mirror of
https://github.com/ZDoom/ZMusic.git
synced 2024-12-04 01:22:32 +00:00
72c23d98a3
## 1.5.0 2020-09-28 * Drum note length expanding is now supported in real-time mode (Thanks to [Jean Pierre Cimalando](https://github.com/jpcima) for a work!) * Added support for OPNA chip with Neko Project II Kai YM2602 emulator usage (Thanks to [Jean Pierre Cimalando](https://github.com/jpcima) for a work!) * Added VGM file dumper which allows to output OPN2 commands into VGM file. (A new MIDI to VGM tool is now created with basing on libOPNMIDI) * Fixed an incorrect work of CC-121 (See https://github.com/Wohlstand/libADLMIDI/issues/227 for details) * Internality has been refactored and improved
3987 lines
106 KiB
C++
3987 lines
106 KiB
C++
// license:GPL-2.0+
|
|
// copyright-holders:Jarek Burczynski,Tatsuyuki Satoh
|
|
/*
|
|
**
|
|
** File: fm.c -- software implementation of Yamaha FM sound generator
|
|
**
|
|
** Copyright Jarek Burczynski (bujar at mame dot net)
|
|
** Copyright Tatsuyuki Satoh , MultiArcadeMachineEmulator development
|
|
**
|
|
** Version 1.4.2 (final beta)
|
|
**
|
|
*/
|
|
|
|
/*
|
|
** History:
|
|
**
|
|
** 2018 Jean Pierre Cimalando (libOPNMIDI)
|
|
** - rewrote pooled memory allocations as ordinary new and delete
|
|
**
|
|
** 2006-2008 Eke-Eke (Genesis Plus GX), MAME backport by R. Belmont.
|
|
** - implemented PG overflow, aka "detune bug" (Ariel, Comix Zone, Shaq Fu, Spiderman,...), credits to Nemesis
|
|
** - fixed SSG-EG support, credits to Nemesis and additional fixes from Alone Coder
|
|
** - modified EG rates and frequency, tested by Nemesis on real hardware
|
|
** - implemented LFO phase update for CH3 special mode (Warlock birds, Alladin bug sound)
|
|
** - fixed Attack Rate update (Batman & Robin intro)
|
|
** - fixed attenuation level at the start of Substain (Gynoug explosions)
|
|
** - fixed EG decay->substain transition to handle special cases, like SL=0 and Decay rate is very slow (Mega Turrican tracks 03,09...)
|
|
**
|
|
** 06-23-2007 Zsolt Vasvari:
|
|
** - changed the timing not to require the use of floating point calculations
|
|
**
|
|
** 03-08-2003 Jarek Burczynski:
|
|
** - fixed YM2608 initial values (after the reset)
|
|
** - fixed flag and irqmask handling (YM2608)
|
|
** - fixed BUFRDY flag handling (YM2608)
|
|
**
|
|
** 14-06-2003 Jarek Burczynski:
|
|
** - implemented all of the YM2608 status register flags
|
|
** - implemented support for external memory read/write via YM2608
|
|
** - implemented support for deltat memory limit register in YM2608 emulation
|
|
**
|
|
** 22-05-2003 Jarek Burczynski:
|
|
** - fixed LFO PM calculations (copy&paste bugfix)
|
|
**
|
|
** 08-05-2003 Jarek Burczynski:
|
|
** - fixed SSG support
|
|
**
|
|
** 22-04-2003 Jarek Burczynski:
|
|
** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)
|
|
**
|
|
** 15-04-2003 Jarek Burczynski:
|
|
** - added support for YM2608's register 0x110 - status mask
|
|
**
|
|
** 01-12-2002 Jarek Burczynski:
|
|
** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)
|
|
** The addressing patch used for early Neo-Geo games can be removed now.
|
|
**
|
|
** 26-11-2002 Jarek Burczynski, Nicola Salmoria:
|
|
** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:
|
|
** - added emulation of YM2608 drums.
|
|
** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)
|
|
**
|
|
** 16-08-2002 Jarek Burczynski:
|
|
** - binary exact Envelope Generator (verified on real YM2203);
|
|
** identical to YM2151
|
|
** - corrected 'off by one' error in feedback calculations (when feedback is off)
|
|
** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)
|
|
**
|
|
** 18-12-2001 Jarek Burczynski:
|
|
** - added SSG-EG support (verified on real YM2203)
|
|
**
|
|
** 12-08-2001 Jarek Burczynski:
|
|
** - corrected sin_tab and tl_tab data (verified on real chip)
|
|
** - corrected feedback calculations (verified on real chip)
|
|
** - corrected phase generator calculations (verified on real chip)
|
|
** - corrected envelope generator calculations (verified on real chip)
|
|
** - corrected FM volume level (YM2610 and YM2610B).
|
|
** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :
|
|
** this was needed to calculate YM2610 FM channels output correctly.
|
|
** (Each FM channel is calculated as in other chips, but the output of the channel
|
|
** gets shifted right by one *before* sending to accumulator. That was impossible to do
|
|
** with previous implementation).
|
|
**
|
|
** 23-07-2001 Jarek Burczynski, Nicola Salmoria:
|
|
** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)
|
|
**
|
|
** 11-06-2001 Jarek Burczynski:
|
|
** - corrected end of sample bug in ADPCMA_calc_cha().
|
|
** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).
|
|
**
|
|
** 08-12-98 hiro-shi:
|
|
** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA
|
|
** move ROM limit check.(CALC_CH? -> 2610Write1/2)
|
|
** test program (ADPCMB_TEST)
|
|
** move ADPCM A/B end check.
|
|
** ADPCMB repeat flag(no check)
|
|
** change ADPCM volume rate (8->16) (32->48).
|
|
**
|
|
** 09-12-98 hiro-shi:
|
|
** change ADPCM volume. (8->16, 48->64)
|
|
** replace ym2610 ch0/3 (YM-2610B)
|
|
** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.
|
|
** add ADPCM_SHIFT_MASK
|
|
** change ADPCMA_DECODE_MIN/MAX.
|
|
*/
|
|
|
|
|
|
|
|
|
|
/************************************************************************/
|
|
/* comment of hiro-shi(Hiromitsu Shioya) */
|
|
/* YM2610(B) = OPN-B */
|
|
/* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
|
|
/* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
|
|
/************************************************************************/
|
|
|
|
#include "emu.h"
|
|
|
|
#define YM2610B_WARNING
|
|
#include "fm.h"
|
|
|
|
|
|
/* include external DELTA-T unit (when needed) */
|
|
#if (BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B)
|
|
#include "ymdeltat.h"
|
|
#endif
|
|
|
|
|
|
#if BUILD_YM2203
|
|
#include "2203intf.h"
|
|
#endif /* BUILD_YM2203 */
|
|
|
|
#if BUILD_YM2608
|
|
#include "2608intf.h"
|
|
#endif /* BUILD_YM2608 */
|
|
|
|
#if (BUILD_YM2610||BUILD_YM2610B)
|
|
#include "2610intf.h"
|
|
#endif /* (BUILD_YM2610||BUILD_YM2610B) */
|
|
|
|
|
|
/* shared function building option */
|
|
#define BUILD_OPN (BUILD_YM2203||BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B)
|
|
#define BUILD_OPN_PRESCALER (BUILD_YM2203||BUILD_YM2608)
|
|
|
|
|
|
/* globals */
|
|
#define TYPE_SSG 0x01 /* SSG support */
|
|
#define TYPE_LFOPAN 0x02 /* OPN type LFO and PAN */
|
|
#define TYPE_6CH 0x04 /* FM 6CH / 3CH */
|
|
#define TYPE_DAC 0x08 /* YM2612's DAC device */
|
|
#define TYPE_ADPCM 0x10 /* two ADPCM units */
|
|
#define TYPE_2610 0x20 /* bogus flag to differentiate 2608 from 2610 */
|
|
|
|
|
|
#define TYPE_YM2203 (TYPE_SSG)
|
|
#define TYPE_YM2608 (TYPE_SSG |TYPE_LFOPAN |TYPE_6CH |TYPE_ADPCM)
|
|
#define TYPE_YM2610 (TYPE_SSG |TYPE_LFOPAN |TYPE_6CH |TYPE_ADPCM |TYPE_2610)
|
|
|
|
|
|
|
|
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
|
|
#define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */
|
|
#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
|
|
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
|
|
|
|
#define FREQ_MASK ((1<<FREQ_SH)-1)
|
|
|
|
#define ENV_BITS 10
|
|
#define ENV_LEN (1<<ENV_BITS)
|
|
#define ENV_STEP (128.0/ENV_LEN)
|
|
|
|
#define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */
|
|
#define MIN_ATT_INDEX (0) /* 0 */
|
|
|
|
#define EG_ATT 4
|
|
#define EG_DEC 3
|
|
#define EG_SUS 2
|
|
#define EG_REL 1
|
|
#define EG_OFF 0
|
|
|
|
#define SIN_BITS 10
|
|
#define SIN_LEN (1<<SIN_BITS)
|
|
#define SIN_MASK (SIN_LEN-1)
|
|
|
|
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
|
|
|
|
|
|
#if (FM_SAMPLE_BITS==16)
|
|
#define FINAL_SH (0)
|
|
#define MAXOUT (+32767)
|
|
#define MINOUT (-32768)
|
|
#else
|
|
#define FINAL_SH (8)
|
|
#define MAXOUT (+127)
|
|
#define MINOUT (-128)
|
|
#endif
|
|
|
|
|
|
/* TL_TAB_LEN is calculated as:
|
|
* 13 - sinus amplitude bits (Y axis)
|
|
* 2 - sinus sign bit (Y axis)
|
|
* TL_RES_LEN - sinus resolution (X axis)
|
|
*/
|
|
#define TL_TAB_LEN (13*2*TL_RES_LEN)
|
|
static signed int tl_tab[TL_TAB_LEN];
|
|
|
|
#define ENV_QUIET (TL_TAB_LEN>>3)
|
|
|
|
/* sin waveform table in 'decibel' scale */
