cnq3/code/renderer/tr_backend_gl2.cpp

1601 lines
41 KiB
C++
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// OpenGL 2.0+ rendering back-end
#include "tr_local.h"
#include "GL/glew.h"
#define GL_INDEX_TYPE GL_UNSIGNED_INT
// the renderer front end should never modify glstate_t
typedef struct {
int currenttmu;
int texID[MAX_TMUS];
int texEnv[MAX_TMUS];
qbool finishCalled;
int faceCulling;
unsigned glStateBits;
} glstate_t;
static glstate_t glState;
static void GL_Bind( const image_t* image );
static void GL_SelectTexture( int unit );
static void GL_State( unsigned long stateVector );
static void GL_TexEnv( int env );
static void GL_Cull( int cullType );
static void R_BindAnimatedImage( const textureBundle_t* bundle );
static void RB_FogPass();
static void GAL_Begin2D();
static GLint GetTexEnv( texEnv_t texEnv );
void GL_GetRenderTargetFormat( GLenum* internalFormat, GLenum* format, GLenum* type, int cnq3Format );
void GL_CreateColorRenderBufferStorageMS( int* samples );
struct GLSL_Program {
GLuint p; // linked program
GLuint vs; // vertex shader
GLuint fs; // fragment shader
};
static GLuint progCurrent;
static void GL_Program( const GLSL_Program& prog )
{
assert( prog.p );
if ( prog.p != progCurrent ) {
glUseProgram( prog.p );
progCurrent = prog.p;
}
}
static void GL_Program()
{
if ( progCurrent != 0 ) {
glUseProgram(0);
progCurrent = 0;
}
}
static GLSL_Program dynLightProg;
struct GLSL_DynLightProgramAttribs {
// vertex shader:
GLint osEyePos; // 4f, object-space
GLint osLightPos; // 4f, object-space
// pixel shader:
GLint texture; // 2D texture
GLint lightColorRadius; // 4f, w = 1 / (r^2)
GLint opaqueIntensity; // 2f
};
static GLSL_DynLightProgramAttribs dynLightProgAttribs;
static void GAL_BeginDynamicLight()
{
GL_Program( dynLightProg );
const dlight_t* dl = tess.light;
vec3_t lightColor;
VectorCopy( dl->color, lightColor );
glUniform4f( dynLightProgAttribs.osLightPos, dl->transformed[0], dl->transformed[1], dl->transformed[2], 0.0f );
glUniform4f( dynLightProgAttribs.osEyePos, backEnd.orient.viewOrigin[0], backEnd.orient.viewOrigin[1], backEnd.orient.viewOrigin[2], 0.0f );
glUniform4f( dynLightProgAttribs.lightColorRadius, lightColor[0], lightColor[1], lightColor[2], 1.0f / Square(dl->radius) );
glUniform1i( dynLightProgAttribs.texture, 0 ); // we use texture unit 0
}
static void DrawDynamicLight()
{
GL_Cull( tess.shader->cullType );
if ( tess.shader->polygonOffset )
glEnable( GL_POLYGON_OFFSET_FILL );
glUniform2f( dynLightProgAttribs.opaqueIntensity, backEnd.dlOpaque ? 1.0f : 0.0f, backEnd.dlIntensity );
const int stage = tess.shader->lightingStages[ST_DIFFUSE];
const shaderStage_t* pStage = tess.xstages[ stage ];
// since this is guaranteed to be a single pass, fill and lock all the arrays
glDisableClientState( GL_COLOR_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( 2, GL_FLOAT, 0, tess.svars[stage].texcoordsptr );
glEnableClientState( GL_NORMAL_ARRAY );
glNormalPointer( GL_FLOAT, 16, tess.normal );
glVertexPointer( 3, GL_FLOAT, 16, tess.xyz );
glLockArraysEXT( 0, tess.numVertexes );
GL_State( backEnd.dlStateBits );
GL_SelectTexture( 0 );
R_BindAnimatedImage( &pStage->bundle );
glDrawElements( GL_TRIANGLES, tess.dlNumIndexes, GL_INDEX_TYPE, tess.dlIndexes );
glUnlockArraysEXT();
glDisableClientState( GL_NORMAL_ARRAY );
if ( tess.shader->polygonOffset )
glDisable( GL_POLYGON_OFFSET_FILL );
}
// returns qtrue if needs to break early
static qbool GL2_StageIterator_MultitextureStage( int stage )
{
const shaderStage_t* const pStage = tess.xstages[stage];
GL_SelectTexture( 1 );
glEnable( GL_TEXTURE_2D );
GL_TexEnv( GetTexEnv( pStage->mtEnv ) );
R_BindAnimatedImage( &pStage->bundle );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( 2, GL_FLOAT, 0, tess.svars[stage].texcoordsptr );
glDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
glDisable( GL_TEXTURE_2D );
GL_SelectTexture( 0 );
return qfalse;
}
static void DrawGeneric()
{
GL_Program();
GL_Cull( tess.shader->cullType );
if ( tess.shader->polygonOffset )
glEnable( GL_POLYGON_OFFSET_FILL );
// geometry is per-shader and can be compiled
// color and tc are per-stage, and can't
glDisableClientState( GL_COLOR_ARRAY );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glVertexPointer( 3, GL_FLOAT, 16, tess.xyz ); // padded for SIMD
glLockArraysEXT( 0, tess.numVertexes );
glEnableClientState( GL_COLOR_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
for ( int stage = 0; stage < tess.shader->numStages; ++stage ) {
const shaderStage_t* pStage = tess.xstages[stage];
glColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars[stage].colors );
glTexCoordPointer( 2, GL_FLOAT, 0, tess.svars[stage].texcoordsptr );
R_BindAnimatedImage( &pStage->bundle );
GL_State( pStage->stateBits );
if ( pStage->mtStages ) {
// we can't really cope with massive collapses, so
assert( pStage->mtStages == 1 );
if ( GL2_StageIterator_MultitextureStage( stage + 1 ) )
break;
stage += pStage->mtStages;
continue;
}
glDrawElements( GL_TRIANGLES, tess.numIndexes, GL_INDEX_TYPE, tess.indexes );
}
if ( tess.drawFog )
RB_FogPass();
glUnlockArraysEXT();
if ( tess.shader->polygonOffset )
glDisable( GL_POLYGON_OFFSET_FILL );
}
static void GAL_Draw( drawType_t type )
{
if ( type == DT_DYNAMIC_LIGHT )
DrawDynamicLight();
else
DrawGeneric();
}
static qbool GL2_CreateShader( GLuint* shaderPtr, GLenum shaderType, const char* shaderSource )
{
GLuint shader = glCreateShader( shaderType );
glShaderSource( shader, 1, &shaderSource, NULL );
glCompileShader( shader );
GLint result = GL_FALSE;
glGetShaderiv( shader, GL_COMPILE_STATUS, &result );
if ( result == GL_TRUE ) {
*shaderPtr = shader;
return qtrue;
}
GLint logLength = 0;
glGetShaderiv( shader, GL_INFO_LOG_LENGTH, &logLength );
static char log[4096]; // I've seen logs over 3 KB in size.
