mirror of
https://bitbucket.org/CPMADevs/cnq3
synced 2024-11-30 15:52:16 +00:00
1280 lines
33 KiB
C++
1280 lines
33 KiB
C++
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_shade_calc.c
|
|
|
|
#include "tr_local.h"
|
|
|
|
|
|
static double WaveValue( const float* table, double base, double amplitude, double phase, double freq )
|
|
{
|
|
// the original code did a double to 32-bit int conversion of x
|
|
const double x = (phase + tess.shaderTime * freq) * FUNCTABLE_SIZE;
|
|
const int i = (int)((int64_t)x & (int64_t)FUNCTABLE_MASK);
|
|
const double r = base + table[i] * amplitude;
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
static const float* TableForFunc( genFunc_t func )
|
|
{
|
|
switch ( func )
|
|
{
|
|
case GF_SIN:
|
|
return tr.sinTable;
|
|
case GF_TRIANGLE:
|
|
return tr.triangleTable;
|
|
case GF_SQUARE:
|
|
return tr.squareTable;
|
|
case GF_SAWTOOTH:
|
|
return tr.sawToothTable;
|
|
case GF_INVERSE_SAWTOOTH:
|
|
return tr.inverseSawToothTable;
|
|
case GF_NONE:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name );
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
|
|
static float EvalWaveForm( const waveForm_t *wf )
|
|
{
|
|
return WaveValue( TableForFunc( wf->func ), wf->base, wf->amplitude, wf->phase, wf->frequency );
|
|
}
|
|
|
|
|
|
static float EvalWaveFormClamped( const waveForm_t *wf )
|
|
{
|
|
float glow = EvalWaveForm( wf );
|
|
|
|
if ( glow < 0 )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
if ( glow > 1 )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
return glow;
|
|
}
|
|
|
|
|
|
static void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st, int numVertexes )
|
|
{
|
|
int i;
|
|
|
|
for ( i = 0; i < numVertexes; i++, st += 2 )
|
|
{
|
|
float s = st[0];
|
|
float t = st[1];
|
|
|
|
st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
|
|
st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st, int numVertexes )
|
|
{
|
|
float p;
|
|
texModInfo_t tmi;
|
|
|
|
p = 1.0f / EvalWaveForm( wf );
|
|
|
|
tmi.matrix[0][0] = p;
|
|
tmi.matrix[1][0] = 0;
|
|
tmi.translate[0] = 0.5f - 0.5f * p;
|
|
|
|
tmi.matrix[0][1] = 0;
|
|
tmi.matrix[1][1] = p;
|
|
tmi.translate[1] = 0.5f - 0.5f * p;
|
|
|
|
RB_CalcTransformTexCoords( &tmi, st, numVertexes );
|
|
}
|
|
|
|
|
|
static void RB_CalcDeformVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
|
|
{
|
|
float* xyz = (float*)&tess.xyz[firstVertex];
|
|
float* normal = (float*)&tess.normal[firstVertex];
|
|
vec3_t offset;
|
|
|
|
if ( ds->deformationWave.frequency == 0 )
|
|
{
|
|
const float scale = EvalWaveForm( &ds->deformationWave );
|
|
|
|
for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
VectorScale( normal, scale, offset );
|
|
|
|
xyz[0] += offset[0];
|
|
xyz[1] += offset[1];
|
|
xyz[2] += offset[2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const float* table = TableForFunc(ds->deformationWave.func);
|
|
|
|
for ( int i = 0; i < numVertexes; i++, xyz += 4, normal += 4 )
|
|
{
|
|
const float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;
|
|
const float scale = WaveValue( table, ds->deformationWave.base,
|
|
ds->deformationWave.amplitude,
|
|
ds->deformationWave.phase + off,
|
|
ds->deformationWave.frequency );
|
|
|
|
VectorScale( normal, scale, offset );
|
|
|
|
xyz[0] += offset[0];
|
|
xyz[1] += offset[1];
|
|
xyz[2] += offset[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// wiggle the normals for wavy environment mapping
|
|
static void RB_CalcDeformNormals( const deformStage_t* ds, int firstVertex, int numVertexes )
|
|
{
|
|
int i;
|
|
float scale;
|
|
const float *xyz = ( const float * ) &tess.xyz[firstVertex];
|
|
float *normal = ( float * ) &tess.normal[firstVertex];
|
|
|
|
for ( i = 0; i < numVertexes; i++, xyz += 4, normal += 4 ) {
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
tess.shaderTime * ds->deformationWave.frequency );
|
|
normal[ 0 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
tess.shaderTime * ds->deformationWave.frequency );
|
|