|
|
static unsigned int sin_tab[SIN_LEN];
|
|
|
|
/* sustain level table (3dB per step) */
|
|
/* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */
|
|
/* 1, 2, 4, 8, 16, 32, 64 (value)*/
|
|
/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
|
|
|
|
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
|
|
#define SC(db) (uint32_t) ( db * (4.0/ENV_STEP) )
|
|
static const uint32_t sl_table[16]={
|
|
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
|
|
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
|
|
};
|
|
#undef SC
|
|
|
|
|
|
#define RATE_STEPS (8)
|
|
static const uint8_t eg_inc[19*RATE_STEPS]={
|
|
/*cycle:0 1 2 3 4 5 6 7*/
|
|
|
|
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */
|
|
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */
|
|
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */
|
|
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */
|
|
|
|
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */
|
|
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */
|
|
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */
|
|
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */
|
|
|
|
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */
|
|
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */
|
|
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */
|
|
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */
|
|
|
|
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */
|
|
/*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */
|
|
/*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */
|
|
/*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */
|
|
|
|
/*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
|
|
/*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */
|
|
/*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
|
|
};
|
|
|
|
|
|
#define O(a) (a*RATE_STEPS)
|
|
|
|
/*note that there is no O(17) in this table - it's directly in the code */
|
|
static const uint8_t eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */
|
|
/* 32 infinite time rates */
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
|
|
|
|
/* rates 00-11 */
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
O( 0),O( 1),O( 2),O( 3),
|
|
|
|
/* rate 12 */
|
|
O( 4),O( 5),O( 6),O( 7),
|
|
|
|
/* rate 13 */
|
|
O( 8),O( 9),O(10),O(11),
|
|
|
|
/* rate 14 */
|
|
O(12),O(13),O(14),O(15),
|
|
|
|
/* rate 15 */
|
|
O(16),O(16),O(16),O(16),
|
|
|
|
/* 32 dummy rates (same as 15 3) */
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
|
|
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)
|
|
|
|
};
|
|
|
|
#undef O
|
|
|
|
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/
|
|
/*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */
|
|
/*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */
|
|
|
|
#define O(a) (a*1)
|
|
static const uint8_t eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */
|
|
/* 32 infinite time rates */
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
|
|
|
|
/* rates 00-11 */
|
|
O(11),O(11),O(11),O(11),
|
|
O(10),O(10),O(10),O(10),
|
|
O( 9),O( 9),O( 9),O( 9),
|
|
O( 8),O( 8),O( 8),O( 8),
|
|
O( 7),O( 7),O( 7),O( 7),
|
|
O( 6),O( 6),O( 6),O( 6),
|
|
O( 5),O( 5),O( 5),O( 5),
|
|
O( 4),O( 4),O( 4),O( 4),
|
|
O( 3),O( 3),O( 3),O( 3),
|
|
O( 2),O( 2),O( 2),O( 2),
|
|
O( 1),O( 1),O( 1),O( 1),
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 12 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 13 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 14 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* rate 15 */
|
|
O( 0),O( 0),O( 0),O( 0),
|
|
|
|
/* 32 dummy rates (same as 15 3) */
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
|
|
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)
|
|
|
|
};
|
|
#undef O
|
|
|
|
static const uint8_t dt_tab[4 * 32]={
|
|
/* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/
|
|
/* FD=0 */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* FD=1 */
|
|
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
|
|
2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
|
|
/* FD=2 */
|
|
1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,
|
|
/* FD=3 */
|
|
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
|
|
8 , 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22
|
|
};
|
|
|
|
|
|
/* OPN key frequency number -> key code follow table */
|
|
/* fnum higher 4bit -> keycode lower 2bit */
|
|
static const uint8_t opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};
|
|
|
|
|
|
/* 8 LFO speed parameters */
|
|
/* each value represents number of samples that one LFO level will last for */
|
|
static const uint32_t lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};
|
|
|
|
|
|
|
|
/*There are 4 different LFO AM depths available, they are:
|
|
0 dB, 1.4 dB, 5.9 dB, 11.8 dB
|
|
Here is how it is generated (in EG steps):
|
|
|
|
11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0
|
|
5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0
|
|
1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0
|
|
|
|
(1.4 dB is losing precision as you can see)
|
|
|
|
It's implemented as generator from 0..126 with step 2 then a shift
|
|
right N times, where N is:
|
|
8 for 0 dB
|
|
3 for 1.4 dB
|
|
1 for 5.9 dB
|
|
0 for 11.8 dB
|
|
*/
|
|
static const uint8_t lfo_ams_depth_shift[4] = {8, 3, 1, 0};
|
|
|
|
|
|
|
|
/*There are 8 different LFO PM depths available, they are:
|
|
0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)
|
|
|
|
Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10
|
|
(bits 8,9,10 = FNUM MSB from OCT/FNUM register)
|
|
|
|
Here we store only first quarter (positive one) of full waveform.
|
|
Full table (lfo_pm_table) containing all 128 waveforms is build
|
|
at run (init) time.
|
|
|
|
One value in table below represents 4 (four) basic LFO steps
|
|
(1 PM step = 4 AM steps).
|
|
|
|
For example:
|
|
at LFO SPEED=0 (which is 108 samples per basic LFO step)
|
|
one value from "lfo_pm_output" table lasts for 432 consecutive
|
|
samples (4*108=432) and one full LFO waveform cycle lasts for 13824
|
|
samples (32*432=13824; 32 because we store only a quarter of whole
|
|
waveform in the table below)
|
|
*/
|
|
static const uint8_t lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */
|
|
/* FNUM BIT 4: 000 0001xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
|
|
/* FNUM BIT 5: 000 0010xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
|
|
/* FNUM BIT 6: 000 0100xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},
|
|
/* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
/* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
|
|
/* FNUM BIT 7: 000 1000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},
|
|
/* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},
|
|
/* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},
|
|
/* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
/* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
|
|
/* FNUM BIT 8: 001 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},
|
|
/* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},
|
|
/* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},
|
|
/* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},
|
|
/* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},
|
|
/* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
/* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
|
|
/* FNUM BIT 9: 010 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},
|
|
/* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},
|
|
/* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},
|
|
/* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},
|
|
/* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
|
|
/* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
/* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
|
|
|
|
/* FNUM BIT10: 100 0000xxxx */
|
|
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
|
|
/* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},
|
|
/* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},
|
|
/* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},
|
|
/* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},
|
|
/* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
|
|
/* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
|
|
/* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},
|
|
|
|
};
|
|
|
|
/* all 128 LFO PM waveforms */
|
|
static int32_t lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */
|
|
|
|
|
|
// libOPNMIDI: pan law table
|
|
static const uint16_t panlawtable[] =
|
|
{
|
|
65535, 65529, 65514, 65489, 65454, 65409, 65354, 65289,
|
|
65214, 65129, 65034, 64929, 64814, 64689, 64554, 64410,
|
|
64255, 64091, 63917, 63733, 63540, 63336, 63123, 62901,
|
|
62668, 62426, 62175, 61914, 61644, 61364, 61075, 60776,
|
|
60468, 60151, 59825, 59489, 59145, 58791, 58428, 58057,
|
|
57676, 57287, 56889, 56482, 56067, 55643, 55211, 54770,
|
|
54320, 53863, 53397, 52923, 52441, 51951, 51453, 50947,
|
|
50433, 49912, 49383, 48846, 48302, 47750, 47191,
|
|
46340, /* Center left */
|
|
46340, /* Center right */
|
|
45472, 44885, 44291, 43690, 43083, 42469, 41848, 41221,
|
|
40588, 39948, 39303, 38651, 37994, 37330, 36661, 35986,
|
|
35306, 34621, 33930, 33234, 32533, 31827, 31116, 30400,
|
|
29680, 28955, 28225, 27492, 26754, 26012, 25266, 24516,
|
|
23762, 23005, 22244, 21480, 20713, 19942, 19169, 18392,
|
|
17613, 16831, 16046, 15259, 14469, 13678, 12884, 12088,
|
|
11291, 10492, 9691, 8888, 8085, 7280, 6473, 5666,
|
|
4858, 4050, 3240, 2431, 1620, 810, 0
|
|
};
|
|
|
|
|
|
/* register number to channel number , slot offset */
|
|
#define OPN_CHAN(N) (N&3)
|
|
#define OPN_SLOT(N) ((N>>2)&3)
|
|
|
|
/* slot number */
|
|
#define SLOT1 0
|
|
#define SLOT2 2
|
|
#define SLOT3 1
|
|
#define SLOT4 3
|
|
|
|
/* bit0 = Right enable , bit1 = Left enable */
|
|
#define OUTD_RIGHT 1
|
|
#define OUTD_LEFT 2
|
|
#define OUTD_CENTER 3
|
|
|
|
|
|
/* save output as raw 16-bit sample */
|
|
/* #define SAVE_SAMPLE */
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
static FILE *sample[1];
|
|
#if 1 /*save to MONO file */
|
|
#define SAVE_ALL_CHANNELS \
|
|
{ signed int pom = lt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
}
|
|
#else /*save to STEREO file */
|
|
#define SAVE_ALL_CHANNELS \
|
|
{ signed int pom = lt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
pom = rt; \
|
|
fputc((unsigned short)pom&0xff,sample[0]); \
|
|
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* struct describing a single operator (SLOT) */
|
|
struct FM_SLOT
|
|
{
|
|
int32_t *DT; /* detune :dt_tab[DT] */
|
|
uint8_t KSR; /* key scale rate :3-KSR */
|
|
uint32_t ar; /* attack rate */
|
|
uint32_t d1r; /* decay rate */
|
|
uint32_t d2r; /* sustain rate */
|
|
uint32_t rr; /* release rate */
|
|
uint8_t ksr; /* key scale rate :kcode>>(3-KSR) */
|
|
uint32_t mul; /* multiple :ML_TABLE[ML] */
|
|
|
|
/* Phase Generator */
|
|
uint32_t phase; /* phase counter */
|
|
int32_t Incr; /* phase step */
|
|
|
|
/* Envelope Generator */
|
|
uint8_t state; /* phase type */
|
|
uint32_t tl; /* total level: TL << 3 */
|
|
int32_t volume; /* envelope counter */
|
|
uint32_t sl; /* sustain level:sl_table[SL] */
|
|
uint32_t vol_out; /* current output from EG circuit (without AM from LFO) */
|
|
|
|
uint8_t eg_sh_ar; /* (attack state) */
|
|
uint8_t eg_sel_ar; /* (attack state) */
|
|
uint8_t eg_sh_d1r; /* (decay state) */
|
|
uint8_t eg_sel_d1r; /* (decay state) */
|
|
uint8_t eg_sh_d2r; /* (sustain state) */
|
|
uint8_t eg_sel_d2r; /* (sustain state) */
|
|
uint8_t eg_sh_rr; /* (release state) */
|
|
uint8_t eg_sel_rr; /* (release state) */
|
|
|
|
uint8_t ssg; /* SSG-EG waveform */
|
|
uint8_t ssgn; /* SSG-EG negated output */
|
|
|
|
uint32_t key; /* 0=last key was KEY OFF, 1=KEY ON */
|
|
|
|
/* LFO */
|
|
uint32_t AMmask; /* AM enable flag */
|
|
|
|
};
|
|
|
|
struct FM_CH
|
|
{
|
|
FM_SLOT SLOT[4]; /* four SLOTs (operators) */
|
|
|
|
uint8_t ALGO; /* algorithm */
|
|
uint8_t FB; /* feedback shift */
|
|
int32_t op1_out[2]; /* op1 output for feedback */
|
|
|
|
int32_t *connect1; /* SLOT1 output pointer */
|
|
int32_t *connect3; /* SLOT3 output pointer */
|
|
int32_t *connect2; /* SLOT2 output pointer */
|
|
int32_t *connect4; /* SLOT4 output pointer */
|
|
|
|
int32_t *mem_connect;/* where to put the delayed sample (MEM) */
|
|
int32_t mem_value; /* delayed sample (MEM) value */
|
|
|
|
int32_t pms; /* channel PMS */
|
|
uint8_t ams; /* channel AMS */
|
|
|
|
uint32_t fc; /* fnum,blk:adjusted to sample rate */
|
|
uint8_t kcode; /* key code: */
|
|
uint32_t block_fnum; /* current blk/fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
|
|
|
|
int32_t pan_volume_l; /* libOPNMIDI: left panning amount */
|
|
int32_t pan_volume_r; /* libOPNMIDI: right panning amount */
|
|
};
|
|
|
|
|
|
struct FM_ST
|
|
{
|
|
device_t *device;
|
|
int clock; /* master clock (Hz) */
|
|
int rate; /* sampling rate (Hz) */
|
|
double freqbase; /* frequency base */
|
|
int timer_prescaler; /* timer prescaler */
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
TIME_TYPE busy_expiry_time; /* expiry time of the busy status */
|
|
#endif
|
|
uint8_t address; /* address register */
|
|
uint8_t irq; /* interrupt level */
|
|
uint8_t irqmask; /* irq mask */
|
|
uint8_t status; /* status flag */
|
|
uint32_t mode; /* mode CSM / 3SLOT */
|
|
uint8_t prescaler_sel; /* prescaler selector */
|
|
uint8_t fn_h; /* freq latch */
|
|
int32_t TA; /* timer a */
|
|
int32_t TAC; /* timer a counter */
|
|
uint8_t TB; /* timer b */
|
|
int32_t TBC; /* timer b counter */
|
|
/* local time tables */
|
|
int32_t dt_tab[8][32]; /* DeTune table */
|
|
/* Extention Timer and IRQ handler */
|
|
FM_TIMERHANDLER timer_handler;
|
|
FM_IRQHANDLER IRQ_Handler;
|
|
const ssg_callbacks *SSG;
|
|
};
|
|
|
|
|
|
|
|
/***********************************************************/
|
|
/* OPN unit */
|
|
/***********************************************************/
|
|
|
|
/* OPN 3slot struct */
|
|
struct FM_3SLOT
|
|
{
|
|
uint32_t fc[3]; /* fnum3,blk3: calculated */
|
|
uint8_t fn_h; /* freq3 latch */
|
|
uint8_t kcode[3]; /* key code */
|
|
uint32_t block_fnum[3]; /* current fnum value for this slot (can be different betweeen slots of one channel in 3slot mode) */
|
|
};
|
|
|
|
/* OPN/A/B common state */
|
|
struct FM_OPN
|
|
{
|
|
uint8_t type; /* chip type */
|
|
FM_ST ST; /* general state */
|
|
FM_3SLOT SL3; /* 3 slot mode state */
|
|
FM_CH *P_CH; /* pointer of CH */
|
|
unsigned int pan[6*2]; /* fm channels output masks (0xffffffff = enable) */
|
|
|
|
uint32_t eg_cnt; /* global envelope generator counter */
|
|
uint32_t eg_timer; /* global envelope generator counter works at frequency = chipclock/64/3 */
|
|
uint32_t eg_timer_add; /* step of eg_timer */
|
|
uint32_t eg_timer_overflow;/* envelope generator timer overflows every 3 samples (on real chip) */
|
|
|
|
|
|
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
|
|
but LFO works with one more bit of a precision so we really need 4096 elements */
|
|
|
|
uint32_t fn_table[4096]; /* fnumber->increment counter */
|
|
uint32_t fn_max; /* maximal phase increment (used for phase overflow) */
|
|
|
|
/* LFO */
|
|
uint32_t LFO_AM; /* runtime LFO calculations helper */
|
|
int32_t LFO_PM; /* runtime LFO calculations helper */
|
|
|
|
uint32_t lfo_cnt;
|
|
uint32_t lfo_inc;
|
|
|
|
uint32_t lfo_freq[8]; /* LFO FREQ table */
|
|
|
|
int32_t m2,c1,c2; /* Phase Modulation input for operators 2,3,4 */
|
|
int32_t mem; /* one sample delay memory */
|
|
|
|
int32_t out_fm[8]; /* outputs of working channels */
|
|
|
|
#if (BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B)
|
|
int32_t out_adpcm[4]; /* channel output NONE,LEFT,RIGHT or CENTER for YM2608/YM2610 ADPCM */
|
|
int32_t out_delta[4]; /* channel output NONE,LEFT,RIGHT or CENTER for YM2608/YM2610 DELTAT*/
|
|
#endif
|
|
};
|
|
|
|
|
|
|
|
/* current chip state */
|
|
|
|
/* log output level */
|
|
#define LOG_ERR 3 /* ERROR */
|
|
#define LOG_WAR 2 /* WARNING */
|
|
#define LOG_INF 1 /* INFORMATION */
|
|
#define LOG_LEVEL LOG_INF
|
|
|
|
#ifndef __RAINE__
|
|
#define LOG(d,n,x) do { if( (n)>=LOG_LEVEL ) d->logerror x; } while (0)
|
|
#endif
|
|
|
|
/* limitter */
|
|
#define Limit(val, max,min) { \
|
|
if ( val > max ) val = max; \
|
|
else if ( val < min ) val = min; \
|
|
}
|
|
|
|
|
|
/* status set and IRQ handling */
|
|
static inline void FM_STATUS_SET(FM_ST *ST,int flag)