glGetShaderInfoLog( shader, sizeof(log), NULL, log );
ri.Printf( PRINT_ERROR, "%s shader: %s\n", shaderType == GL_VERTEX_SHADER ? "Vertex" : "Fragment", log );
return qfalse;
}
static qbool GL2_CreateProgram( GLSL_Program& prog, const char* vs, const char* fs )
{
if ( !GL2_CreateShader( &prog.vs, GL_VERTEX_SHADER, vs ) )
return qfalse;
if ( !GL2_CreateShader( &prog.fs, GL_FRAGMENT_SHADER, fs ) )
return qfalse;
prog.p = glCreateProgram();
glAttachShader( prog.p, prog.vs );
glAttachShader( prog.p, prog.fs );
glLinkProgram( prog.p );
return qtrue;
}
// We don't use "gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;"
// because most everything is rendered using the fixed function pipeline and
// ftransform makes sure we get matching results (and thus avoid Z-fighting).
static const char* dynLightVS =
"uniform vec4 osLightPos;\n"
"uniform vec4 osEyePos;\n"
"varying vec4 L;\n" // object-space light vector
"varying vec4 V;\n" // object-space view vector
"varying vec3 nN;\n" // normalized object-space normal vector
"\n"
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
" L = osLightPos - gl_Vertex;\n"
" V = osEyePos - gl_Vertex;\n"
" nN = gl_Normal;\n"
"}\n"
"";
static const char* dynLightFS =
"uniform sampler2D texture;\n"
"uniform vec4 lightColorRadius;\n" // w = 1 / (r^2)
"uniform vec2 opaqueIntensity;\n"
"varying vec4 L;\n" // object-space light vector
"varying vec4 V;\n" // object-space view vector
"varying vec3 nN;\n" // normalized object-space normal vector
"\n"
"float BezierEase(float t)\n"
"{\n"
" return t * t * (3.0 - 2.0 * t);\n"
"}\n"
"\n"
"void main()\n"
"{\n"
" vec4 base = texture2D(texture, gl_TexCoord[0].xy);\n"
" vec3 nL = normalize(L.xyz);\n" // normalized light vector
" vec3 nV = normalize(V.xyz);\n" // normalized view vector
// light intensity
" float intensFactor = min(dot(L.xyz, L.xyz) * lightColorRadius.w, 1.0);"
" vec3 intens = lightColorRadius.rgb * BezierEase(1.0 - sqrt(intensFactor));\n"
// specular reflection term (N.H)
" float specFactor = min(abs(dot(nN, normalize(nL + nV))), 1.0);\n"
" float spec = pow(specFactor, 16.0) * 0.25;\n"
// Lambertian diffuse reflection term (N.L)
" float diffuse = min(abs(dot(nN, nL)), 1.0);\n"
" vec3 color = (base.rgb * vec3(diffuse) + vec3(spec)) * intens * opaqueIntensity.y;\n"
" float alpha = mix(opaqueIntensity.x, 1.0, base.a);\n"
" gl_FragColor = vec4(color.rgb * alpha, alpha);\n"
"}\n"
"";
struct FrameBuffer {
GLuint fbo;
GLuint color; // texture if MS, buffer if SS
GLuint depthStencil; // texture if MS, buffer if SS
qbool multiSampled;
qbool hasDepthStencil;
};
static FrameBuffer frameBufferMain;
static FrameBuffer frameBuffersPostProcess[2];
static unsigned int frameBufferReadIndex = 0; // read this for the latest color/depth data
static qbool frameBufferMultiSampling = qfalse;
#define GL( call ) call; GL2_CheckError( #call, __FUNCTION__, __FILE__, __LINE__ )
static const char* GL2_GetErrorString( GLenum ec )
{
#define CASE( x ) case x: return #x
switch ( ec )
{
CASE( GL_NO_ERROR );
CASE( GL_INVALID_ENUM );
CASE( GL_INVALID_VALUE );
CASE( GL_INVALID_OPERATION );
CASE( GL_INVALID_FRAMEBUFFER_OPERATION );
CASE( GL_OUT_OF_MEMORY );
CASE( GL_STACK_UNDERFLOW );
CASE( GL_STACK_OVERFLOW );
default: return "?";
}
#undef CASE
}
static void GL2_CheckError( const char* call, const char* function, const char* file, int line )
{
const GLenum ec = glGetError();
if ( ec == GL_NO_ERROR )
return;
const char* fileName = file;
while ( *file )
{
if ( *file == '/' || *file == '\\' )
fileName = file + 1;
++file;
}
ri.Printf( PRINT_ERROR, "%s failed\n", call );
ri.Printf( PRINT_ERROR, "%s:%d in %s\n", fileName, line, function );
ri.Printf( PRINT_ERROR, "GL error code: 0x%X (%d)\n", (unsigned int)ec, (int)ec );
ri.Printf( PRINT_ERROR, "GL error message: %s\n", GL2_GetErrorString(ec) );
}
static qbool GL2_FBO_CreateSS( FrameBuffer& fb, qbool depthStencil )
{
while ( glGetError() != GL_NO_ERROR ) {} // clear the error queue
if ( depthStencil )
{
GL(glGenTextures( 1, &fb.depthStencil ));
GL(glBindTexture( GL_TEXTURE_2D, fb.depthStencil ));
GL(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST ));
GL(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ));
GL(glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, glConfig.vidWidth, glConfig.vidHeight, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL ));
}
GLenum internalFormat, format, type;
GL_GetRenderTargetFormat( &internalFormat, &format, &type, r_rtColorFormat->integer );
GL(glGenTextures( 1, &fb.color ));
GL(glBindTexture( GL_TEXTURE_2D, fb.color ));
GL(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ));