normal[ 1 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
scale = 0.98f;
|
|
scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
|
|
tess.shaderTime * ds->deformationWave.frequency );
|
|
normal[ 2 ] += ds->deformationWave.amplitude * scale;
|
|
|
|
VectorNormalizeFast( normal );
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcBulgeVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
|
|
{
|
|
int i;
|
|
const float *st = ( const float * ) &tess.texCoords[firstVertex];
|
|
float *xyz = ( float * ) &tess.xyz[firstVertex];
|
|
float *normal = ( float * ) &tess.normal[firstVertex];
|
|
float now;
|
|
|
|
now = backEnd.refdef.time * ds->bulgeSpeed / 1000.0f;
|
|
|
|
for ( i = 0; i < numVertexes; i++, xyz += 4, st += 2, normal += 4 ) {
|
|
int off;
|
|
float scale;
|
|
|
|
off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );
|
|
|
|
scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
|
|
|
|
xyz[0] += normal[0] * scale;
|
|
xyz[1] += normal[1] * scale;
|
|
xyz[2] += normal[2] * scale;
|
|
}
|
|
}
|
|
|
|
|
|
// a deformation that can move an entire surface along a wave path
|
|
static void RB_CalcMoveVertexes( const deformStage_t* ds, int firstVertex, int numVertexes )
|
|
{
|
|
const float* table = TableForFunc( ds->deformationWave.func );
|
|
const double scale = WaveValue( table, ds->deformationWave.base,
|
|
ds->deformationWave.amplitude,
|
|
ds->deformationWave.phase,
|
|
ds->deformationWave.frequency );
|
|
|
|
vec3_t offset;
|
|
VectorScale( ds->moveVector, scale, offset );
|
|
|
|
float* xyz = (float*)&tess.xyz[firstVertex];
|
|
for ( int i = 0; i < numVertexes; i++, xyz += 4 ) {
|
|
VectorAdd( xyz, offset, xyz );
|
|
}
|
|
}
|
|
|
|
|
|
// @TODO:
|
|
// Change a polygon into a bunch of text polygons
|
|
static void DeformText( const char *text ) {
|
|
int i;
|
|
vec3_t origin, width, height;
|
|
int len;
|
|
int ch;
|
|
byte color[4];
|
|
float bottom, top;
|
|
vec3_t mid;
|
|
|
|
height[0] = 0;
|
|
height[1] = 0;
|
|
height[2] = -1;
|
|
CrossProduct( tess.normal[0], height, width );
|
|
|
|
// find the midpoint of the box
|
|
VectorClear( mid );
|
|
bottom = 999999;
|
|
top = -999999;
|
|
for ( i = 0 ; i < 4 ; i++ ) {
|
|
VectorAdd( tess.xyz[i], mid, mid );
|
|
if ( tess.xyz[i][2] < bottom ) {
|
|
bottom = tess.xyz[i][2];
|
|
}
|
|
if ( tess.xyz[i][2] > top ) {
|
|
top = tess.xyz[i][2];
|
|
}
|
|
}
|
|
VectorScale( mid, 0.25f, origin );
|
|
|
|
// determine the individual character size
|
|
height[0] = 0;
|
|
height[1] = 0;
|
|
height[2] = ( top - bottom ) * 0.5f;
|
|
|
|
VectorScale( width, height[2] * -0.75f, width );
|
|
|
|
// determine the starting position
|
|
len = strlen( text );
|
|
VectorMA( origin, (len-1), width, origin );
|
|
|
|
// clear the shader indexes
|
|
tess.numIndexes = 0;
|
|
tess.numVertexes = 0;
|
|
|
|
color[0] = color[1] = color[2] = color[3] = 255;
|
|
|
|
// draw each character
|
|
for ( i = 0 ; i < len ; i++ ) {
|
|
ch = text[i];
|
|
ch &= 255;
|
|
|
|
if ( ch != ' ' ) {
|
|
int row, col;
|
|
float frow, fcol, size;
|
|
|
|
row = ch>>4;
|
|
col = ch&15;
|
|
|
|
frow = row*0.0625f;
|
|
fcol = col*0.0625f;
|
|
size = 0.0625f;
|
|
|
|
RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
|
|
}
|
|
VectorMA( origin, -2, width, origin );
|
|
}
|
|
}
|
|
|
|
|
|
static void GlobalVectorToLocal( const vec3_t in, vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in, backEnd.orient.axis[0] );
|
|
out[1] = DotProduct( in, backEnd.orient.axis[1] );
|
|
out[2] = DotProduct( in, backEnd.orient.axis[2] );
|
|
}
|
|
|
|
|
|
// assuming all the triangles for this shader are independant quads,
|
|
// rebuild them as forward facing sprites
|
|
static void AutospriteDeform( int firstVertex, int numVertexes, int firstIndex, int numIndexes )
|
|
{
|
|
int i;
|
|
float *xyz;
|
|
vec3_t mid, delta;
|
|
float radius;
|
|
vec3_t left, up;
|
|
vec3_t leftDir, upDir;
|
|
|
|
if ( numVertexes & 3 ) {
|
|
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name );
|
|
}
|
|
if ( numIndexes != ( numVertexes >> 2 ) * 6 ) {