|
|
{
|
|
/* set status flag */
|
|
ST->status |= flag;
|
|
if ( !(ST->irq) && (ST->status & ST->irqmask) )
|
|
{
|
|
ST->irq = 1;
|
|
/* callback user interrupt handler (IRQ is OFF to ON) */
|
|
if(ST->IRQ_Handler) (ST->IRQ_Handler)(ST->device,1);
|
|
}
|
|
}
|
|
|
|
/* status reset and IRQ handling */
|
|
static inline void FM_STATUS_RESET(FM_ST *ST,int flag)
|
|
{
|
|
/* reset status flag */
|
|
ST->status &=~flag;
|
|
if ( (ST->irq) && !(ST->status & ST->irqmask) )
|
|
{
|
|
ST->irq = 0;
|
|
/* callback user interrupt handler (IRQ is ON to OFF) */
|
|
if(ST->IRQ_Handler) (ST->IRQ_Handler)(ST->device,0);
|
|
}
|
|
}
|
|
|
|
/* IRQ mask set */
|
|
static inline void FM_IRQMASK_SET(FM_ST *ST,int flag)
|
|
{
|
|
ST->irqmask = flag;
|
|
/* IRQ handling check */
|
|
FM_STATUS_SET(ST,0);
|
|
FM_STATUS_RESET(ST,0);
|
|
}
|
|
|
|
/* OPN Mode Register Write */
|
|
static inline void set_timers( FM_ST *ST, device_t *n, int v )
|
|
{
|
|
/* b7 = CSM MODE */
|
|
/* b6 = 3 slot mode */
|
|
/* b5 = reset b */
|
|
/* b4 = reset a */
|
|
/* b3 = timer enable b */
|
|
/* b2 = timer enable a */
|
|
/* b1 = load b */
|
|
/* b0 = load a */
|
|
ST->mode = v;
|
|
|
|
/* reset Timer b flag */
|
|
if( v & 0x20 )
|
|
FM_STATUS_RESET(ST,0x02);
|
|
/* reset Timer a flag */
|
|
if( v & 0x10 )
|
|
FM_STATUS_RESET(ST,0x01);
|
|
/* load b */
|
|
if( v & 0x02 )
|
|
{
|
|
if( ST->TBC == 0 )
|
|
{
|
|
ST->TBC = ( 256-ST->TB)<<4;
|
|
/* External timer handler */
|
|
if (ST->timer_handler) (ST->timer_handler)(n,1,ST->TBC * ST->timer_prescaler,ST->clock);
|
|
}
|
|
}
|
|
else
|
|
{ /* stop timer b */
|
|
if( ST->TBC != 0 )
|
|
{
|
|
ST->TBC = 0;
|
|
if (ST->timer_handler) (ST->timer_handler)(n,1,0,ST->clock);
|
|
}
|
|
}
|
|
/* load a */
|
|
if( v & 0x01 )
|
|
{
|
|
if( ST->TAC == 0 )
|
|
{
|
|
ST->TAC = (1024-ST->TA);
|
|
/* External timer handler */
|
|
if (ST->timer_handler) (ST->timer_handler)(n,0,ST->TAC * ST->timer_prescaler,ST->clock);
|
|
}
|
|
}
|
|
else
|
|
{ /* stop timer a */
|
|
if( ST->TAC != 0 )
|
|
{
|
|
ST->TAC = 0;
|
|
if (ST->timer_handler) (ST->timer_handler)(n,0,0,ST->clock);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Timer A Overflow */
|
|
static inline void TimerAOver(FM_ST *ST)
|
|
{
|
|
/* set status (if enabled) */
|
|
if(ST->mode & 0x04) FM_STATUS_SET(ST,0x01);
|
|
/* clear or reload the counter */
|
|
ST->TAC = (1024-ST->TA);
|
|
if (ST->timer_handler) (ST->timer_handler)(ST->device,0,ST->TAC * ST->timer_prescaler,ST->clock);
|
|
}
|
|
/* Timer B Overflow */
|
|
static inline void TimerBOver(FM_ST *ST)
|
|
{
|
|
/* set status (if enabled) */
|
|
if(ST->mode & 0x08) FM_STATUS_SET(ST,0x02);
|
|
/* clear or reload the counter */
|
|
ST->TBC = ( 256-ST->TB)<<4;
|
|
if (ST->timer_handler) (ST->timer_handler)(ST->device,1,ST->TBC * ST->timer_prescaler,ST->clock);
|
|
}
|
|
|
|
|
|
#if FM_INTERNAL_TIMER
|
|
/* ----- internal timer mode , update timer */
|
|
|
|
/* ---------- calculate timer A ---------- */
|
|
#define INTERNAL_TIMER_A(ST,CSM_CH) \
|
|
{ \
|
|
if( ST->TAC && (ST->timer_handler==0) ) \
|
|
if( (ST->TAC -= (int)(ST->freqbase*4096)) <= 0 ) \
|
|
{ \
|
|
TimerAOver( ST ); \
|
|
/* CSM mode total level latch and auto key on */ \
|
|
if( ST->mode & 0x80 ) \
|
|
CSMKeyControll( CSM_CH ); \
|
|
} \
|
|
}
|
|
/* ---------- calculate timer B ---------- */
|
|
#define INTERNAL_TIMER_B(ST,step) \
|
|
{ \
|
|
if( ST->TBC && (ST->timer_handler==0) ) \
|
|
if( (ST->TBC -= (int)(ST->freqbase*4096*step)) <= 0 ) \
|
|
TimerBOver( ST ); \
|
|
}
|
|
#else /* FM_INTERNAL_TIMER */
|
|
/* external timer mode */
|
|
#define INTERNAL_TIMER_A(ST,CSM_CH)
|
|
#define INTERNAL_TIMER_B(ST,step)
|
|
#endif /* FM_INTERNAL_TIMER */
|
|
|
|
|
|
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
#define FM_BUSY_CLEAR(ST) ((ST)->busy_expiry_time = UNDEFINED_TIME)
|
|
static inline uint8_t FM_STATUS_FLAG(FM_ST *ST)
|
|
{
|
|
if( COMPARE_TIMES(ST->busy_expiry_time, UNDEFINED_TIME) != 0 )
|
|
{
|
|
if (COMPARE_TIMES(ST->busy_expiry_time, FM_GET_TIME_NOW(&ST->device->machine())) > 0)
|
|
return ST->status | 0x80; /* with busy */
|
|
/* expire */
|
|
FM_BUSY_CLEAR(ST);
|
|
}
|
|
return ST->status;
|
|
}
|
|
static inline void FM_BUSY_SET(FM_ST *ST,int busyclock )
|
|
{
|
|
TIME_TYPE expiry_period = MULTIPLY_TIME_BY_INT(attotime::from_hz(ST->clock), busyclock * ST->timer_prescaler);
|
|
ST->busy_expiry_time = ADD_TIMES(FM_GET_TIME_NOW(&ST->device->machine()), expiry_period);
|
|
}
|
|
#else
|
|
#define FM_STATUS_FLAG(ST) ((ST)->status)
|
|
#define FM_BUSY_SET(ST,bclock) {}
|
|
#define FM_BUSY_CLEAR(ST) {}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static inline void FM_KEYON(uint8_t type, FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
(void)type;
|
|
if( !SLOT->key )
|
|
{
|
|
SLOT->key = 1;
|
|
SLOT->phase = 0; /* restart Phase Generator */
|
|
SLOT->ssgn = (SLOT->ssg & 0x04) >> 1;
|
|
SLOT->state = EG_ATT;
|
|
}
|
|
}
|
|
|
|
static inline void FM_KEYOFF(FM_CH *CH , int s )
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[s];
|
|
if( SLOT->key )
|
|
{
|
|
SLOT->key = 0;
|
|
if (SLOT->state>EG_REL)
|
|
SLOT->state = EG_REL;/* phase -> Release */
|
|
}
|
|
}
|
|
|
|
/* set algorithm connection */
|
|
static void setup_connection( FM_OPN *OPN, FM_CH *CH, int ch )
|
|
{
|
|
int32_t *carrier = &OPN->out_fm[ch];
|
|
|
|
int32_t **om1 = &CH->connect1;
|
|
int32_t **om2 = &CH->connect3;
|
|
int32_t **oc1 = &CH->connect2;
|
|
|
|
int32_t **memc = &CH->mem_connect;
|
|
|
|
switch( CH->ALGO )
|
|
{
|
|
case 0:
|
|
/* M1---C1---MEM---M2---C2---OUT */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 1:
|
|
/* M1------+-MEM---M2---C2---OUT */
|
|
/* C1-+ */
|
|
*om1 = &OPN->mem;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 2:
|
|
/* M1-----------------+-C2---OUT */
|
|
/* C1---MEM---M2-+ */
|
|
*om1 = &OPN->c2;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 3:
|
|
/* M1---C1---MEM------+-C2---OUT */
|
|
/* M2-+ */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = &OPN->mem;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->c2;
|
|
break;
|
|
case 4:
|
|
/* M1---C1-+-OUT */
|
|
/* M2---C2-+ */
|
|
/* MEM: not used */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = carrier;
|
|
*om2 = &OPN->c2;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
case 5:
|
|
/* +----C1----+ */
|
|
/* M1-+-MEM---M2-+-OUT */
|
|
/* +----C2----+ */
|
|
*om1 = NULLPTR; /* special mark */
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->m2;
|
|
break;
|
|
case 6:
|
|
/* M1---C1-+ */
|
|
/* M2-+-OUT */
|
|
/* C2-+ */
|
|
/* MEM: not used */
|
|
*om1 = &OPN->c1;
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
case 7:
|
|
/* M1-+ */
|
|
/* C1-+-OUT */
|
|
/* M2-+ */
|
|
/* C2-+ */
|
|
/* MEM: not used*/
|
|
*om1 = carrier;
|
|
*oc1 = carrier;
|
|
*om2 = carrier;
|
|
*memc= &OPN->mem; /* store it anywhere where it will not be used */
|
|
break;
|
|
}
|
|
|
|
CH->connect4 = carrier;
|
|
}
|
|
|
|
/* set detune & multiple */
|
|
static inline void set_det_mul(FM_ST *ST,FM_CH *CH,FM_SLOT *SLOT,int v)
|
|
{
|
|
SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;
|
|
SLOT->DT = ST->dt_tab[(v>>4)&7];
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
|
|
/* set total level */
|
|
static inline void set_tl(FM_CH *CH,FM_SLOT *SLOT , int v)
|
|
{
|
|
(void)CH;
|
|
SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */
|
|
}
|
|
|
|
/* set attack rate & key scale */
|
|
static inline void set_ar_ksr(uint8_t type, FM_CH *CH,FM_SLOT *SLOT,int v)
|
|
{
|
|
uint8_t old_KSR = SLOT->KSR;
|
|
(void)type;
|
|
|
|
SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->KSR = 3-(v>>6);
|
|
if (SLOT->KSR != old_KSR)
|
|
{
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
|
|
/* refresh Attack rate */
|
|
if ((SLOT->ar + SLOT->ksr) < 32+62)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 17*RATE_STEPS;
|
|
}
|
|
}
|
|
|
|
/* set decay rate */
|
|
static inline void set_dr(uint8_t type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
|
|
}
|
|
|
|
/* set sustain rate */
|
|
static inline void set_sr(uint8_t type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
|
|
|
|
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
|
|
}
|
|
|
|
/* set release rate */
|
|