GL(glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ));
GL(glTexImage2D( GL_TEXTURE_2D, 0, internalFormat, glConfig.vidWidth, glConfig.vidHeight, 0, format, type, NULL ));
GL(glGenFramebuffers( 1, &fb.fbo ));
GL(glBindFramebuffer( GL_FRAMEBUFFER, fb.fbo ));
GL(glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb.color, 0 ));
if ( depthStencil )
GL(glFramebufferTexture2D( GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, fb.depthStencil, 0 ));
const GLenum fboStatus = glCheckFramebufferStatus( GL_FRAMEBUFFER );
if ( fboStatus != GL_FRAMEBUFFER_COMPLETE )
{
ri.Error( ERR_FATAL, "Failed to create FBO (status 0x%X, error 0x%X)\n", (unsigned int)fboStatus, (unsigned int)glGetError() );
return qfalse;
}
glBindFramebuffer( GL_FRAMEBUFFER, 0 );
fb.multiSampled = qfalse;
fb.hasDepthStencil = depthStencil;
return qtrue;
}
static qbool GL2_FBO_CreateMS( int* sampleCount, FrameBuffer& fb )
{
while ( glGetError() != GL_NO_ERROR ) {} // clear the error queue
GL(glGenFramebuffers( 1, &fb.fbo ));
GL(glBindFramebuffer( GL_FRAMEBUFFER, fb.fbo ));
GL(glGenRenderbuffers( 1, &fb.color ));
GL(glBindRenderbuffer( GL_RENDERBUFFER, fb.color ));
GL_CreateColorRenderBufferStorageMS( sampleCount );
GL(glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, fb.color ));
GL(glGenRenderbuffers( 1, &fb.depthStencil ));
GL(glBindRenderbuffer( GL_RENDERBUFFER, fb.depthStencil ));
GL(glRenderbufferStorageMultisample( GL_RENDERBUFFER, *sampleCount, GL_DEPTH24_STENCIL8, glConfig.vidWidth, glConfig.vidHeight ));
GL(glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, fb.color ));
GL(glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, fb.depthStencil ));
const GLenum fboStatus = glCheckFramebufferStatus( GL_FRAMEBUFFER );
if ( fboStatus != GL_FRAMEBUFFER_COMPLETE )
{
ri.Error( ERR_FATAL, "Failed to create FBO (status 0x%X, error 0x%X)\n", (unsigned int)fboStatus, (unsigned int)glGetError() );
return qfalse;
}
glBindFramebuffer( GL_FRAMEBUFFER, 0 );
fb.multiSampled = qtrue;
fb.hasDepthStencil = qtrue;
return qtrue;
}
static qbool GL2_FBO_Init()
{
const qbool enable = r_msaa->integer >= 2;
frameBufferMultiSampling = enable;
int finalSampleCount = 1;
qbool result = qfalse;
if ( enable ) {
result =
GL2_FBO_CreateMS( &finalSampleCount, frameBufferMain ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[0], qfalse ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[1], qfalse );
} else {
result =
GL2_FBO_CreateSS( frameBuffersPostProcess[0], qtrue ) &&
GL2_FBO_CreateSS( frameBuffersPostProcess[1], qtrue );
}
if ( result )
ri.Printf( PRINT_ALL, "MSAA: %d samples requested, %d selected\n", r_msaa->integer, finalSampleCount );
return result;
}
static void GL2_FBO_Bind( const FrameBuffer& fb )
{
glBindFramebuffer( GL_FRAMEBUFFER, fb.fbo );
glReadBuffer( GL_COLOR_ATTACHMENT0 );
glDrawBuffer( GL_COLOR_ATTACHMENT0 );
}
static void GL2_FBO_Bind()
{
GL2_FBO_Bind( frameBuffersPostProcess[frameBufferReadIndex] );
}
static void GL2_FBO_Swap()
{
frameBufferReadIndex ^= 1;
}
static void GL2_FBO_BlitSSToBackBuffer()
{
// fixing up the blit mode here to avoid unnecessary glClear calls
int blitMode = r_blitMode->integer;
if ( r_mode->integer != VIDEOMODE_UPSCALE )
blitMode = BLITMODE_STRETCHED;
if ( blitMode != BLITMODE_STRETCHED ) {
glBindFramebuffer( GL_FRAMEBUFFER, 0 );
glClearColor( 0.0f, 0.0f, 0.0f, 0.0f );
glClear( GL_COLOR_BUFFER_BIT );
}
const FrameBuffer& fbo = frameBuffersPostProcess[frameBufferReadIndex];
glBindFramebuffer( GL_READ_FRAMEBUFFER, fbo.fbo );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 );
glReadBuffer( GL_COLOR_ATTACHMENT0 );
glDrawBuffer( GL_BACK );
const int sw = glConfig.vidWidth;
const int sh = glConfig.vidHeight;
const int dw = glInfo.winWidth;
const int dh = glInfo.winHeight;
if ( blitMode == BLITMODE_STRETCHED ) {
glBlitFramebuffer( 0, 0, sw, sh, 0, 0, dw, dh, GL_COLOR_BUFFER_BIT, GL_LINEAR );
} else if ( blitMode == BLITMODE_CENTERED ) {
const int dx = ( dw - sw ) / 2;
const int dy = ( dh - sh ) / 2;
glBlitFramebuffer( 0, 0, sw, sh, dx, dy, dx + sw, dy + sh, GL_COLOR_BUFFER_BIT, GL_LINEAR );
} else { // blitMode == BLITMODE_ASPECT
const float rx = (float)dw / (float)sw;
const float ry = (float)dh / (float)sh;
const float ar = min( rx, ry );
const int w = (int)( sw * ar );
const int h = (int)( sh * ar );
const int x = ( dw - w ) / 2;
const int y = ( dh - h ) / 2;
glBlitFramebuffer( 0, 0, sw, sh, x, y, x + w, y + h, GL_COLOR_BUFFER_BIT, GL_LINEAR );
}
}
static void GL2_FBO_BlitMSToSS()
{
const FrameBuffer& r = frameBufferMain;
const FrameBuffer& d = frameBuffersPostProcess[frameBufferReadIndex];