|
|
ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name );
|
|
}
|
|
|
|
tess.numVertexes = firstVertex;
|
|
tess.numIndexes = firstIndex;
|
|
|
|
if ( backEnd.currentEntity != &tr.worldEntity ) {
|
|
GlobalVectorToLocal( backEnd.viewParms.orient.axis[1], leftDir );
|
|
GlobalVectorToLocal( backEnd.viewParms.orient.axis[2], upDir );
|
|
} else {
|
|
VectorCopy( backEnd.viewParms.orient.axis[1], leftDir );
|
|
VectorCopy( backEnd.viewParms.orient.axis[2], upDir );
|
|
}
|
|
|
|
for ( i = firstVertex ; i < firstVertex + numVertexes ; i+=4 ) {
|
|
// find the midpoint
|
|
xyz = tess.xyz[i];
|
|
|
|
mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
|
|
mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
|
|
mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);
|
|
|
|
VectorSubtract( xyz, mid, delta );
|
|
radius = VectorLength( delta ) * 0.707f; // / sqrt(2)
|
|
|
|
VectorScale( leftDir, radius, left );
|
|
VectorScale( upDir, radius, up );
|
|
|
|
if ( backEnd.viewParms.isMirror ) {
|
|
VectorSubtract( vec3_origin, left, left );
|
|
}
|
|
|
|
// compensate for scale in the axes if necessary
|
|
if ( backEnd.currentEntity->e.nonNormalizedAxes ) {
|
|
float axisLength = VectorLength( backEnd.currentEntity->e.axis[0] );
|
|
axisLength = axisLength ? (1.0f / axisLength) : 1.0f;
|
|
VectorScale(left, axisLength, left);
|
|
VectorScale(up, axisLength, up);
|
|
}
|
|
|
|
RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
|
|
}
|
|
}
|
|
|
|
|
|
// Autosprite2 will pivot a rectangular quad along the center of its long axis
|
|
static void Autosprite2Deform( int firstVertex, int numVertexes, int firstIndex, int numIndexes ) {
|
|
int i, j, k;
|
|
int indexes;
|
|
float *xyz;
|
|
vec3_t forward;
|
|
|
|
const int edgeVerts[6][2] = {
|
|
{ 0, 1 },
|
|
{ 0, 2 },
|
|
{ 0, 3 },
|
|
{ 1, 2 },
|
|
{ 1, 3 },
|
|
{ 2, 3 }
|
|
};
|
|
|
|
if ( numVertexes & 3 ) {
|
|
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name );
|
|
}
|
|
if ( numIndexes != ( numVertexes >> 2 ) * 6 ) {
|
|
ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name );
|
|
}
|
|
|
|
if ( backEnd.currentEntity != &tr.worldEntity ) {
|
|
GlobalVectorToLocal( backEnd.viewParms.orient.axis[0], forward );
|
|
} else {
|
|
VectorCopy( backEnd.viewParms.orient.axis[0], forward );
|
|
}
|
|
|
|
// this is a lot of work for two triangles...
|
|
// we could precalculate a lot of it is an issue, but it would mess up
|
|
// the shader abstraction
|
|
for ( i = firstVertex, indexes = firstIndex ; i < firstVertex + numVertexes ; i+=4, indexes+=6 ) {
|
|
float lengths[2];
|
|
int nums[2];
|
|
vec3_t mid[2];
|
|
vec3_t major, minor;
|
|
float *v1, *v2;
|
|
|
|
// find the midpoint
|
|
xyz = tess.xyz[i];
|
|
|
|
// identify the two shortest edges
|
|
nums[0] = nums[1] = 0;
|
|
lengths[0] = lengths[1] = 999999;
|
|
|
|
for ( j = 0 ; j < 6 ; j++ ) {
|
|
float l;
|
|
vec3_t temp;
|
|
|
|
v1 = xyz + 4 * edgeVerts[j][0];
|
|
v2 = xyz + 4 * edgeVerts[j][1];
|
|
|
|
VectorSubtract( v1, v2, temp );
|
|
|
|
l = DotProduct( temp, temp );
|
|
if ( l < lengths[0] ) {
|
|
nums[1] = nums[0];
|
|
lengths[1] = lengths[0];
|
|
nums[0] = j;
|
|
lengths[0] = l;
|
|
} else if ( l < lengths[1] ) {
|
|
nums[1] = j;
|
|
lengths[1] = l;
|
|
}
|
|
}
|
|
|
|
for ( j = 0 ; j < 2 ; j++ ) {
|
|
v1 = xyz + 4 * edgeVerts[nums[j]][0];
|
|
v2 = xyz + 4 * edgeVerts[nums[j]][1];
|
|
|
|
mid[j][0] = 0.5f * (v1[0] + v2[0]);
|
|
mid[j][1] = 0.5f * (v1[1] + v2[1]);
|
|
mid[j][2] = 0.5f * (v1[2] + v2[2]);
|
|
}
|
|
|
|
// find the vector of the major axis
|
|
VectorSubtract( mid[1], mid[0], major );
|
|
|
|
// cross this with the view direction to get minor axis
|
|
CrossProduct( major, forward, minor );
|
|
VectorNormalize( minor );
|
|
|
|
// re-project the points
|
|
for ( j = 0 ; j < 2 ; j++ ) {
|
|
float l;
|
|
|
|
v1 = xyz + 4 * edgeVerts[nums[j]][0];
|
|
v2 = xyz + 4 * edgeVerts[nums[j]][1];
|
|
|
|
l = 0.5 * sqrt( lengths[j] );
|
|
|
|
// we need to see which direction this edge
|
|
