cnq3/code/renderer/tr_mesh.cpp
2023-11-12 01:33:00 +01:00

291 lines
8.3 KiB
C++

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_mesh.c: triangle model functions
#include "tr_local.h"
static float ProjectRadius( float r, const vec3_t location )
{
float pr;
float dist;
float c;
vec3_t p;
float projected[4];
c = DotProduct( tr.viewParms.orient.axis[0], tr.viewParms.orient.origin );
dist = DotProduct( tr.viewParms.orient.axis[0], location ) - c;
if ( dist <= 0 )
return 0;
p[0] = 0;
p[1] = fabs( r );
p[2] = -dist;
projected[0] = p[0] * tr.viewParms.projectionMatrix[0] +
p[1] * tr.viewParms.projectionMatrix[4] +
p[2] * tr.viewParms.projectionMatrix[8] +
tr.viewParms.projectionMatrix[12];
projected[1] = p[0] * tr.viewParms.projectionMatrix[1] +
p[1] * tr.viewParms.projectionMatrix[5] +
p[2] * tr.viewParms.projectionMatrix[9] +
tr.viewParms.projectionMatrix[13];
projected[2] = p[0] * tr.viewParms.projectionMatrix[2] +
p[1] * tr.viewParms.projectionMatrix[6] +
p[2] * tr.viewParms.projectionMatrix[10] +
tr.viewParms.projectionMatrix[14];
projected[3] = p[0] * tr.viewParms.projectionMatrix[3] +
p[1] * tr.viewParms.projectionMatrix[7] +
p[2] * tr.viewParms.projectionMatrix[11] +
tr.viewParms.projectionMatrix[15];
pr = projected[1] / projected[3];
if ( pr > 1.0f )
pr = 1.0f;
return pr;
}
static int R_CullModel( const md3Header_t* header, trRefEntity_t* ent )
{
const md3Frame_t *oldFrame, *newFrame;
// compute frame pointers
newFrame = (const md3Frame_t*) ( ( byte * ) header + header->ofsFrames ) + ent->e.frame;
oldFrame = (const md3Frame_t*) ( ( byte * ) header + header->ofsFrames ) + ent->e.oldframe;
// cull bounding sphere ONLY if this is not an upscaled entity
if ( !ent->e.nonNormalizedAxes )
{
if ( ent->e.frame == ent->e.oldframe )
{
switch ( R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius ) )
{
case CULL_OUT:
tr.pc[RF_MD3_CULL_S_OUT]++;
return CULL_OUT;
case CULL_IN:
tr.pc[RF_MD3_CULL_S_IN]++;
return CULL_IN;
case CULL_CLIP:
tr.pc[RF_MD3_CULL_S_CLIP]++;
break;
}
}
else
{
int sphereCull, sphereCullB;
sphereCull = R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius );
if ( newFrame == oldFrame ) {
sphereCullB = sphereCull;
} else {
sphereCullB = R_CullLocalPointAndRadius( oldFrame->localOrigin, oldFrame->radius );
}
if ( sphereCull == sphereCullB )
{
if ( sphereCull == CULL_OUT )
{
tr.pc[RF_MD3_CULL_S_OUT]++;
return CULL_OUT;
}
else if ( sphereCull == CULL_IN )
{
tr.pc[RF_MD3_CULL_S_IN]++;
return CULL_IN;
}
else
{
tr.pc[RF_MD3_CULL_S_CLIP]++;
}
}
}
}
// calculate a bounding box in the current coordinate system
vec3_t bounds[2];
for (int i = 0; i < 3; ++i) {
bounds[0][i] = min( oldFrame->bounds[0][i], newFrame->bounds[0][i] );
bounds[1][i] = max( oldFrame->bounds[1][i], newFrame->bounds[1][i] );
}
switch ( R_CullLocalBox( bounds ) )
{
case CULL_IN:
tr.pc[RF_MD3_CULL_B_IN]++;
return CULL_IN;
case CULL_CLIP:
tr.pc[RF_MD3_CULL_B_CLIP]++;
return CULL_CLIP;
case CULL_OUT:
default:
tr.pc[RF_MD3_CULL_B_OUT]++;
return CULL_OUT;
}
}
static int R_ComputeLOD( const trRefEntity_t* ent )
{
float radius;
float flod;
float projectedRadius;
int lod;
if ( tr.currentModel->numLods < 2 )
{
// model has only 1 LOD level, skip computations and bias
lod = 0;
}
else
{
// multiple LODs exist, so compute projected bounding sphere
// and use that as a criteria for selecting LOD