glBindFramebuffer( GL_READ_FRAMEBUFFER, r.fbo );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, d.fbo );
glReadBuffer( GL_COLOR_ATTACHMENT0 );
glDrawBuffer( GL_COLOR_ATTACHMENT0 );
const int w = glConfig.vidWidth;
const int h = glConfig.vidHeight;
glBlitFramebuffer( 0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR );
}
static void GL2_FullScreenQuad()
{
const float w = glConfig.vidWidth;
const float h = glConfig.vidHeight;
glBegin( GL_QUADS );
glTexCoord2f( 0.0f, 0.0f );
glVertex2f( 0.0f, h );
glTexCoord2f( 0.0f, 1.0f );
glVertex2f( 0.0f, 0.0f );
glTexCoord2f( 1.0f, 1.0f );
glVertex2f( w, 0.0f );
glTexCoord2f( 1.0f, 0.0f );
glVertex2f( w, h );
glEnd();
}
static GLSL_Program gammaProg;
struct GLSL_GammaProgramAttribs
{
int texture;
int gammaOverbright;
};
static GLSL_GammaProgramAttribs gammaProgAttribs;
static void GL2_PostProcessGamma()
{
const float brightness = r_brightness->value;
const float gamma = 1.0f / r_gamma->value;
if ( gamma == 1.0f && brightness == 1.0f )
return;
GL2_FBO_Swap();
GL2_FBO_Bind();
GL_Program( gammaProg );
glUniform1i( gammaProgAttribs.texture, 0 ); // we use texture unit 0
glUniform4f( gammaProgAttribs.gammaOverbright, gamma, gamma, gamma, brightness );
GL_SelectTexture( 0 );
glBindTexture( GL_TEXTURE_2D, frameBuffersPostProcess[frameBufferReadIndex ^ 1].color );
GL2_FullScreenQuad();
}
static const char* gammaVS =
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"}\n"
"";
static const char* gammaFS =
"uniform sampler2D texture;\n"
"uniform vec4 gammaOverbright;\n"
"\n"
"void main()\n"
"{\n"
" vec3 base = texture2D(texture, gl_TexCoord[0].xy).rgb;\n"
" gl_FragColor = vec4(pow(base, gammaOverbright.xyz) * gammaOverbright.w, 1.0);\n"
"}\n"
"";
static GLSL_Program greyscaleProg;
struct GLSL_GreyscaleProgramAttribs
{
int texture;
int greyscale;
};
static GLSL_GreyscaleProgramAttribs greyscaleProgAttribs;
static qbool greyscaleProgramValid = qfalse;
static void GL2_PostProcessGreyscale()
{
if ( !greyscaleProgramValid )
return;
const float greyscale = Com_Clamp( 0.0f, 1.0f, r_greyscale->value );
if ( greyscale == 0.0f )
return;
GL2_FBO_Swap();
GL2_FBO_Bind();
GL_Program( greyscaleProg );
glUniform1i( greyscaleProgAttribs.texture, 0 ); // we use texture unit 0
glUniform1f( greyscaleProgAttribs.greyscale, greyscale );
GL_SelectTexture( 0 );
glBindTexture( GL_TEXTURE_2D, frameBuffersPostProcess[frameBufferReadIndex ^ 1].color );
GL2_FullScreenQuad();
}
static const char* greyscaleVS =
"void main()\n"
"{\n"
" gl_Position = ftransform();\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"}\n"
"";
static const char* greyscaleFS =
"uniform sampler2D texture;\n"
"uniform float greyscale;\n"
"\n"
"void main()\n"
"{\n"
" vec3 base = texture2D(texture, gl_TexCoord[0].xy).rgb;\n"
" vec3 grey = vec3(0.299 * base.r + 0.587 * base.g + 0.114 * base.b);\n"
" gl_FragColor = vec4(mix(base, grey, greyscale), 1.0);\n"
"}\n"
"";
static qbool GL2_Init()
{
if ( !GL2_FBO_Init() ) {
ri.Printf( PRINT_ERROR, "Failed to create FBOs\n" );
return qfalse;
}
if ( !GL2_CreateProgram( dynLightProg, dynLightVS, dynLightFS ) ) {
ri.Printf( PRINT_ERROR, "Failed to compile dynamic light shaders\n" );
return qfalse;
}
dynLightProgAttribs.osEyePos = glGetUniformLocation( dynLightProg.p, "osEyePos" );
dynLightProgAttribs.osLightPos = glGetUniformLocation( dynLightProg.p, "osLightPos" );
dynLightProgAttribs.texture = glGetUniformLocation( dynLightProg.p, "texture" );
dynLightProgAttribs.lightColorRadius = glGetUniformLocation( dynLightProg.p, "lightColorRadius" );
dynLightProgAttribs.opaqueIntensity = glGetUniformLocation( dynLightProg.p, "opaqueIntensity" );
if ( !GL2_CreateProgram( gammaProg, gammaVS, gammaFS ) ) {
ri.Printf( PRINT_ERROR, "Failed to compile gamma correction shaders\n" );
return qfalse;
}
gammaProgAttribs.texture = glGetUniformLocation( gammaProg.p, "texture" );
gammaProgAttribs.gammaOverbright = glGetUniformLocation( gammaProg.p, "gammaOverbright" );
greyscaleProgramValid = GL2_CreateProgram( greyscaleProg, greyscaleVS, greyscaleFS );
if ( greyscaleProgramValid ) {
greyscaleProgAttribs.texture = glGetUniformLocation( greyscaleProg.p, "texture" );
greyscaleProgAttribs.greyscale = glGetUniformLocation( greyscaleProg.p, "greyscale" );
} else {
ri.Printf( PRINT_ERROR, "Failed to compile greyscale shaders\n" );
}
return qtrue;
}
static void GL2_BeginFrame()
{
if ( frameBufferMultiSampling )
GL2_FBO_Bind( frameBufferMain );
else
GL2_FBO_Bind();
GL_Program();
}
static void GL2_EndFrame()
{
if ( frameBufferMultiSampling )
GL2_FBO_BlitMSToSS();
