|
|
|
|
// dump information on all valid shaders to the console
|
|
// a second parameter will cause it to print in sorted order
|
|
|
|
void R_ShaderList_f( void )
|
|
{
|
|
const char* const match = Cmd_Argc() > 1 ? Cmd_Argv( 1 ) : NULL;
|
|
|
|
ri.Printf( PRINT_ALL, "S P L E func order name \n" );
|
|
|
|
int count = 0;
|
|
for ( int i = 0 ; i < tr.numShaders ; i++ ) {
|
|
const shader_t* sh = tr.sortedShaders[i];
|
|
|
|
if ( match && !Com_Filter( match, sh->name ) )
|
|
continue;
|
|
|
|
int passes = sh->numStages;
|
|
for ( int s = 0; s < sh->numStages; ++s )
|
|
passes -= sh->stages[s]->mtStages;
|
|
|
|
ri.Printf( PRINT_ALL, "%i %i ", sh->numStages, passes );
|
|
|
|
if (sh->lightmapIndex >= 0 ) {
|
|
ri.Printf( PRINT_ALL, "L " );
|
|
} else {
|
|
ri.Printf( PRINT_ALL, " " );
|
|
}
|
|
if ( sh->explicitlyDefined ) {
|
|
ri.Printf( PRINT_ALL, "E " );
|
|
} else {
|
|
ri.Printf( PRINT_ALL, " " );
|
|
}
|
|
|
|
if ( sh->sort == SS_ENVIRONMENT ) {
|
|
ri.Printf( PRINT_ALL, "sky " );
|
|
} else {
|
|
ri.Printf( PRINT_ALL, " " );
|
|
}
|
|
|
|
ri.Printf( PRINT_ALL, "%5.2f ", sh->sort );
|
|
|
|
if ( sh->defaultShader ) {
|
|
ri.Printf( PRINT_ALL, ": %s (DEFAULTED)\n", sh->name );
|
|
} else {
|
|
ri.Printf( PRINT_ALL, ": %s\n", sh->name );
|
|
}
|
|
count++;
|
|
}
|
|
|
|
ri.Printf( PRINT_ALL, "%i shaders found\n", count );
|
|
ri.Printf( PRINT_ALL, "--------------------\n" );
|
|
}
|
|
|
|
|
|
// finds and loads all .shader files, combining them into
|
|
// a single large text block that can be scanned for shader names
|
|
// note that this does a lot of things very badly, e.g. still loads superceded shaders
|
|
|
|
static void ScanAndLoadShaderFiles()
|
|
{
|
|
static const int MAX_SHADER_FILES = 4096;
|
|
char* buffers[MAX_SHADER_FILES];
|
|
int len[MAX_SHADER_FILES];
|
|
|
|
int i;
|
|
char* p;
|
|
|
|
int numShaders;
|
|
char** shaderFiles = ri.FS_ListFiles( "scripts", ".shader", &numShaders );
|
|
|
|
if ( !shaderFiles || !numShaders )
|
|
{
|
|
ri.Printf( PRINT_WARNING, "WARNING: no shader files found\n" );
|
|
return;
|
|
}
|
|
|
|
if ( numShaders > MAX_SHADER_FILES )
|
|
ri.Error( ERR_DROP, "Shader file limit exceeded" );
|
|
|
|
long sum = 0;
|
|
// load and parse shader files
|
|
for ( i = 0; i < numShaders; i++ )
|
|
{
|
|
char filename[MAX_QPATH];
|
|
Com_sprintf( filename, sizeof( filename ), "scripts/%s", shaderFiles[i] );
|
|
ri.FS_ReadFile( filename, (void **)&buffers[i] );
|
|
if ( !buffers[i] )
|
|
ri.Error( ERR_DROP, "Couldn't load %s", filename );
|
|
len[i] = COM_Compress( buffers[i] );
|
|
sum += len[i];
|
|
}
|
|
|
|
s_shaderText = RI_New<char>( sum + numShaders + 1 );
|
|
|
|
char* s = s_shaderText;
|
|
for ( i = 0; i < numShaders; i++ ) {
|
|
Com_Memcpy( s, buffers[i], len[i] );
|
|
s += len[i];
|
|
*s++ = '\n';
|
|
}
|
|
*s = 0;
|
|
|
|
// the files have to be freed backwards because the hunk isn't a real MM
|
|
for (i = numShaders - 1; i >= 0; --i)
|
|
ri.FS_FreeFile( buffers[i] );
|
|
|
|
ri.FS_FreeFileList( shaderFiles );
|
|
|
|
int shaderTextHashTableSizes[MAX_SHADERTEXT_HASH];
|
|
Com_Memset(shaderTextHashTableSizes, 0, sizeof(shaderTextHashTableSizes));
|
|
|
|
const char* token;
|
|
int size = 0, hash;
|
|
|
|
p = s_shaderText;
|
|
while (p < s) {
|
|
token = COM_ParseExt( (const char**)&p, qtrue );
|
|
if ( token[0] == 0 )
|
|
break;
|
|
hash = Q_FileHash( token, MAX_SHADERTEXT_HASH );
|
|
shaderTextHashTableSizes[hash]++;
|
|
size++;
|
|
SkipBracedSection( (const char**)&p );
|
|
}
|
|
|
|
size += MAX_SHADERTEXT_HASH;
|
|
char** hashMem = RI_New<char*>( size );
|
|
|
|
for (i = 0; i < MAX_SHADERTEXT_HASH; i++) {
|
|
shaderTextHashTable[i] = hashMem;
|
|
hashMem += (shaderTextHashTableSizes[i] + 1);
|
|
}
|
|
|
|
Com_Memset( shaderTextHashTableSizes, 0, sizeof(shaderTextHashTableSizes) );
|
|
|
|
p = s_shaderText;
|
|
while (p < s) {
|
|
char* oldp = p;
|
|
token = COM_ParseExt( (const char**)&p, qtrue );
|
|
if ( token[0] == 0 )
|
|
break;
|
|
hash = Q_FileHash( token, MAX_SHADERTEXT_HASH );
|
|
shaderTextHashTable[hash][shaderTextHashTableSizes[hash]++] = oldp;
|
|
SkipBracedSection( (const char**)&p );
|
|
}
|
|
}
|
|
|
|
|
|
static void CreateInternalShaders()
|
|
{
|
|
tr.numShaders = 0;
|
|
|
|
// init the default shader
|
|
Com_Memset( &shader, 0, sizeof( shader ) );
|
|
Com_Memset( &stages, 0, sizeof( stages ) );
|
|
|
|
Q_strncpyz( shader.name, "<default>", sizeof( shader.name ) );
|
|
shader.lightmapIndex = LIGHTMAP_NONE;
|
|
stages[0].bundle.image[0] = tr.defaultImage;
|
|
stages[0].active = qtrue;
|
|
stages[0].stateBits = GLS_DEFAULT;
|
|
tr.defaultShader = FinishShader();
|
|
|
|
Q_strncpyz( shader.name, "<scratch>", sizeof( shader.name ) );
|
|
tr.scratchShader = FinishShader();
|
|
}
|
|
|
|
|
|
void R_InitShaders()
|
|
{
|
|
ri.Printf( PRINT_ALL, "Initializing Shaders\n" );
|
|
|
|
Com_Memset( hashTable, 0, sizeof(hashTable) );
|
|
|
|
CreateInternalShaders();
|
|
|
|
ScanAndLoadShaderFiles();
|
|
}
|