// is used to determine direction of projection
|
|
for ( k = 0 ; k < 5 ; k++ ) {
|
|
if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
|
|
&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( k == 5 ) {
|
|
VectorMA( mid[j], l, minor, v1 );
|
|
VectorMA( mid[j], -l, minor, v2 );
|
|
} else {
|
|
VectorMA( mid[j], -l, minor, v1 );
|
|
VectorMA( mid[j], l, minor, v2 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void RB_DeformTessGeometry( int firstVertex, int numVertexes, int firstIndex, int numIndexes )
|
|
{
|
|
int i;
|
|
const deformStage_t* ds;
|
|
|
|
for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
|
|
ds = &tess.shader->deforms[ i ];
|
|
|
|
switch ( ds->deformation ) {
|
|
case DEFORM_NONE:
|
|
break;
|
|
case DEFORM_NORMALS:
|
|
RB_CalcDeformNormals( ds, firstVertex, numVertexes );
|
|
break;
|
|
case DEFORM_WAVE:
|
|
RB_CalcDeformVertexes( ds, firstVertex, numVertexes );
|
|
break;
|
|
case DEFORM_BULGE:
|
|
RB_CalcBulgeVertexes( ds, firstVertex, numVertexes );
|
|
break;
|
|
case DEFORM_MOVE:
|
|
RB_CalcMoveVertexes( ds, firstVertex, numVertexes );
|
|
break;
|
|
case DEFORM_PROJECTION_SHADOW:
|
|
//RB_ProjectionShadowDeform();
|
|
break;
|
|
case DEFORM_AUTOSPRITE:
|
|
AutospriteDeform( firstVertex, numVertexes, firstIndex, numIndexes );
|
|
break;
|
|
case DEFORM_AUTOSPRITE2:
|
|
Autosprite2Deform( firstVertex, numVertexes, firstIndex, numIndexes );
|
|
break;
|
|
case DEFORM_TEXT0:
|
|
case DEFORM_TEXT1:
|
|
case DEFORM_TEXT2:
|
|
case DEFORM_TEXT3:
|
|
case DEFORM_TEXT4:
|
|
case DEFORM_TEXT5:
|
|
case DEFORM_TEXT6:
|
|
case DEFORM_TEXT7:
|
|
// @TODO:
|
|
DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcColorFromEntity( unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
int *pColors = ( int * ) dstColors;
|
|
int c;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;
|
|
|
|
for ( i = 0; i < numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = c;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
int *pColors = ( int * ) dstColors;
|
|
unsigned char invModulate[4];
|
|
int c;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
|
|
invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
|
|
invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
|
|
invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3]; // this trashes alpha, but the AGEN block fixes it
|
|
|
|
c = * ( int * ) invModulate;
|
|
|
|
for ( i = 0; i < numVertexes; i++, pColors++ )
|
|
{
|
|
*pColors = * ( int * ) invModulate;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcAlphaFromEntity( unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
dstColors += 3;
|
|
|
|
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
|
|
{
|
|
*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
|
|
if ( !backEnd.currentEntity )
|
|
return;
|
|
|
|
dstColors += 3;
|
|
|
|
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
|
|
{
|
|
*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
int *colors = ( int * ) dstColors;
|
|
byte color[4];
|
|
|
|
if ( wf->func == GF_NOISE ) {
|
|
glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude;
|
|
} else {
|
|
glow = EvalWaveForm( wf ) * tr.identityLight;
|
|
}
|
|
|
|
if ( glow < 0 ) {
|
|
glow = 0;
|
|
}
|
|
else if ( glow > 1 ) {
|
|
glow = 1;
|
|
}
|
|
|
|
v = myftol( 255 * glow );
|
|
color[0] = color[1] = color[2] = v;
|
|
color[3] = 255;
|
|
v = *(int *)color;
|
|
|
|
for ( i = 0; i < numVertexes; i++, colors++ ) {
|
|
*colors = v;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors, int numVertexes )
|
|
{
|
|
int i;
|
|
int v;
|
|
float glow;
|
|
|
|
glow = EvalWaveFormClamped( wf );
|
|
|
|
v = 255 * glow;
|
|
|
|
for ( i = 0; i < numVertexes; i++, dstColors += 4 )
|
|
{
|
|
dstColors[3] = v;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
========================
|
|
RB_CalcFogTexCoords
|
|
|
|
To do the clipped fog plane really correctly, we should use
|
|
projected textures, but I don't trust the drivers and it
|
|
doesn't fit our shader data.