static inline void set_sl_rr(uint8_t type, FM_SLOT *SLOT,int v)
|
|
{
|
|
(void)type;
|
|
SLOT->sl = sl_table[ v>>4 ];
|
|
|
|
SLOT->rr = 34 + ((v&0x0f)<<2);
|
|
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
|
|
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
|
|
}
|
|
|
|
|
|
|
|
static inline signed int op_calc(uint32_t phase, unsigned int env, signed int pm)
|
|
{
|
|
uint32_t p;
|
|
|
|
p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + (pm<<15))) >> FREQ_SH ) & SIN_MASK ];
|
|
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
static inline signed int op_calc1(uint32_t phase, unsigned int env, signed int pm)
|
|
{
|
|
uint32_t p;
|
|
|
|
p = (env<<3) + sin_tab[ ( ((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK ];
|
|
|
|
if (p >= TL_TAB_LEN)
|
|
return 0;
|
|
return tl_tab[p];
|
|
}
|
|
|
|
/* advance LFO to next sample */
|
|
static inline void advance_lfo(FM_OPN *OPN)
|
|
{
|
|
uint8_t pos;
|
|
|
|
if (OPN->lfo_inc) /* LFO enabled ? */
|
|
{
|
|
OPN->lfo_cnt += OPN->lfo_inc;
|
|
|
|
pos = (OPN->lfo_cnt >> LFO_SH) & 127;
|
|
|
|
|
|
/* update AM when LFO output changes */
|
|
|
|
/* actually I can't optimize is this way without rewriting chan_calc()
|
|
to use chip->lfo_am instead of global lfo_am */
|
|
{
|
|
/* triangle */
|
|
/* AM: 0 to 126 step +2, 126 to 0 step -2 */
|
|
if (pos<64)
|
|
OPN->LFO_AM = (pos&63) * 2;
|
|
else
|
|
OPN->LFO_AM = 126 - ((pos&63) * 2);
|
|
}
|
|
|
|
/* PM works with 4 times slower clock */
|
|
pos >>= 2;
|
|
/* update PM when LFO output changes */
|
|
/*if (prev_pos != pos)*/ /* can't use global lfo_pm for this optimization, must be chip->lfo_pm instead*/
|
|
{
|
|
OPN->LFO_PM = pos;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
OPN->LFO_AM = 0;
|
|
OPN->LFO_PM = 0;
|
|
}
|
|
}
|
|
|
|
/* changed from static inline to static here to work around gcc 4.2.1 codegen bug */
|
|
static void advance_eg_channel(FM_OPN *OPN, FM_SLOT *SLOT)
|
|
{
|
|
unsigned int out;
|
|
unsigned int swap_flag;
|
|
unsigned int i;
|
|
|
|
|
|
i = 4; /* four operators per channel */
|
|
do
|
|
{
|
|
/* reset SSG-EG swap flag */
|
|
swap_flag = 0;
|
|
|
|
switch(SLOT->state)
|
|
{
|
|
case EG_ATT: /* attack phase */
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_ar)-1) ) )
|
|
{
|
|
SLOT->volume += (~SLOT->volume *
|
|
(eg_inc[SLOT->eg_sel_ar + ((OPN->eg_cnt>>SLOT->eg_sh_ar)&7)])
|
|
) >>4;
|
|
|
|
if (SLOT->volume <= MIN_ATT_INDEX)
|
|
{
|
|
SLOT->volume = MIN_ATT_INDEX;
|
|
SLOT->state = EG_DEC;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EG_DEC: /* decay phase */
|
|
{
|
|
if (SLOT->ssg&0x08) /* SSG EG type envelope selected */
|
|
{
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_d1r)-1) ) )
|
|
{
|
|
SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d1r + ((OPN->eg_cnt>>SLOT->eg_sh_d1r)&7)];
|
|
|
|
if ( SLOT->volume >= (int32_t)(SLOT->sl) )
|
|
SLOT->state = EG_SUS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_d1r)-1) ) )
|
|
{
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_d1r + ((OPN->eg_cnt>>SLOT->eg_sh_d1r)&7)];
|
|
|
|
if ( SLOT->volume >= (int32_t)(SLOT->sl) )
|
|
SLOT->state = EG_SUS;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EG_SUS: /* sustain phase */
|
|
if (SLOT->ssg&0x08) /* SSG EG type envelope selected */
|
|
{
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_d2r)-1) ) )
|
|
{
|
|
SLOT->volume += 4 * eg_inc[SLOT->eg_sel_d2r + ((OPN->eg_cnt>>SLOT->eg_sh_d2r)&7)];
|
|
|
|
if ( SLOT->volume >= ENV_QUIET )
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
|
|
if (SLOT->ssg&0x01) /* bit 0 = hold */
|
|
{
|
|
if (SLOT->ssgn&1) /* have we swapped once ??? */
|
|
{
|
|
/* yes, so do nothing, just hold current level */
|
|
}
|
|
else
|
|
swap_flag = (SLOT->ssg&0x02) | 1 ; /* bit 1 = alternate */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* same as KEY-ON operation */
|
|
|
|
/* restart of the Phase Generator should be here */
|
|
SLOT->phase = 0;
|
|
|
|
{
|
|
/* phase -> Attack */
|
|
SLOT->volume = 511;
|
|
SLOT->state = EG_ATT;
|
|
}
|
|
|
|
swap_flag = (SLOT->ssg&0x02); /* bit 1 = alternate */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_d2r)-1) ) )
|
|
{
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_d2r + ((OPN->eg_cnt>>SLOT->eg_sh_d2r)&7)];
|
|
|
|
if ( SLOT->volume >= MAX_ATT_INDEX )
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
/* do not change SLOT->state (verified on real chip) */
|
|
}
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case EG_REL: /* release phase */
|
|
if ( !(OPN->eg_cnt & ((1<<SLOT->eg_sh_rr)-1) ) )
|
|
{
|
|
/* SSG-EG affects Release phase also (Nemesis) */
|
|
SLOT->volume += eg_inc[SLOT->eg_sel_rr + ((OPN->eg_cnt>>SLOT->eg_sh_rr)&7)];
|
|
|
|
if ( SLOT->volume >= MAX_ATT_INDEX )
|
|
{
|
|
SLOT->volume = MAX_ATT_INDEX;
|
|
SLOT->state = EG_OFF;
|
|
}
|
|
}
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
out = ((uint32_t)SLOT->volume);
|
|
|
|
/* negate output (changes come from alternate bit, init comes from attack bit) */
|
|
if ((SLOT->ssg&0x08) && (SLOT->ssgn&2) && (SLOT->state > EG_REL))
|
|
out ^= MAX_ATT_INDEX;
|
|
|
|
/* we need to store the result here because we are going to change ssgn
|
|
in next instruction */
|
|
SLOT->vol_out = out + SLOT->tl;
|
|
|
|
/* reverse SLOT inversion flag */
|
|
SLOT->ssgn ^= swap_flag;
|
|
|
|
SLOT++;
|
|
i--;
|
|
}while (i);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define volume_calc(OP) ((OP)->vol_out + (AM & (OP)->AMmask))
|
|
|
|
static inline void update_phase_lfo_slot(FM_OPN *OPN, FM_SLOT *SLOT, int32_t pms, uint32_t block_fnum)
|
|
{
|
|
uint32_t fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
|
|
int32_t lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + pms + OPN->LFO_PM ];
|
|
|
|
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
|
|
{
|
|
uint8_t blk;
|
|
uint32_t fn;
|
|
int kc, fc;
|
|
|
|
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
|
|
|
|
blk = (block_fnum&0x7000) >> 12;
|
|
fn = block_fnum & 0xfff;
|
|
|
|
/* keyscale code */
|
|
kc = (blk<<2) | opn_fktable[fn >> 8];
|
|
|
|
/* phase increment counter */
|
|
fc = (OPN->fn_table[fn]>>(7-blk)) + SLOT->DT[kc];
|
|
|
|
/* detects frequency overflow (credits to Nemesis) */
|
|
if (fc < 0) fc += OPN->fn_max;
|
|
|
|
/* update phase */
|
|
SLOT->phase += (fc * SLOT->mul) >> 1;
|
|
}
|
|
else /* LFO phase modulation = zero */
|
|
{
|
|
SLOT->phase += SLOT->Incr;
|
|
}
|
|
}
|
|
|
|
static inline void update_phase_lfo_channel(FM_OPN *OPN, FM_CH *CH)
|
|
{
|
|
uint32_t block_fnum = CH->block_fnum;
|
|
|
|
uint32_t fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
|
|
int32_t lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + CH->pms + OPN->LFO_PM ];
|
|
|
|
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
|
|
{
|
|
uint8_t blk;
|
|
uint32_t fn;
|
|
int kc, fc, finc;
|
|
|
|
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
|
|
|
|
blk = (block_fnum&0x7000) >> 12;
|
|
fn = block_fnum & 0xfff;
|
|
|
|
/* keyscale code */
|
|
kc = (blk<<2) | opn_fktable[fn >> 8];
|
|
|
|
/* phase increment counter */
|
|
fc = (OPN->fn_table[fn]>>(7-blk));
|
|
|
|
/* detects frequency overflow (credits to Nemesis) */
|
|
finc = fc + CH->SLOT[SLOT1].DT[kc];
|
|
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT1].phase += (finc*CH->SLOT[SLOT1].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT2].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT2].phase += (finc*CH->SLOT[SLOT2].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT3].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT3].phase += (finc*CH->SLOT[SLOT3].mul) >> 1;
|
|
|
|
finc = fc + CH->SLOT[SLOT4].DT[kc];
|
|
if (finc < 0) finc += OPN->fn_max;
|
|
CH->SLOT[SLOT4].phase += (finc*CH->SLOT[SLOT4].mul) >> 1;
|
|
}
|
|
else /* LFO phase modulation = zero */
|
|
{
|
|
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
|
|
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
|
|
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
|
|
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
|
|
}
|
|
}
|
|
|
|
static inline void chan_calc(FM_OPN *OPN, FM_CH *CH, int chnum)
|
|
{
|
|
unsigned int eg_out;
|
|
|
|
uint32_t AM = OPN->LFO_AM >> CH->ams;
|
|
|
|
|
|
OPN->m2 = OPN->c1 = OPN->c2 = OPN->mem = 0;
|
|
|
|