// this call is needed because there is no insurance for
// what the state might be right now
// we disable depth test, depth write and blending
GL_State( GLS_DEPTHTEST_DISABLE );
glViewport( 0, 0, glConfig.vidWidth, glConfig.vidHeight );
glScissor( 0, 0, glConfig.vidWidth, glConfig.vidHeight );
GL2_PostProcessGamma();
GL2_PostProcessGreyscale();
// needed for later calls to GL_Bind because
// the above functions use glBindTexture directly
glState.texID[glState.currenttmu] = 0;
glViewport (0, 0, glInfo.winWidth, glInfo.winHeight );
glScissor( 0, 0, glInfo.winWidth, glInfo.winHeight );
GL2_FBO_BlitSSToBackBuffer();
}
static void ID_INLINE R_DrawElements( int numIndexes, const unsigned int* indexes )
{
glDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexes );
}
static void UpdateAnimatedImage( image_t* image, int w, int h, const byte* data, qbool dirty )
{
GL_Bind( image );
if ( w != image->width || h != image->height ) {
// if the scratchImage isn't in the format we want, specify it as a new texture
image->width = w;
image->height = h;
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
} else if ( dirty ) {
// otherwise, just update it
glTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
static void R_BindAnimatedImage( const textureBundle_t* bundle )
{
GL_Bind( R_UpdateAndGetBundleImage( bundle, &UpdateAnimatedImage ) );
}
// blend a fog texture on top of everything else
static void RB_FogPass()
{
glEnableClientState( GL_COLOR_ARRAY );
glColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svarsFog.colors );
glEnableClientState( GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer( 2, GL_FLOAT, 0, tess.svarsFog.texcoordsptr );
GL_Bind( tr.fogImage );
GL_State( tess.fogStateBits );
R_DrawElements( tess.numIndexes, tess.indexes );
}
static void GL_Bind( const image_t* image )
{
GLuint texnum;
if ( !image ) {
ri.Printf( PRINT_WARNING, "GL_Bind: NULL image\n" );
texnum = (GLuint)tr.defaultImage->texnum;
} else {
texnum = (GLuint)image->texnum;
}
if ( r_nobind->integer && tr.defaultImage && !backEnd.projection2D ) {
texnum = (GLuint)tr.defaultImage->texnum;
}
if ( glState.texID[glState.currenttmu] != texnum ) {
glState.texID[glState.currenttmu] = texnum;
glBindTexture( GL_TEXTURE_2D, texnum );
}
}
static void GL_SelectTexture( int unit )
{
if ( glState.currenttmu == unit )
return;
if ( unit >= MAX_TMUS )
ri.Error( ERR_DROP, "GL_SelectTexture: unit = %i", unit );
glActiveTextureARB( GL_TEXTURE0_ARB + unit );
glClientActiveTextureARB( GL_TEXTURE0_ARB + unit );
glState.currenttmu = unit;
}
static void GL_Cull( int cullType ) {
if ( glState.faceCulling == cullType ) {
return;
}
glState.faceCulling = cullType;
if ( cullType == CT_TWO_SIDED )
{
glDisable( GL_CULL_FACE );
}
else
{
glEnable( GL_CULL_FACE );
if ( cullType == CT_BACK_SIDED )
{
if ( backEnd.viewParms.isMirror )
{
glCullFace( GL_FRONT );
}
else
{
glCullFace( GL_BACK );
}
}
else
{
if ( backEnd.viewParms.isMirror )
{
glCullFace( GL_BACK );
}
else
{
glCullFace( GL_FRONT );
}
}
}
}
static GLint GetTexEnv( texEnv_t texEnv )
{
switch ( texEnv )
{
case TE_MODULATE: return GL_MODULATE;
case TE_REPLACE: return GL_REPLACE;
case TE_DECAL: return GL_DECAL;
case TE_ADD: return GL_ADD;
default: return GL_MODULATE;
}
}
static void GL_TexEnv( GLint env )
{
if ( env == glState.texEnv[glState.currenttmu] )
{
return;
}
glState.texEnv[glState.currenttmu] = env;
switch ( env )
{
case GL_MODULATE:
case GL_REPLACE:
case GL_DECAL:
case GL_ADD:
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, env );
break;
default:
ri.Error( ERR_DROP, "GL_TexEnv: invalid env '%d' passed\n", env );
break;
}
}
static void GL_State( unsigned long stateBits )
{
unsigned long diff = stateBits ^ glState.glStateBits;
if ( !diff )
{
return;
}
//
// check depthFunc bits
//
if ( diff & GLS_DEPTHFUNC_EQUAL )
{
if ( stateBits & GLS_DEPTHFUNC_EQUAL )
{
glDepthFunc( GL_EQUAL );
}
else
{
glDepthFunc( GL_LEQUAL );
}
}
//
// check blend bits
//
if ( diff & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) )
{
GLenum srcFactor, dstFactor;
if ( stateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) )
{
switch ( stateBits & GLS_SRCBLEND_BITS )
{
case GLS_SRCBLEND_ZERO:
srcFactor = GL_ZERO;
break;
case GLS_SRCBLEND_ONE:
srcFactor = GL_ONE;
break;
case GLS_SRCBLEND_DST_COLOR:
srcFactor = GL_DST_COLOR;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_COLOR:
srcFactor = GL_ONE_MINUS_DST_COLOR;
break;
case GLS_SRCBLEND_SRC_ALPHA:
srcFactor = GL_SRC_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_SRC_ALPHA:
srcFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_SRCBLEND_DST_ALPHA:
srcFactor = GL_DST_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_ALPHA:
srcFactor = GL_ONE_MINUS_DST_ALPHA;
break;
case GLS_SRCBLEND_ALPHA_SATURATE:
srcFactor = GL_SRC_ALPHA_SATURATE;
break;
default:
srcFactor = GL_ONE; // to get warning to shut up
ri.Error( ERR_DROP, "GL_State: invalid src blend state bits\n" );
break;
}
switch ( stateBits & GLS_DSTBLEND_BITS )
{
case GLS_DSTBLEND_ZERO:
dstFactor = GL_ZERO;
break;
case GLS_DSTBLEND_ONE:
dstFactor = GL_ONE;
break;
case GLS_DSTBLEND_SRC_COLOR:
dstFactor = GL_SRC_COLOR;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_COLOR:
dstFactor = GL_ONE_MINUS_SRC_COLOR;
break;
case GLS_DSTBLEND_SRC_ALPHA:
dstFactor = GL_SRC_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA:
dstFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_DSTBLEND_DST_ALPHA:
dstFactor = GL_DST_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_DST_ALPHA:
dstFactor = GL_ONE_MINUS_DST_ALPHA;
break;
default:
dstFactor = GL_ONE; // to get warning to shut up
ri.Error( ERR_DROP, "GL_State: invalid dst blend state bits\n" );
break;
}
glEnable( GL_BLEND );
glBlendFunc( srcFactor, dstFactor );
}
else
{
glDisable( GL_BLEND );
}
}
//
// check depthmask
//
if ( diff & GLS_DEPTHMASK_TRUE )
{
if ( stateBits & GLS_DEPTHMASK_TRUE )
{
glDepthMask( GL_TRUE );
}
else
{
glDepthMask( GL_FALSE );
}
}
//
// fill/line mode
//
if ( diff & GLS_POLYMODE_LINE )
{
if ( stateBits & GLS_POLYMODE_LINE )
{
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
}
else
{
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
}
}
//
// depthtest
//
if ( diff & GLS_DEPTHTEST_DISABLE )
{
if ( stateBits & GLS_DEPTHTEST_DISABLE )
{
glDisable( GL_DEPTH_TEST );
}
else
{
glEnable( GL_DEPTH_TEST );
}
}
//
// alpha test
//
if ( diff & GLS_ATEST_BITS )
{
switch ( stateBits & GLS_ATEST_BITS )
{
case 0:
glDisable( GL_ALPHA_TEST );
break;
case GLS_ATEST_GT_0:
glEnable( GL_ALPHA_TEST );
glAlphaFunc( GL_GREATER, 0.0f );
break;
case GLS_ATEST_LT_80:
glEnable( GL_ALPHA_TEST );
glAlphaFunc( GL_LESS, 0.5f );
break;
case GLS_ATEST_GE_80:
glEnable( GL_ALPHA_TEST );
glAlphaFunc( GL_GEQUAL, 0.5f );
break;
default:
assert( 0 );
break;
}
}
glState.glStateBits = stateBits;
}
static void ApplyViewportAndScissor()
{
glMatrixMode(GL_PROJECTION);
glLoadMatrixf( backEnd.viewParms.projectionMatrix );
glMatrixMode(GL_MODELVIEW);
// set the window clipping
glViewport( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
glScissor( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
}
// any mirrored or portaled views have already been drawn
// so prepare to actually render the visible surfaces for this view
static void GAL_Begin3D()
{
int clearBits = 0;
// sync with gl if needed
if ( r_finish->integer == 1 && !glState.finishCalled ) {
glFinish();
glState.finishCalled = qtrue;
}
if ( r_finish->integer == 0 ) {
glState.finishCalled = qtrue;
}
//
// set the modelview matrix for the viewer
//
ApplyViewportAndScissor();
// ensures that depth writes are enabled for the depth clear
GL_State( GLS_DEFAULT );
// clear relevant buffers
clearBits = GL_DEPTH_BUFFER_BIT;
2019-11-12 03:23:49 +00:00
if ( backEnd.refdef.rdflags & RDF_HYPERSPACE ) {
const float c = RB_HyperspaceColor();
clearBits |= GL_COLOR_BUFFER_BIT;
glClearColor( c, c, c, 1.0f );
} else if ( r_fastsky->integer && !( backEnd.refdef.rdflags & RDF_NOWORLDMODEL ) ) {
clearBits |= GL_COLOR_BUFFER_BIT;
// tr.sunLight could have colored fastsky properly for the last 9 years,
// ... if the code had actually been right >:( but, it's a bad idea to trust mappers anyway
glClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
}
glClear( clearBits );
glState.faceCulling = -1; // force face culling to set next time
// clip to the plane of the portal
if ( backEnd.viewParms.isPortal ) {
float plane[4];
double plane2[4];
plane[0] = backEnd.viewParms.portalPlane.normal[0];
plane[1] = backEnd.viewParms.portalPlane.normal[1];
plane[2] = backEnd.viewParms.portalPlane.normal[2];
plane[3] = backEnd.viewParms.portalPlane.dist;
plane2[0] = DotProduct (backEnd.viewParms.orient.axis[0], plane);
plane2[1] = DotProduct (backEnd.viewParms.orient.axis[1], plane);
plane2[2] = DotProduct (backEnd.viewParms.orient.axis[2], plane);
plane2[3] = DotProduct (plane, backEnd.viewParms.orient.origin) - plane[3];
glLoadMatrixf( s_flipMatrix );
glClipPlane (GL_CLIP_PLANE0, plane2);
glEnable (GL_CLIP_PLANE0);
} else {
glDisable (GL_CLIP_PLANE0);
}
}
static void GAL_BeginSkyAndClouds()
{
// r_showsky will let all the sky blocks be drawn in
// front of everything to allow developers to see how
// much sky is getting sucked in
if ( r_showsky->integer ) {