|
|
========================
|
|
*/
|
|
void RB_CalcFogTexCoords( float *st, int firstVertex, int numVertexes ) {
|
|
int i;
|
|
float *v;
|
|
float s, t;
|
|
float eyeT;
|
|
qbool eyeOutside;
|
|
fog_t *fog;
|
|
vec3_t local;
|
|
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
|
|
|
|
fog = tr.world->fogs + tess.fogNum;
|
|
|
|
// all fogging distance is based on world Z units
|
|
VectorSubtract( backEnd.orient.origin, backEnd.viewParms.orient.origin, local );
|
|
fogDistanceVector[0] = -backEnd.orient.modelMatrix[2];
|
|
fogDistanceVector[1] = -backEnd.orient.modelMatrix[6];
|
|
fogDistanceVector[2] = -backEnd.orient.modelMatrix[10];
|
|
fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.orient.axis[0] );
|
|
|
|
// scale the fog vectors based on the fog's thickness
|
|
fogDistanceVector[0] *= fog->tcScale;
|
|
fogDistanceVector[1] *= fog->tcScale;
|
|
fogDistanceVector[2] *= fog->tcScale;
|
|
fogDistanceVector[3] *= fog->tcScale;
|
|
|
|
// rotate the gradient vector for this orientation
|
|
if ( fog->hasSurface ) {
|
|
fogDepthVector[0] = fog->surface[0] * backEnd.orient.axis[0][0] +
|
|
fog->surface[1] * backEnd.orient.axis[0][1] + fog->surface[2] * backEnd.orient.axis[0][2];
|
|
fogDepthVector[1] = fog->surface[0] * backEnd.orient.axis[1][0] +
|
|
fog->surface[1] * backEnd.orient.axis[1][1] + fog->surface[2] * backEnd.orient.axis[1][2];
|
|
fogDepthVector[2] = fog->surface[0] * backEnd.orient.axis[2][0] +
|
|
fog->surface[1] * backEnd.orient.axis[2][1] + fog->surface[2] * backEnd.orient.axis[2][2];
|
|
fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.orient.origin, fog->surface );
|
|
|
|
eyeT = DotProduct( backEnd.orient.viewOrigin, fogDepthVector ) + fogDepthVector[3];
|
|
} else {
|
|
eyeT = 1; // non-surface fog always has eye inside
|
|
}
|
|
|
|
// see if the viewpoint is outside
|
|
// this is needed for clipping distance even for constant fog
|
|
|
|
if ( eyeT < 0 ) {
|
|
eyeOutside = qtrue;
|
|
} else {
|
|
eyeOutside = qfalse;
|
|
}
|
|
|
|
fogDistanceVector[3] += 1.0/512;
|
|
|
|
v = tess.xyz[firstVertex];
|
|
st += firstVertex * 2;
|
|
|
|
// calculate density for each point
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4) {
|
|
// calculate the length in fog
|
|
s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3];
|
|
t = DotProduct( v, fogDepthVector ) + fogDepthVector[3];
|
|
|
|
// partially clipped fogs use the T axis
|
|
if ( eyeOutside ) {
|
|
if ( t < 1.0 ) {
|
|
t = 1.0/32; // point is outside, so no fogging
|
|
} else {
|
|
t = 1.0/32 + 30.0/32 * t / ( t - eyeT ); // cut the distance at the fog plane
|
|
}
|
|
} else {
|
|
if ( t < 0 ) {
|
|
t = 1.0/32; // point is outside, so no fogging
|
|
} else {
|
|
t = 31.0/32;
|
|
}
|
|
}
|
|
|
|
st[0] = s;
|
|
st[1] = t;
|
|
st += 2;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcModulateColorsByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
|
|
|
|
colors += firstVertex * 4;
|
|
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[0] *= f;
|
|
colors[1] *= f;
|
|
colors[2] *= f;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcModulateAlphasByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
|
|
|
|
colors += firstVertex * 4;
|
|
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[3] *= f;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcModulateRGBAsByFog( unsigned char *colors, int firstVertex, int numVertexes ) {
|
|
int i;
|
|
float texCoords[SHADER_MAX_VERTEXES][2];
|
|
|
|
// calculate texcoords so we can derive density
|
|
// this is not wasted, because it would only have
|
|
// been previously called if the surface was opaque
|
|
RB_CalcFogTexCoords( texCoords[0], firstVertex, numVertexes );
|
|
|
|
colors += firstVertex * 4;
|
|
for ( i = firstVertex; i < firstVertex + numVertexes; i++, colors += 4 ) {
|
|
float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
|
|
colors[0] *= f;
|
|
colors[1] *= f;
|
|
colors[2] *= f;
|
|
colors[3] *= f;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcEnvironmentTexCoords( float *st, int firstVertex, int numVertexes )
|
|
{
|
|
int i;
|
|
float *v, *normal;
|
|
vec3_t viewer, reflected;
|
|
float d;
|
|
|
|
v = tess.xyz[firstVertex];
|
|
normal = tess.normal[firstVertex];
|
|
st += firstVertex * 2;
|
|
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, st += 2 )