*CH->mem_connect = CH->mem_value; /* restore delayed sample (MEM) value to m2 or c2 */
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT1]);
|
|
{
|
|
int32_t out = CH->op1_out[0] + CH->op1_out[1];
|
|
CH->op1_out[0] = CH->op1_out[1];
|
|
|
|
if( !CH->connect1 )
|
|
{
|
|
/* algorithm 5 */
|
|
OPN->mem = OPN->c1 = OPN->c2 = CH->op1_out[0];
|
|
}
|
|
else
|
|
{
|
|
/* other algorithms */
|
|
*CH->connect1 += CH->op1_out[0];
|
|
}
|
|
|
|
CH->op1_out[1] = 0;
|
|
if( eg_out < ENV_QUIET ) /* SLOT 1 */
|
|
{
|
|
if (!CH->FB)
|
|
out=0;
|
|
|
|
CH->op1_out[1] = op_calc1(CH->SLOT[SLOT1].phase, eg_out, (out<<CH->FB) );
|
|
}
|
|
}
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT3]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 3 */
|
|
*CH->connect3 += op_calc(CH->SLOT[SLOT3].phase, eg_out, OPN->m2);
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT2]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 2 */
|
|
*CH->connect2 += op_calc(CH->SLOT[SLOT2].phase, eg_out, OPN->c1);
|
|
|
|
eg_out = volume_calc(&CH->SLOT[SLOT4]);
|
|
if( eg_out < ENV_QUIET ) /* SLOT 4 */
|
|
*CH->connect4 += op_calc(CH->SLOT[SLOT4].phase, eg_out, OPN->c2);
|
|
|
|
|
|
/* store current MEM */
|
|
CH->mem_value = OPN->mem;
|
|
|
|
/* update phase counters AFTER output calculations */
|
|
if(CH->pms)
|
|
{
|
|
/* add support for 3 slot mode */
|
|
if ((OPN->ST.mode & 0xC0) && (chnum == 2))
|
|
{
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT1], CH->pms, OPN->SL3.block_fnum[1]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT2], CH->pms, OPN->SL3.block_fnum[2]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT3], CH->pms, OPN->SL3.block_fnum[0]);
|
|
update_phase_lfo_slot(OPN, &CH->SLOT[SLOT4], CH->pms, CH->block_fnum);
|
|
}
|
|
else update_phase_lfo_channel(OPN, CH);
|
|
}
|
|
else /* no LFO phase modulation */
|
|
{
|
|
CH->SLOT[SLOT1].phase += CH->SLOT[SLOT1].Incr;
|
|
CH->SLOT[SLOT2].phase += CH->SLOT[SLOT2].Incr;
|
|
CH->SLOT[SLOT3].phase += CH->SLOT[SLOT3].Incr;
|
|
CH->SLOT[SLOT4].phase += CH->SLOT[SLOT4].Incr;
|
|
}
|
|
}
|
|
|
|
/* update phase increment and envelope generator */
|
|
static inline void refresh_fc_eg_slot(FM_OPN *OPN, FM_SLOT *SLOT , int fc , int kc )
|
|
{
|
|
int ksr = kc >> SLOT->KSR;
|
|
|
|
fc += SLOT->DT[kc];
|
|
|
|
/* detects frequency overflow (credits to Nemesis) */
|
|
if (fc < 0) fc += OPN->fn_max;
|
|
|
|
/* (frequency) phase increment counter */
|
|
SLOT->Incr = (fc * SLOT->mul) >> 1;
|
|
|
|
if( SLOT->ksr != ksr )
|
|
{
|
|
SLOT->ksr = ksr;
|
|
|
|
/* calculate envelope generator rates */
|
|
if ((SLOT->ar + SLOT->ksr) < 32+62)
|
|
{
|
|
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
|
|
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
|
|
}
|
|
else
|
|
{
|
|
SLOT->eg_sh_ar = 0;
|
|
SLOT->eg_sel_ar = 17*RATE_STEPS;
|
|
}
|
|
|
|
SLOT->eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
|
|
|
|
SLOT->eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
|
|
SLOT->eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
|
|
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
|
|
}
|
|
}
|
|
|
|
/* update phase increment counters */
|
|
/* Changed from static inline to static to work around gcc 4.2.1 codegen bug */
|
|
static void refresh_fc_eg_chan(FM_OPN *OPN, FM_CH *CH )
|
|
{
|
|
if( CH->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
int fc = CH->fc;
|
|
int kc = CH->kcode;
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT1] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT2] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT3] , fc , kc );
|
|
refresh_fc_eg_slot(OPN, &CH->SLOT[SLOT4] , fc , kc );
|
|
}
|
|
}
|
|
|
|
/* initialize time tables */
|
|
static void init_timetables( FM_ST *ST , const uint8_t *dttable )
|
|
{
|
|
int i,d;
|
|
double rate;
|
|
|
|
#if 0
|
|
logerror("FM.C: samplerate=%8i chip clock=%8i freqbase=%f \n",
|
|
ST->rate, ST->clock, ST->freqbase );
|
|
#endif
|
|
|
|
/* DeTune table */
|
|
for (d = 0;d <= 3;d++)
|
|
{
|
|
for (i = 0;i <= 31;i++)
|
|
{
|
|
rate = ((double)dttable[d*32 + i]) * SIN_LEN * ST->freqbase * (1<<FREQ_SH) / ((double)(1<<20));
|
|
ST->dt_tab[d][i] = (int32_t) rate;
|
|
ST->dt_tab[d+4][i] = -ST->dt_tab[d][i];
|
|
#if 0
|
|
logerror("FM.C: DT [%2i %2i] = %8x \n", d, i, ST->dt_tab[d][i] );
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void reset_channels( FM_ST *ST , FM_CH *CH , int num )
|
|
{
|
|
int c,s;
|
|
|
|
ST->mode = 0; /* normal mode */
|
|
ST->TA = 0;
|
|
ST->TAC = 0;
|
|
ST->TB = 0;
|
|
ST->TBC = 0;
|
|
|
|
for( c = 0 ; c < num ; c++ )
|
|
{
|
|
CH[c].fc = 0;
|
|
for(s = 0 ; s < 4 ; s++ )
|
|
{
|
|
CH[c].SLOT[s].ssg = 0;
|
|
CH[c].SLOT[s].ssgn = 0;
|
|
CH[c].SLOT[s].state= EG_OFF;
|
|
CH[c].SLOT[s].volume = MAX_ATT_INDEX;
|
|
CH[c].SLOT[s].vol_out= MAX_ATT_INDEX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* initialize generic tables */
|
|
static int init_tables(void)
|
|
{
|
|
signed int i,x;
|
|
signed int n;
|
|
double o,m;
|
|
|
|
for (x=0; x<TL_RES_LEN; x++)
|
|
{
|
|
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
|
|
m = floor(m);
|
|
|
|
/* we never reach (1<<16) here due to the (x+1) */
|
|
/* result fits within 16 bits at maximum */
|
|
|
|
n = (int)m; /* 16 bits here */
|
|
n >>= 4; /* 12 bits here */
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
/* 11 bits here (rounded) */
|
|
n <<= 2; /* 13 bits here (as in real chip) */
|
|
tl_tab[ x*2 + 0 ] = n;
|
|
tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
|
|
|
|
for (i=1; i<13; i++)
|
|
{
|
|
tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
|
|
tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
|
|
}
|
|
#if 0
|
|
logerror("tl %04i", x);
|
|
for (i=0; i<13; i++)
|
|
logerror(", [%02i] %4x", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ]);
|
|
logerror("\n");
|
|
#endif
|
|
}
|
|
/*logerror("FM.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
|
|
|
|
|
|
for (i=0; i<SIN_LEN; i++)
|
|
{
|
|
/* non-standard sinus */
|
|
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
|
|
|
|
/* we never reach zero here due to ((i*2)+1) */
|
|
|
|
if (m>0.0)
|
|
o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
|
|
else
|
|
o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
|
|
|
|
o = o / (ENV_STEP/4);
|
|
|
|
n = (int)(2.0*o);
|
|
if (n&1) /* round to nearest */
|
|
n = (n>>1)+1;
|
|
else
|
|
n = n>>1;
|
|
|
|
sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
|
|
/*logerror("FM.C: sin [%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[i],tl_tab[sin_tab[i]]);*/
|
|
}
|
|
|
|
/*logerror("FM.C: ENV_QUIET= %08x\n",ENV_QUIET );*/
|
|
|
|
|
|
/* build LFO PM modulation table */
|
|
for(i = 0; i < 8; i++) /* 8 PM depths */
|
|
{
|
|
uint8_t fnum;
|
|
for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */
|
|
{
|
|
uint8_t value;
|
|
uint8_t step;
|
|
uint32_t offset_depth = i;
|
|
uint32_t offset_fnum_bit;
|
|
uint32_t bit_tmp;
|
|
|
|
for (step=0; step<8; step++)
|
|
{
|
|
value = 0;
|
|
for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */
|
|
{
|
|
if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */
|
|
{
|
|
offset_fnum_bit = bit_tmp * 8;
|
|
value += lfo_pm_output[offset_fnum_bit + offset_depth][step];
|
|
}
|
|
}
|
|
lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;
|
|
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;
|
|
}
|
|
#if 0
|
|
logerror("LFO depth=%1x FNUM=%04x (<<4=%4x): ", i, fnum, fnum<<4);
|
|
for (step=0; step<16; step++) /* dump only positive part of waveforms */
|
|
logerror("%02x ", lfo_pm_table[(fnum*32*8) + (i*32) + step] );
|
|
logerror("\n");
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
sample[0]=fopen("sampsum.pcm","wb");
|
|
#endif
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void FMCloseTable( void )
|
|
{
|
|
#ifdef SAVE_SAMPLE
|
|
fclose(sample[0]);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
|
|
/* CSM Key Controll */
|
|
static inline void CSMKeyControll(uint8_t type, FM_CH *CH)
|
|
{
|
|
/* all key on then off (only for operators which were OFF!) */
|
|
if (!CH->SLOT[SLOT1].key)
|
|
{
|
|
FM_KEYON(type, CH,SLOT1);
|
|
FM_KEYOFF(CH, SLOT1);
|
|
}
|
|
if (!CH->SLOT[SLOT2].key)
|
|
{
|
|
FM_KEYON(type, CH,SLOT2);
|
|
FM_KEYOFF(CH, SLOT2);
|
|
}
|
|
if (!CH->SLOT[SLOT3].key)
|
|