glDepthRange( 0.0, 0.0 );
} else {
glDepthRange( 1.0, 1.0 );
}
GL_State( 0 );
}
static void GAL_EndSkyAndClouds()
{
// back to normal depth range
glDepthRange( 0.0, 1.0 );
}
static GLint GL_TextureWrapMode( textureWrap_t w )
{
switch ( w ) {
case TW_REPEAT: return GL_REPEAT;
case TW_CLAMP_TO_EDGE: return GL_CLAMP_TO_EDGE;
default: return GL_REPEAT;
}
}
static GLint GL_TextureInternalFormat( textureFormat_t f )
{
switch ( f ) {
case TF_RGBA8:
default: return GL_RGBA8;
}
}
static GLenum GL_TextureFormat( textureFormat_t f )
{
switch ( f ) {
case TF_RGBA8:
default: return GL_RGBA;
}
}
static void GL_CheckErrors()
{
int err = glGetError();
if ((err == GL_NO_ERROR) || r_ignoreGLErrors->integer)
return;
char s[64];
switch( err ) {
case GL_INVALID_ENUM:
strcpy( s, "GL_INVALID_ENUM" );
break;
case GL_INVALID_VALUE:
strcpy( s, "GL_INVALID_VALUE" );
break;
case GL_INVALID_OPERATION:
strcpy( s, "GL_INVALID_OPERATION" );
break;
case GL_STACK_OVERFLOW:
strcpy( s, "GL_STACK_OVERFLOW" );
break;
case GL_STACK_UNDERFLOW:
strcpy( s, "GL_STACK_UNDERFLOW" );
break;
case GL_OUT_OF_MEMORY:
strcpy( s, "GL_OUT_OF_MEMORY" );
break;
default:
Com_sprintf( s, sizeof(s), "%i", err);
break;
}
ri.Error( ERR_FATAL, "GL_CheckErrors: %s", s );
}
static int GetMaxAnisotropy( image_t* image )
{
if ( (image->flags & IMG_NOAF) == 0 && glInfo.maxAnisotropy >= 2 && r_ext_max_anisotropy->integer >= 2 )
return min( r_ext_max_anisotropy->integer, glInfo.maxAnisotropy );
return 1;
}
static void GAL_CreateTexture( image_t* image, int mipCount, int w, int h )
{
GLuint id;
glGenTextures( 1, &id );
image->texnum = (textureHandle_t)id;
GL_Bind( image );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GetMaxAnisotropy(image) );
if ( image->flags & IMG_LMATLAS ) {
glTexImage2D( GL_TEXTURE_2D, 0, GL_TextureInternalFormat(image->format), w, h, 0, GL_TextureFormat(image->format), GL_UNSIGNED_BYTE, NULL );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
GL_CheckErrors();
return;
}
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_TextureWrapMode(image->wrapClampMode) );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_TextureWrapMode(image->wrapClampMode) );
if ( Q_stricmp( r_textureMode->string, "GL_NEAREST" ) == 0 &&
( image->flags & (IMG_LMATLAS | IMG_EXTLMATLAS | IMG_NOPICMIP )) == 0 ) {
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
} else if ( image->flags & IMG_NOMIPMAP ) {
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
} else {
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
}
static void GAL_UpdateTexture( image_t* image, int mip, int x, int y, int w, int h, const void* data )
{
GL_Bind( image );
if ( image->flags & IMG_LMATLAS )
glTexSubImage2D( GL_TEXTURE_2D, (GLint)mip, x, y, w, h, GL_TextureFormat(image->format), GL_UNSIGNED_BYTE, data );
else
glTexImage2D( GL_TEXTURE_2D, (GLint)mip, GL_TextureInternalFormat(image->format), w, h, 0, GL_TextureFormat(image->format), GL_UNSIGNED_BYTE, data );
GL_CheckErrors();
}
static void GAL_UpdateScratch( image_t* image, int w, int h, const void* data, qbool dirty )
{
GL_Bind( image );
// if the scratchImage isn't in the format we want, specify it as a new texture
if ( w != image->width || h != image->height ) {
image->width = w;
image->height = h;
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
} else if ( dirty ) {
// otherwise, just subimage upload it so that drivers can tell we are going to be changing
// it and don't try and do a texture compression
glTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
static void GAL_CreateTextureEx( image_t* image, int mipCount, int mipOffset, int w, int h, const void* mip0 )
{
assert(0); // should never be called!
}
static void GL_SetDefaultState()
{
glClearDepth( 1.0f );
glCullFace( GL_FRONT );
glColor4f( 1,1,1,1 );
for ( int i = 0; i < MAX_TMUS; ++i ) {
GL_SelectTexture( i );
GL_TexEnv( GL_MODULATE );
glDisable( GL_TEXTURE_2D );
}
GL_SelectTexture( 0 );
glEnable( GL_TEXTURE_2D );
glShadeModel( GL_SMOOTH );
glDepthFunc( GL_LEQUAL );
glPolygonOffset( -1, -1 );
// the vertex array is always enabled, but the color and texture
// arrays are enabled and disabled around the compiled vertex array call
glEnableClientState( GL_VERTEX_ARRAY );
//
// make sure our GL state vector is set correctly
//
glState.glStateBits = GLS_DEPTHTEST_DISABLE | GLS_DEPTHMASK_TRUE;
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
glDepthMask( GL_TRUE );
glDisable( GL_DEPTH_TEST );
glEnable( GL_SCISSOR_TEST );
glDisable( GL_CULL_FACE );
glDisable( GL_BLEND );
// Needed for some of our glReadPixels calls.
// The default alignment is 4.