|
|
{
|
|
VectorSubtract (backEnd.orient.viewOrigin, v, viewer);
|
|
VectorNormalizeFast (viewer);
|
|
|
|
d = DotProduct (normal, viewer);
|
|
|
|
reflected[0] = normal[0]*2*d - viewer[0];
|
|
reflected[1] = normal[1]*2*d - viewer[1];
|
|
reflected[2] = normal[2]*2*d - viewer[2];
|
|
|
|
st[0] = 0.5 + reflected[1] * 0.5;
|
|
st[1] = 0.5 - reflected[2] * 0.5;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st, int numVertexes )
|
|
{
|
|
int i;
|
|
double now;
|
|
|
|
now = ( wf->phase + tess.shaderTime * wf->frequency );
|
|
|
|
for ( i = 0; i < numVertexes; i++, st += 2 )
|
|
{
|
|
float s = st[0];
|
|
float t = st[1];
|
|
|
|
st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
|
st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcScaleTexCoords( const float scale[2], float *st, int numVertexes )
|
|
{
|
|
int i;
|
|
|
|
for ( i = 0; i < numVertexes; i++, st += 2 )
|
|
{
|
|
st[0] *= scale[0];
|
|
st[1] *= scale[1];
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st, int numVertexes )
|
|
{
|
|
int i;
|
|
double timeScale = tess.shaderTime;
|
|
double adjustedScrollS, adjustedScrollT;
|
|
|
|
adjustedScrollS = (double)scrollSpeed[0] * timeScale;
|
|
adjustedScrollT = (double)scrollSpeed[1] * timeScale;
|
|
|
|
// clamp so coordinates don't continuously get larger, causing problems
|
|
// with hardware limits
|
|
adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
|
|
adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );
|
|
|
|
for ( i = 0; i < numVertexes; i++, st += 2 )
|
|
{
|
|
st[0] += adjustedScrollS;
|
|
st[1] += adjustedScrollT;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcRotateTexCoords( float degsPerSecond, float *st, int numVertexes )
|
|
{
|
|
double timeScale = tess.shaderTime;
|
|
|
|
double degs = -degsPerSecond * timeScale;
|
|
int index = degs * ( FUNCTABLE_SIZE / 360.0f );
|
|
|
|
float sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
|
|
float cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];
|
|
|
|
texModInfo_t tmi;
|
|
tmi.matrix[0][0] = cosValue;
|
|
tmi.matrix[1][0] = -sinValue;
|
|
tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;
|
|
|
|
tmi.matrix[0][1] = sinValue;
|
|
tmi.matrix[1][1] = cosValue;
|
|
tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;
|
|
|
|
RB_CalcTransformTexCoords( &tmi, st, numVertexes );
|
|
}
|
|
|
|
|
|
/*
|
|
** RB_CalcSpecularAlpha
|
|
**
|
|
** Calculates specular coefficient and places it in the alpha channel
|
|
*/
|
|
vec3_t lightOrigin = { -960, 1980, 96 }; // FIXME: track dynamically
|
|
|
|
void RB_CalcSpecularAlpha( unsigned char *alphas, int firstVertex, int numVertexes ) {
|
|
int i;
|
|
float *v, *normal;
|
|
vec3_t viewer, reflected;
|
|
float l, d;
|
|
int b;
|
|
vec3_t lightDir;
|
|
|
|
v = tess.xyz[firstVertex];
|
|
normal = tess.normal[firstVertex];
|
|
alphas += (firstVertex * 4) + 3;
|
|
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
|
|
float ilength;
|
|
|
|
VectorSubtract( lightOrigin, v, lightDir );
|
|
VectorNormalizeFast( lightDir );
|
|
|
|
// calculate the specular color
|
|
d = DotProduct (normal, lightDir);
|
|
|
|
// we don't optimize for the d < 0 case since this tends to
|
|
// cause visual artifacts such as faceted "snapping"
|
|
reflected[0] = normal[0]*2*d - lightDir[0];
|
|
reflected[1] = normal[1]*2*d - lightDir[1];
|
|
reflected[2] = normal[2]*2*d - lightDir[2];
|
|
|
|
VectorSubtract (backEnd.orient.viewOrigin, v, viewer);
|
|
ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
|
|
l = DotProduct (reflected, viewer);
|
|
l *= ilength;
|
|
|
|
if (l < 0) {
|
|
b = 0;
|
|
} else {
|
|
l = l*l;
|
|
l = l*l;
|
|
b = l * 255;
|
|
if (b > 255) {
|
|
b = 255;
|
|
}
|
|
}
|
|
|
|
*alphas = b;
|
|
}
|
|
}
|
|
|
|
|
|
static void RB_CalcDiffuseColor( unsigned char *colors, int firstVertex, int numVertexes )
|
|
{
|
|
int i, j;
|
|
float *v, *normal;
|
|
float incoming;
|
|
trRefEntity_t *ent;
|
|
int ambientLightInt;
|
|
vec3_t ambientLight;
|
|
vec3_t lightDir;
|
|
vec3_t directedLight;
|
|
|
|
ent = backEnd.currentEntity;
|
|
if (!ent || !numVertexes)
|
|
return;
|
|
|
|
ambientLightInt = ent->ambientLightInt;
|
|
VectorCopy( ent->ambientLight, ambientLight );
|
|
VectorCopy( ent->directedLight, directedLight );
|
|