{
|
|
FM_KEYON(type, CH,SLOT3);
|
|
FM_KEYOFF(CH, SLOT3);
|
|
}
|
|
if (!CH->SLOT[SLOT4].key)
|
|
{
|
|
FM_KEYON(type, CH,SLOT4);
|
|
FM_KEYOFF(CH, SLOT4);
|
|
}
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
/* FM channel save , internal state only */
|
|
static void FMsave_state_channel(device_t *device,FM_CH *CH,int num_ch)
|
|
{
|
|
int slot , ch;
|
|
|
|
for(ch=0;ch<num_ch;ch++,CH++)
|
|
{
|
|
/* channel */
|
|
device->save_item(NAME(CH->op1_out), ch);
|
|
device->save_item(NAME(CH->fc), ch);
|
|
/* slots */
|
|
for(slot=0;slot<4;slot++)
|
|
{
|
|
FM_SLOT *SLOT = &CH->SLOT[slot];
|
|
device->save_item(NAME(SLOT->phase), ch * 4 + slot);
|
|
device->save_item(NAME(SLOT->state), ch * 4 + slot);
|
|
device->save_item(NAME(SLOT->volume), ch * 4 + slot);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FMsave_state_st(device_t *device,FM_ST *ST)
|
|
{
|
|
#if FM_BUSY_FLAG_SUPPORT
|
|
device->save_item(NAME(ST->busy_expiry_time) );
|
|
#endif
|
|
device->save_item(NAME(ST->address) );
|
|
device->save_item(NAME(ST->irq) );
|
|
device->save_item(NAME(ST->irqmask) );
|
|
device->save_item(NAME(ST->status) );
|
|
device->save_item(NAME(ST->mode) );
|
|
device->save_item(NAME(ST->prescaler_sel) );
|
|
device->save_item(NAME(ST->fn_h) );
|
|
device->save_item(NAME(ST->TA) );
|
|
device->save_item(NAME(ST->TAC) );
|
|
device->save_item(NAME(ST->TB) );
|
|
device->save_item(NAME(ST->TBC) );
|
|
}
|
|
#endif /* MAME_EMU_SAVE_H */
|
|
|
|
#if BUILD_OPN
|
|
|
|
|
|
|
|
/* prescaler set (and make time tables) */
|
|
static void OPNSetPres(FM_OPN *OPN, int pres, int timer_prescaler, int SSGpres)
|
|
{
|
|
int i;
|
|
|
|
/* frequency base */
|
|
OPN->ST.freqbase = (OPN->ST.rate) ? ((double)OPN->ST.clock / OPN->ST.rate) / pres : 0;
|
|
|
|
#if 0
|
|
OPN->ST.rate = (double)OPN->ST.clock / pres;
|
|
OPN->ST.freqbase = 1.0;
|
|
#endif
|
|
|
|
OPN->eg_timer_add = (uint32_t)((1<<EG_SH) * OPN->ST.freqbase);
|
|
OPN->eg_timer_overflow = ( 3 ) * (1<<EG_SH);
|
|
|
|
|
|
/* Timer base time */
|
|
OPN->ST.timer_prescaler = timer_prescaler;
|
|
|
|
/* SSG part prescaler set */
|
|
if( SSGpres ) (*OPN->ST.SSG->set_clock)( OPN->ST.device, OPN->ST.clock * 2 / SSGpres );
|
|
|
|
/* make time tables */
|
|
init_timetables( &OPN->ST, dt_tab );
|
|
|
|
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
|
|
but LFO works with one more bit of a precision so we really need 4096 elements */
|
|
/* calculate fnumber -> increment counter table */
|
|
for(i = 0; i < 4096; i++)
|
|
{
|
|
/* freq table for octave 7 */
|
|
/* OPN phase increment counter = 20bit */
|
|
OPN->fn_table[i] = (uint32_t)( (double)i * 32 * OPN->ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
|
|
#if 0
|
|
logerror("FM.C: fn_table[%4i] = %08x (dec=%8i)\n",
|
|
i, OPN->fn_table[i]>>6,OPN->fn_table[i]>>6 );
|
|
#endif
|
|
}
|
|
|
|
/* maximal frequency is required for Phase overflow calculation, register size is 17 bits (Nemesis) */
|
|
OPN->fn_max = (uint32_t)( (double)0x20000 * OPN->ST.freqbase * (1<<(FREQ_SH-10)) );
|
|
|
|
/* LFO freq. table */
|
|
for(i = 0; i < 8; i++)
|
|
{
|
|
/* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */
|
|
/* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */
|
|
OPN->lfo_freq[i] = (uint32_t)((1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * OPN->ST.freqbase);
|
|
#if 0
|
|
logerror("FM.C: lfo_freq[%i] = %08x (dec=%8i)\n",
|
|
i, OPN->lfo_freq[i],OPN->lfo_freq[i] );
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* write a OPN mode register 0x20-0x2f */
|
|
static void OPNWriteMode(FM_OPN *OPN, int r, int v)
|
|
{
|
|
uint8_t c;
|
|
FM_CH *CH;
|
|
|
|
switch(r)
|
|
{
|
|
case 0x21: /* Test */
|
|
break;
|
|
case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */
|
|
if( OPN->type & TYPE_LFOPAN )
|
|
{
|
|
if (v&0x08) /* LFO enabled ? */
|
|
{
|
|
OPN->lfo_inc = OPN->lfo_freq[v&7];
|
|
}
|
|
else
|
|
{
|
|
OPN->lfo_inc = 0;
|
|
}
|
|
}
|
|
break;
|
|
case 0x24: /* timer A High 8*/
|
|
OPN->ST.TA = (OPN->ST.TA & 0x03)|(((int)v)<<2);
|
|
break;
|
|
case 0x25: /* timer A Low 2*/
|
|
OPN->ST.TA = (OPN->ST.TA & 0x3fc)|(v&3);
|
|
break;
|
|
case 0x26: /* timer B */
|
|
OPN->ST.TB = v;
|
|
break;
|
|
case 0x27: /* mode, timer control */
|
|
set_timers( &(OPN->ST),OPN->ST.device,v );
|
|
break;
|
|
case 0x28: /* key on / off */
|
|
c = v & 0x03;
|
|
if( c == 3 ) break;
|
|
if( (v&0x04) && (OPN->type & TYPE_6CH) ) c+=3;
|
|
CH = OPN->P_CH;
|
|
CH = &CH[c];
|
|
if(v&0x10) FM_KEYON(OPN->type,CH,SLOT1); else FM_KEYOFF(CH,SLOT1);
|
|
if(v&0x20) FM_KEYON(OPN->type,CH,SLOT2); else FM_KEYOFF(CH,SLOT2);
|
|
if(v&0x40) FM_KEYON(OPN->type,CH,SLOT3); else FM_KEYOFF(CH,SLOT3);
|
|
if(v&0x80) FM_KEYON(OPN->type,CH,SLOT4); else FM_KEYOFF(CH,SLOT4);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* write a OPN register (0x30-0xff) */
|
|
static void OPNWriteReg(FM_OPN *OPN, int r, int v)
|
|
{
|
|
FM_CH *CH;
|
|
FM_SLOT *SLOT;
|
|
|
|
uint8_t c = OPN_CHAN(r);
|
|
|
|
if (c == 3) return; /* 0xX3,0xX7,0xXB,0xXF */
|
|
|
|
if (r >= 0x100) c+=3;
|
|
|
|
CH = OPN->P_CH;
|
|
CH = &CH[c];
|
|
|
|
SLOT = &(CH->SLOT[OPN_SLOT(r)]);
|
|
|
|
switch( r & 0xf0 )
|
|
{
|
|
case 0x30: /* DET , MUL */
|
|
set_det_mul(&OPN->ST,CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x40: /* TL */
|
|
set_tl(CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x50: /* KS, AR */
|
|
set_ar_ksr(OPN->type,CH,SLOT,v);
|
|
break;
|
|
|
|
case 0x60: /* bit7 = AM ENABLE, DR */
|
|
set_dr(OPN->type, SLOT,v);
|
|
|
|
if(OPN->type & TYPE_LFOPAN) /* YM2608/2610/2610B/2612 */
|
|
{
|
|
SLOT->AMmask = (v&0x80) ? ~0 : 0;
|
|
}
|
|
break;
|
|
|
|
case 0x70: /* SR */
|
|
set_sr(OPN->type,SLOT,v);
|
|
break;
|
|
|
|
case 0x80: /* SL, RR */
|
|
set_sl_rr(OPN->type,SLOT,v);
|
|
break;
|
|
|
|
case 0x90: /* SSG-EG */
|
|
SLOT->ssg = v&0x0f;
|
|
SLOT->ssgn = (v&0x04)>>1; /* bit 1 in ssgn = attack */
|
|
|
|
/* SSG-EG envelope shapes :
|
|
|
|
E AtAlH
|
|
1 0 0 0 \\\\
|
|
|
|
1 0 0 1 \___
|
|
|
|
1 0 1 0 \/\/
|
|
___
|
|
1 0 1 1 \
|
|
|
|
1 1 0 0 ////
|
|
___
|
|
1 1 0 1 /
|
|
|
|
1 1 1 0 /\/\
|
|
|
|
1 1 1 1 /___
|
|
|
|
|
|
E = SSG-EG enable
|
|
|
|
|
|
The shapes are generated using Attack, Decay and Sustain phases.
|
|
|
|
Each single character in the diagrams above represents this whole
|
|
sequence:
|
|
|
|
- when KEY-ON = 1, normal Attack phase is generated (*without* any
|
|
difference when compared to normal mode),
|
|
|
|
- later, when envelope level reaches minimum level (max volume),
|
|
the EG switches to Decay phase (which works with bigger steps
|
|
when compared to normal mode - see below),
|
|
|
|
- later when envelope level passes the SL level,
|
|
the EG swithes to Sustain phase (which works with bigger steps
|
|
when compared to normal mode - see below),
|
|
|
|
- finally when envelope level reaches maximum level (min volume),
|
|
the EG switches to Attack phase again (depends on actual waveform).
|
|
|
|
Important is that when switch to Attack phase occurs, the phase counter
|
|
of that operator will be zeroed-out (as in normal KEY-ON) but not always.
|
|
(I havent found the rule for that - perhaps only when the output level is low)
|
|
|
|
The difference (when compared to normal Envelope Generator mode) is
|
|
that the resolution in Decay and Sustain phases is 4 times lower;
|
|
this results in only 256 steps instead of normal 1024.
|
|
In other words:
|
|
when SSG-EG is disabled, the step inside of the EG is one,
|
|
when SSG-EG is enabled, the step is four (in Decay and Sustain phases).
|
|
|
|
Times between the level changes are the same in both modes.
|
|
|
|
|
|
Important:
|
|
Decay 1 Level (so called SL) is compared to actual SSG-EG output, so
|
|
it is the same in both SSG and no-SSG modes, with this exception:
|
|
|
|
when the SSG-EG is enabled and is generating raising levels
|
|
(when the EG output is inverted) the SL will be found at wrong level !!!
|
|
For example, when SL=02:
|
|
0 -6 = -6dB in non-inverted EG output
|
|
96-6 = -90dB in inverted EG output
|
|
Which means that EG compares its level to SL as usual, and that the
|
|
output is simply inverted afterall.
|
|
|
|
|
|
The Yamaha's manuals say that AR should be set to 0x1f (max speed).
|
|
That is not necessary, but then EG will be generating Attack phase.