const md3Frame_t* frame = (const md3Frame_t*)(((unsigned char *)tr.currentModel->md3[0]) + tr.currentModel->md3[0]->ofsFrames);
frame += ent->e.frame;
radius = RadiusFromBounds( frame->bounds[0], frame->bounds[1] );
if ( ( projectedRadius = ProjectRadius( radius, ent->e.origin ) ) != 0 )
{
flod = 1.0f - projectedRadius * r_lodscale->value;
}
else
{
// object intersects near view plane, e.g. view weapon
flod = 0;
}
flod *= tr.currentModel->numLods;
lod = (int)flod;
if ( lod < 0 )
{
lod = 0;
}
else if ( lod >= tr.currentModel->numLods )
{
lod = tr.currentModel->numLods - 1;
}
}
lod += r_lodbias->integer;
if ( lod >= tr.currentModel->numLods )
lod = tr.currentModel->numLods - 1;
if ( lod < 0 )
lod = 0;
return lod;
}
void R_AddMD3Surfaces( trRefEntity_t* ent )
{
// don't add third_person objects if not in a portal
qbool personalModel = (ent->e.renderfx & RF_THIRD_PERSON) != 0 && !tr.viewParms.isPortal;
if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
ent->e.frame %= tr.currentModel->md3[0]->numFrames;
ent->e.oldframe %= tr.currentModel->md3[0]->numFrames;
}
//
// Validate the frames so there is no chance of a crash.
// This will write directly into the entity structure, so
// when the surfaces are rendered, they don't need to be
// range checked again.
//
if ( (ent->e.frame >= tr.currentModel->md3[0]->numFrames)
|| (ent->e.frame < 0)
|| (ent->e.oldframe >= tr.currentModel->md3[0]->numFrames)
|| (ent->e.oldframe < 0) ) {
ri.Printf( PRINT_DEVELOPER, "R_AddMD3Surfaces: no such frame %d to %d for '%s'\n",
ent->e.oldframe, ent->e.frame,
tr.currentModel->name );
ent->e.frame = 0;
ent->e.oldframe = 0;
}
int lod = R_ComputeLOD( ent );
const md3Header_t* header = tr.currentModel->md3[lod];
// cull the entire model if merged bounding box of both frames is outside the view frustum
if (R_CullModel(header, ent) == CULL_OUT)
return;
// set up lighting now that we know we aren't culled
if (!personalModel)
R_SetupEntityLighting( &tr.refdef, ent );
// draw all surfaces
const shader_t* shader;
const md3Surface_t* surface = (const md3Surface_t*)((byte *)header + header->ofsSurfaces);
for (int i = 0; i < header->numSurfaces; ++i) {
if ( ent->e.customShader ) {
shader = R_GetShaderByHandle( ent->e.customShader );
} else if ( ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins ) {
// match the surface name to something in the skin file
const skin_t* skin = R_GetSkinByHandle(ent->e.customSkin);
shader = tr.defaultShader;
for (int j = 0; j < skin->numSurfaces; ++j) {
// the names have both been lowercased
if ( !strcmp( skin->surfaces[j]->name, surface->name ) ) {
shader = skin->surfaces[j]->shader;
break;
}
}
if (shader == tr.defaultShader) {
ri.Printf( PRINT_DEVELOPER, "WARNING: no shader for surface %s in skin %s\n", surface->name, skin->name);
}
else if (shader->defaultShader) {
ri.Printf( PRINT_DEVELOPER, "WARNING: shader %s in skin %s not found\n", shader->name, skin->name);
}
} else if ( surface->numShaders <= 0 ) {
shader = tr.defaultShader;
} else {
const md3Shader_t* md3Shader = (const md3Shader_t*)((byte *)surface + surface->ofsShaders);
md3Shader += ent->e.skinNum % surface->numShaders;
shader = tr.shaders[ md3Shader->shaderIndex ];
}
// don't add third_person objects if not viewing through a portal
if ( !personalModel ) {
R_AddDrawSurf( (const surfaceType_t*)surface, shader );
}
surface = (const md3Surface_t*)( (byte *)surface + surface->ofsEnd );
}
}