VectorCopy( ent->lightDir, lightDir );
|
|
|
|
v = tess.xyz[firstVertex];
|
|
normal = tess.normal[firstVertex];
|
|
colors += firstVertex * 4;
|
|
|
|
for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
|
|
incoming = DotProduct (normal, lightDir);
|
|
if ( incoming <= 0 ) {
|
|
*(int *)&colors[i*4] = ambientLightInt;
|
|
continue;
|
|
}
|
|
j = myftol( ambientLight[0] + incoming * directedLight[0] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+0] = j;
|
|
|
|
j = myftol( ambientLight[1] + incoming * directedLight[1] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+1] = j;
|
|
|
|
j = myftol( ambientLight[2] + incoming * directedLight[2] );
|
|
if ( j > 255 ) {
|
|
j = 255;
|
|
}
|
|
colors[i*4+2] = j;
|
|
|
|
colors[i*4+3] = 255;
|
|
}
|
|
}
|
|
|
|
|
|
void R_ComputeColors( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes )
|
|
{
|
|
//
|
|
// rgbGen
|
|
//
|
|
switch ( pStage->rgbGen )
|
|
{
|
|
case CGEN_IDENTITY:
|
|
Com_Memset( &svars.colors[firstVertex], 0xff, numVertexes * 4 );
|
|
break;
|
|
default:
|
|
case CGEN_IDENTITY_LIGHTING:
|
|
Com_Memset( &svars.colors[firstVertex], tr.identityLightByte, numVertexes * 4 );
|
|
break;
|
|
case CGEN_LIGHTING_DIFFUSE:
|
|
RB_CalcDiffuseColor( ( unsigned char * ) &svars.colors[firstVertex], firstVertex, numVertexes );
|
|
break;
|
|
case CGEN_CONST:
|
|
for (int i = firstVertex; i < firstVertex + numVertexes; i++) {
|
|
*(int *)svars.colors[i] = *(int *)pStage->constantColor;
|
|
}
|
|
break;
|
|
case CGEN_VERTEX:
|
|
if ( tr.identityLight == 1 )
|
|
{
|
|
Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) );
|
|
}
|
|
else
|
|
{
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
|
|
{
|
|
svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight;
|
|
svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight;
|
|
svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight;
|
|
svars.colors[i][3] = tess.vertexColors[i][3];
|
|
}
|
|
}
|
|
break;
|
|
case CGEN_EXACT_VERTEX:
|
|
Com_Memcpy( &svars.colors[firstVertex], &tess.vertexColors[firstVertex], numVertexes * sizeof( tess.vertexColors[0] ) );
|
|
break;
|
|
case CGEN_ONE_MINUS_VERTEX:
|
|
if ( tr.identityLight == 1 )
|
|
{
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
|
|
{
|
|
svars.colors[i][0] = 255 - tess.vertexColors[i][0];
|
|
svars.colors[i][1] = 255 - tess.vertexColors[i][1];
|
|
svars.colors[i][2] = 255 - tess.vertexColors[i][2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ )
|
|
{
|
|
svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight;
|
|
svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight;
|
|
svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight;
|
|
}
|
|
}
|
|
break;
|
|
case CGEN_FOG:
|
|
{
|
|
const fog_t* fog = tr.world->fogs + tess.fogNum;
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
*(int*)&svars.colors[i] = fog->colorInt;
|
|
}
|
|
}
|
|
break;
|
|
case CGEN_WAVEFORM:
|
|
RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
case CGEN_ENTITY:
|
|
RB_CalcColorFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
case CGEN_ONE_MINUS_ENTITY:
|
|
RB_CalcColorFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
}
|
|
|
|
//
|
|
// alphaGen
|
|
//
|
|
switch ( pStage->alphaGen )
|
|
{
|
|
case AGEN_SKIP:
|
|
break;
|
|
case AGEN_IDENTITY:
|
|
if ( pStage->rgbGen != CGEN_IDENTITY ) {
|
|
if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) ||
|
|
pStage->rgbGen != CGEN_VERTEX ) {
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
svars.colors[i][3] = 0xff;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AGEN_CONST:
|
|
if ( pStage->rgbGen != CGEN_CONST ) {
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
svars.colors[i][3] = pStage->constantColor[3];
|
|
}
|
|
}
|
|
break;
|
|
case AGEN_WAVEFORM:
|
|
RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
case AGEN_LIGHTING_SPECULAR:
|
|
RB_CalcSpecularAlpha( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
|
|
break;
|
|
case AGEN_ENTITY:
|
|
RB_CalcAlphaFromEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
case AGEN_ONE_MINUS_ENTITY:
|
|
RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) &svars.colors[firstVertex], numVertexes );
|
|
break;
|
|
case AGEN_VERTEX:
|
|
if ( pStage->rgbGen != CGEN_VERTEX ) {
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