// RGB with width 1366 -> not a multiple of 4!
glPixelStorei( GL_PACK_ALIGNMENT, 1 );
}
static void InitGLConfig()
{
Q_strncpyz( glConfig.vendor_string, (const char*)glGetString( GL_VENDOR ), sizeof( glConfig.vendor_string ) );
Q_strncpyz( glConfig.renderer_string, (const char*)glGetString( GL_RENDERER ), sizeof( glConfig.renderer_string ) );
Q_strncpyz( glConfig.version_string, (const char*)glGetString( GL_VERSION ), sizeof( glConfig.version_string ) );
Q_strncpyz( glConfig.extensions_string, (const char*)glGetString( GL_EXTENSIONS ), sizeof( glConfig.extensions_string ) );
glGetIntegerv( GL_MAX_TEXTURE_SIZE, &glConfig.unused_maxTextureSize );
glConfig.unused_maxActiveTextures = 0;
glConfig.unused_driverType = 0; // ICD
glConfig.unused_hardwareType = 0; // generic
glConfig.unused_deviceSupportsGamma = qtrue;
glConfig.unused_textureCompression = 0; // no compression
glConfig.unused_textureEnvAddAvailable = qtrue;
glConfig.unused_displayFrequency = 0;
glConfig.unused_isFullscreen = !!r_fullscreen->integer;
glConfig.unused_stereoEnabled = qfalse;
glConfig.unused_smpActive = qfalse;
}
static void InitGLInfo()
{
glGetIntegerv( GL_MAX_TEXTURE_SIZE, &glInfo.maxTextureSize );
if ( strstr( glConfig.extensions_string, "GL_EXT_texture_filter_anisotropic" ) )
glGetIntegerv( GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &glInfo.maxAnisotropy );
else
glInfo.maxAnisotropy = 0;
glInfo.softSpriteSupport = qfalse;
glInfo.mipGenSupport = qfalse;
glInfo.alphaToCoverageSupport = qfalse;
}
static void InitExtensions()
{
GL2_Init();
}
static void GAL_ReadPixels( int x, int y, int w, int h, int alignment, colorSpace_t colorSpace, void* out )
{
const GLenum format = colorSpace == CS_BGR ? GL_BGR : GL_RGBA;
glPixelStorei( GL_PACK_ALIGNMENT, alignment );
glReadPixels( x, y, w, h, format, GL_UNSIGNED_BYTE, out );
glPixelStorei( GL_PACK_ALIGNMENT, 1 );
}
static void RB_DeleteTextures()
{
for ( int i = 0; i < tr.numImages; ++i )
glDeleteTextures( 1, (const GLuint*)&tr.images[i]->texnum );
tr.numImages = 0;
Com_Memset( tr.images, 0, sizeof( tr.images ) );
Com_Memset( glState.texID, 0, sizeof( glState.texID ) );
for ( int i = MAX_TMUS - 1; i >= 0; --i ) {
GL_SelectTexture( i );
glBindTexture( GL_TEXTURE_2D, 0 );
}
}
static void GAL_Begin2D()
{
// set 2D virtual screen size
glViewport( 0, 0, glConfig.vidWidth, glConfig.vidHeight );
glScissor( 0, 0, glConfig.vidWidth, glConfig.vidHeight );
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho( 0, glConfig.vidWidth, glConfig.vidHeight, 0, 0, 1 );
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
GL_State( GLS_DEFAULT_2D );
glDisable( GL_CULL_FACE );
glDisable( GL_CLIP_PLANE0 );
}
static void GAL_SetModelViewMatrix( const float* matrix )
{
glLoadMatrixf( matrix );
}
static void GAL_SetDepthRange( double zNear, double zFar )
{
glDepthRange( zNear, zFar );
}
static qbool GAL_Init()
{
if ( glConfig.vidWidth == 0 )
{
// the order of these calls can not be changed
Sys_V_Init( GAL_GL2 );
if ( !GLEW_VERSION_2_0 )
ri.Error( ERR_FATAL, "OpenGL 2.0 required!\n" );
if ( !GLEW_VERSION_3_0 && !GLEW_ARB_framebuffer_object )
ri.Error( ERR_FATAL, "Need at least OpenGL 3.0 or GL_ARB_framebuffer_object\n" );
InitGLConfig();
InitGLInfo();
InitExtensions();
// apply the current V-Sync option after the first rendered frame
r_swapInterval->modified = qtrue;
}
GL_SetDefaultState();
int err = glGetError();
if (err != GL_NO_ERROR)
ri.Printf( PRINT_ALL, "glGetError() = 0x%x\n", err );
return qtrue;
}
static void GAL_ShutDown( qbool fullShutDown )
{
RB_DeleteTextures();
memset( &glState, 0, sizeof( glState ) );
}
static void GAL_BeginFrame()
{
glState.finishCalled = qfalse;
if ( !r_ignoreGLErrors->integer ) {
int err;
if ( ( err = glGetError() ) != GL_NO_ERROR ) {
ri.Error( ERR_FATAL, "RE_BeginFrame() - glGetError() failed (0x%x)!\n", err );
}
}
GL2_BeginFrame();
if ( r_clear->integer )
glClearColor( 1.0f, 0.0f, 0.5f, 1.0f );
else
glClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
}
static void GAL_EndFrame()
{
if ( !backEnd.projection2D )
GAL_Begin2D();
GL2_EndFrame();
if ( !glState.finishCalled )
glFinish();
}
static void GAL_PrintInfo()
{
}
qbool GAL_GetGL2( graphicsAPILayer_t* rb )
{
rb->Init = &GAL_Init;
rb->ShutDown = &GAL_ShutDown;
rb->BeginSkyAndClouds = &GAL_BeginSkyAndClouds;
rb->EndSkyAndClouds = &GAL_EndSkyAndClouds;
rb->ReadPixels = &GAL_ReadPixels;
rb->BeginFrame = &GAL_BeginFrame;
rb->EndFrame = &GAL_EndFrame;
rb->CreateTexture = &GAL_CreateTexture;
rb->UpdateTexture = &GAL_UpdateTexture;
rb->UpdateScratch = &GAL_UpdateScratch;
rb->CreateTextureEx = &GAL_CreateTextureEx;
rb->Draw = &GAL_Draw;
rb->Begin2D = &GAL_Begin2D;
rb->Begin3D = &GAL_Begin3D;
rb->SetModelViewMatrix = &GAL_SetModelViewMatrix;
rb->SetDepthRange = &GAL_SetDepthRange;
rb->BeginDynamicLight = &GAL_BeginDynamicLight;
rb->PrintInfo = &GAL_PrintInfo;
return qtrue;
}