svars.colors[i][3] = tess.vertexColors[i][3];
|
|
}
|
|
}
|
|
break;
|
|
case AGEN_ONE_MINUS_VERTEX:
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
svars.colors[i][3] = 255 - tess.vertexColors[i][3];
|
|
}
|
|
break;
|
|
case AGEN_PORTAL:
|
|
{
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; i++ ) {
|
|
vec3_t v;
|
|
VectorSubtract( tess.xyz[i], backEnd.viewParms.orient.origin, v );
|
|
float len = VectorLength( v ) / tess.shader->portalRange;
|
|
svars.colors[i][3] = (byte)Com_Clamp( 0, 255, len * 255 );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
//
|
|
// fog adjustment for colors to fade out as fog increases
|
|
//
|
|
if ( tess.fogNum )
|
|
{
|
|
switch ( pStage->adjustColorsForFog )
|
|
{
|
|
case ACFF_MODULATE_RGB:
|
|
RB_CalcModulateColorsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
|
|
break;
|
|
case ACFF_MODULATE_ALPHA:
|
|
RB_CalcModulateAlphasByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
|
|
break;
|
|
case ACFF_MODULATE_RGBA:
|
|
RB_CalcModulateRGBAsByFog( ( unsigned char * ) svars.colors, firstVertex, numVertexes );
|
|
break;
|
|
case ACFF_NONE:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void R_ComputeTexCoords( const shaderStage_t* pStage, stageVars_t& svars, int firstVertex, int numVertexes, qbool ptrOpt )
|
|
{
|
|
svars.texcoordsptr = svars.texcoords;
|
|
|
|
// generate the base texture coordinates
|
|
|
|
switch ( pStage->tcGen )
|
|
{
|
|
case TCGEN_IDENTITY:
|
|
Com_Memset( svars.texcoords + firstVertex, 0, sizeof( float ) * 2 * numVertexes );
|
|
break;
|
|
|
|
case TCGEN_TEXTURE:
|
|
if ( !ptrOpt || pStage->numTexMods > 0 || pStage->type == ST_LIGHTMAP )
|
|
Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords[firstVertex], numVertexes * sizeof(vec2_t) );
|
|
else
|
|
svars.texcoordsptr = tess.texCoords;
|
|
break;
|
|
|
|
case TCGEN_LIGHTMAP:
|
|
if ( !ptrOpt || pStage->numTexMods > 0 )
|
|
Com_Memcpy( svars.texcoords[firstVertex], tess.texCoords2[firstVertex], numVertexes * sizeof(vec2_t) );
|
|
else
|
|
svars.texcoordsptr = tess.texCoords2;
|
|
break;
|
|
|
|
case TCGEN_VECTOR:
|
|
for ( int i = firstVertex ; i < firstVertex + numVertexes ; i++ ) {
|
|
svars.texcoords[i][0] = DotProduct( tess.xyz[i], pStage->tcGenVectors[0] );
|
|
svars.texcoords[i][1] = DotProduct( tess.xyz[i], pStage->tcGenVectors[1] );
|
|
}
|
|
break;
|
|
|
|
case TCGEN_FOG:
|
|
RB_CalcFogTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes );
|
|
break;
|
|
|
|
case TCGEN_ENVIRONMENT_MAPPED:
|
|
RB_CalcEnvironmentTexCoords( ( float * ) svars.texcoords, firstVertex, numVertexes );
|
|
break;
|
|
|
|
case TCGEN_BAD:
|
|
return;
|
|
}
|
|
|
|
// then alter for any tcmods
|
|
|
|
for ( int i = 0; i < pStage->numTexMods; ++i ) {
|
|
switch ( pStage->texMods[i].type )
|
|
{
|
|
case TMOD_NONE:
|
|
i = TR_MAX_TEXMODS; // break out of for loop
|
|
break;
|
|
|
|
case TMOD_TURBULENT:
|
|
RB_CalcTurbulentTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_ENTITY_TRANSLATE:
|
|
RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_SCROLL:
|
|
RB_CalcScrollTexCoords( pStage->texMods[i].scroll, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_SCALE:
|
|
RB_CalcScaleTexCoords( pStage->texMods[i].scale, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_STRETCH:
|
|
RB_CalcStretchTexCoords( &pStage->texMods[i].wave, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_TRANSFORM:
|
|
RB_CalcTransformTexCoords( &pStage->texMods[i], (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
case TMOD_ROTATE:
|
|
RB_CalcRotateTexCoords( pStage->texMods[i].rotateSpeed, (float*)&svars.texcoords[firstVertex], numVertexes );
|
|
break;
|
|
|
|
default:
|
|
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'\n", pStage->texMods[i].type, tess.shader->name );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// fix up uncorrected lightmap texture coordinates
|
|
|
|
if ( pStage->type == ST_LIGHTMAP && pStage->tcGen != TCGEN_LIGHTMAP )
|
|
{
|
|
const shader_t* const shader = tess.shader;
|
|
|
|
for ( int i = firstVertex; i < firstVertex + numVertexes; ++i )
|
|
{
|
|
svars.texcoords[i][0] = svars.texcoords[i][0] * shader->lmScale[0] + shader->lmBias[0];
|
|
svars.texcoords[i][1] = svars.texcoords[i][1] * shader->lmScale[1] + shader->lmBias[1];
|
|
}
|
|
}
|
|
}
|
|
|