|
|
|
|
*/
|
|
|
|
|
|
break;
|
|
|
|
case 0xa0:
|
|
switch( OPN_SLOT(r) )
|
|
{
|
|
case 0: /* 0xa0-0xa2 : FNUM1 */
|
|
{
|
|
uint32_t fn = (((uint32_t)( (OPN->ST.fn_h)&7))<<8) + v;
|
|
uint8_t blk = OPN->ST.fn_h>>3;
|
|
/* keyscale code */
|
|
CH->kcode = (blk<<2) | opn_fktable[fn >> 7];
|
|
/* phase increment counter */
|
|
CH->fc = OPN->fn_table[fn*2]>>(7-blk);
|
|
|
|
/* store fnum in clear form for LFO PM calculations */
|
|
CH->block_fnum = (blk<<11) | fn;
|
|
|
|
CH->SLOT[SLOT1].Incr=-1;
|
|
}
|
|
break;
|
|
case 1: /* 0xa4-0xa6 : FNUM2,BLK */
|
|
OPN->ST.fn_h = v&0x3f;
|
|
break;
|
|
case 2: /* 0xa8-0xaa : 3CH FNUM1 */
|
|
if(r < 0x100)
|
|
{
|
|
uint32_t fn = (((uint32_t)(OPN->SL3.fn_h&7))<<8) + v;
|
|
uint8_t blk = OPN->SL3.fn_h>>3;
|
|
/* keyscale code */
|
|
OPN->SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
|
|
/* phase increment counter */
|
|
OPN->SL3.fc[c] = OPN->fn_table[fn*2]>>(7-blk);
|
|
OPN->SL3.block_fnum[c] = (blk<<11) | fn;
|
|
(OPN->P_CH)[2].SLOT[SLOT1].Incr=-1;
|
|
}
|
|
break;
|
|
case 3: /* 0xac-0xae : 3CH FNUM2,BLK */
|
|
if(r < 0x100)
|
|
OPN->SL3.fn_h = v&0x3f;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 0xb0:
|
|
switch( OPN_SLOT(r) )
|
|
{
|
|
case 0: /* 0xb0-0xb2 : FB,ALGO */
|
|
{
|
|
int feedback = (v>>3)&7;
|
|
CH->ALGO = v&7;
|
|
CH->FB = feedback ? feedback+6 : 0;
|
|
setup_connection( OPN, CH, c );
|
|
}
|
|
break;
|
|
case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */
|
|
if( OPN->type & TYPE_LFOPAN)
|
|
{
|
|
/* b0-2 PMS */
|
|
CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */
|
|
|
|
/* b4-5 AMS */
|
|
CH->ams = lfo_ams_depth_shift[(v>>4) & 0x03];
|
|
|
|
/* PAN : b7 = L, b6 = R */
|
|
OPN->pan[ c*2 ] = (v & 0x80) ? ~0 : 0;
|
|
OPN->pan[ c*2+1 ] = (v & 0x40) ? ~0 : 0;
|
|
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif /* BUILD_OPN */
|
|
|
|
#if BUILD_OPN_PRESCALER
|
|
/*
|
|
prescaler circuit (best guess to verified chip behaviour)
|
|
|
|
+--------------+ +-sel2-+
|
|
| +--|in20 |
|
|
+---+ | +-sel1-+ | |
|
|
M-CLK -+-|1/2|-+--|in10 | +---+ | out|--INT_CLOCK
|
|
| +---+ | out|-|1/3|-|in21 |
|
|
+----------|in11 | +---+ +------+
|
|
+------+
|
|
|
|
reg.2d : sel2 = in21 (select sel2)
|
|
reg.2e : sel1 = in11 (select sel1)
|
|
reg.2f : sel1 = in10 , sel2 = in20 (clear selector)
|
|
reset : sel1 = in11 , sel2 = in21 (clear both)
|
|
|
|
*/
|
|
static void OPNPrescaler_w(FM_OPN *OPN , int addr, int pre_divider)
|
|
{
|
|
static const int opn_pres[4] = { 2*12 , 2*12 , 6*12 , 3*12 };
|
|
static const int ssg_pres[4] = { 1 , 1 , 4 , 2 };
|
|
int sel;
|
|
|
|
switch(addr)
|
|
{
|
|
case 0: /* when reset */
|
|
OPN->ST.prescaler_sel = 2;
|
|
break;
|
|
case 1: /* when postload */
|
|
break;
|
|
case 0x2d: /* divider sel : select 1/1 for 1/3line */
|
|
OPN->ST.prescaler_sel |= 0x02;
|
|
break;
|
|
case 0x2e: /* divider sel , select 1/3line for output */
|
|
OPN->ST.prescaler_sel |= 0x01;
|
|
break;
|
|
case 0x2f: /* divider sel , clear both selector to 1/2,1/2 */
|
|
OPN->ST.prescaler_sel = 0;
|
|
break;
|
|
}
|
|
sel = OPN->ST.prescaler_sel & 3;
|
|
/* update prescaler */
|
|
OPNSetPres( OPN, opn_pres[sel]*pre_divider,
|
|
opn_pres[sel]*pre_divider,
|
|
ssg_pres[sel]*pre_divider );
|
|
}
|
|
#endif /* BUILD_OPN_PRESCALER */
|
|
|
|
#if BUILD_YM2203
|
|
/*****************************************************************************/
|
|
/* YM2203 local section */
|
|
/*****************************************************************************/
|
|
|
|
/* here's the virtual YM2203(OPN) */
|
|
namespace {
|
|
struct ym2203_state
|
|
{
|
|
uint8_t REGS[256]; /* registers */
|
|
FM_OPN OPN; /* OPN state */
|
|
FM_CH CH[3]; /* channel state */
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/* Generate samples for one of the YM2203s */
|
|
void ym2203_update_one(void *chip, FMSAMPLE *buffer, int length)
|
|
{
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
FM_OPN *OPN = &F2203->OPN;
|
|
int i;
|
|
FMSAMPLE *buf = buffer;
|
|
FM_CH *cch[3];
|
|
|
|
cch[0] = &F2203->CH[0];
|
|
cch[1] = &F2203->CH[1];
|
|
cch[2] = &F2203->CH[2];
|
|
|
|
|
|
/* refresh PG and EG */
|
|
refresh_fc_eg_chan( OPN, cch[0] );
|
|
refresh_fc_eg_chan( OPN, cch[1] );
|
|
if( (F2203->OPN.ST.mode & 0xc0) )
|
|
{
|
|
/* 3SLOT MODE */
|
|
if( cch[2]->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT1] , OPN->SL3.fc[1] , OPN->SL3.kcode[1] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT2] , OPN->SL3.fc[2] , OPN->SL3.kcode[2] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT3] , OPN->SL3.fc[0] , OPN->SL3.kcode[0] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT4] , cch[2]->fc , cch[2]->kcode );
|
|
}
|
|
}
|
|
else
|
|
refresh_fc_eg_chan( OPN, cch[2] );
|
|
|
|
|
|
/* YM2203 doesn't have LFO so we must keep these globals at 0 level */
|
|
OPN->LFO_AM = 0;
|
|
OPN->LFO_PM = 0;
|
|
|
|
/* buffering */
|
|
for (i=0; i < length ; i++)
|
|
{
|
|
/* clear outputs */
|
|
OPN->out_fm[0] = 0;
|
|
OPN->out_fm[1] = 0;
|
|
OPN->out_fm[2] = 0;
|
|
|
|
/* advance envelope generator */
|
|
OPN->eg_timer += OPN->eg_timer_add;
|
|
while (OPN->eg_timer >= OPN->eg_timer_overflow)
|
|
{
|
|
OPN->eg_timer -= OPN->eg_timer_overflow;
|
|
OPN->eg_cnt++;
|
|
|
|
advance_eg_channel(OPN, &cch[0]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[1]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[2]->SLOT[SLOT1]);
|
|
}
|
|
|
|
/* calculate FM */
|
|
chan_calc(OPN, cch[0], 0 );
|
|
chan_calc(OPN, cch[1], 1 );
|
|
chan_calc(OPN, cch[2], 2 );
|
|
|
|
/* buffering */
|
|
{
|
|
int lt;
|
|
|
|
lt = OPN->out_fm[0] + OPN->out_fm[1] + OPN->out_fm[2];
|
|
|
|
lt >>= FINAL_SH;
|
|
|
|
Limit( lt , MAXOUT, MINOUT );
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
SAVE_ALL_CHANNELS
|
|
#endif
|
|
|
|
/* buffering */
|
|
buf[i] = lt;
|
|
}
|
|
|
|
/* timer A control */
|
|
INTERNAL_TIMER_A( &F2203->OPN.ST , cch[2] )
|
|
}
|
|
INTERNAL_TIMER_B(&F2203->OPN.ST,length)
|
|
}
|
|
|
|
/* ---------- reset one of chip ---------- */
|
|
void ym2203_reset_chip(void *chip)
|
|
{
|
|
int i;
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
FM_OPN *OPN = &F2203->OPN;
|
|
|
|
/* Reset Prescaler */
|
|
OPNPrescaler_w(OPN, 0 , 1 );
|
|
/* reset SSG section */
|
|
(*OPN->ST.SSG->reset)(OPN->ST.device);
|
|
/* status clear */
|
|
FM_IRQMASK_SET(&OPN->ST,0x03);
|
|
FM_BUSY_CLEAR(&OPN->ST);
|
|
OPNWriteMode(OPN,0x27,0x30); /* mode 0 , timer reset */
|
|
|
|
OPN->eg_timer = 0;
|
|
OPN->eg_cnt = 0;
|
|
|
|
FM_STATUS_RESET(&OPN->ST, 0xff);
|
|
|
|
reset_channels( &OPN->ST , F2203->CH , 3 );
|
|
/* reset OPerator paramater */
|
|
for(i = 0xb2 ; i >= 0x30 ; i-- ) OPNWriteReg(OPN,i,0);
|
|
for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(OPN,i,0);
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
void ym2203_postload(void *chip)
|
|
{
|
|
if (chip)
|
|
{
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
int r;
|
|
|
|
/* prescaler */
|
|
OPNPrescaler_w(&F2203->OPN,1,1);
|
|
|
|
/* SSG registers */
|
|
for(r=0;r<16;r++)
|
|
{
|
|
(*F2203->OPN.ST.SSG->write)(F2203->OPN.ST.device,0,r);
|
|
(*F2203->OPN.ST.SSG->write)(F2203->OPN.ST.device,1,F2203->REGS[r]);
|
|
}
|
|
|
|
/* OPN registers */
|
|
/* DT / MULTI , TL , KS / AR , AMON / DR , SR , SL / RR , SSG-EG */
|
|
for(r=0x30;r<0x9e;r++)
|
|
if((r&3) != 3)
|
|
OPNWriteReg(&F2203->OPN,r,F2203->REGS[r]);
|
|
/* FB / CONNECT , L / R / AMS / PMS */
|
|
for(r=0xb0;r<0xb6;r++)
|
|
if((r&3) != 3)
|
|
OPNWriteReg(&F2203->OPN,r,F2203->REGS[r]);
|
|
|
|
/* channels */
|
|
/*FM_channel_postload(F2203->CH,3);*/
|
|
}
|
|
}
|
|
|
|
static void YM2203_save_state(ym2203_state *F2203, device_t *device)
|
|
{
|
|
device->save_item(NAME(F2203->REGS));
|
|
FMsave_state_st(device,&F2203->OPN.ST);
|
|
FMsave_state_channel(device,F2203->CH,3);
|
|
/* 3slots */
|
|
device->save_item (NAME(F2203->OPN.SL3.fc));
|
|
device->save_item (NAME(F2203->OPN.SL3.fn_h));
|
|
device->save_item (NAME(F2203->OPN.SL3.kcode));
|
|
}
|
|
#endif /* MAME_EMU_SAVE_H */
|
|
|
|
/* ---------- Initialize YM2203 emulator(s) ----------
|
|
'num' is the number of virtual YM2203s to allocate
|
|
'clock' is the chip clock in Hz
|
|
'rate' is sampling rate
|
|
*/
|
|
void * ym2203_init(device_t *device, int clock, int rate, FM_TIMERHANDLER timer_handler,FM_IRQHANDLER IRQHandler, const ssg_callbacks *ssg)
|
|
{
|
|
ym2203_state *F2203;
|
|
|
|
/* allocate ym2203 state space */
|
|
F2203 = new ym2203_state;
|
|
memset(F2203, 0, sizeof(*F2203));
|
|
|
|
if( !init_tables() )
|
|
{
|
|
delete F2203;
|
|
return nullptr;
|
|
}
|
|
|
|
F2203->OPN.type = TYPE_YM2203;
|
|
F2203->OPN.P_CH = F2203->CH;
|
|
F2203->OPN.ST.device = device;
|
|
F2203->OPN.ST.clock = clock;
|
|
F2203->OPN.ST.rate = rate;
|
|
|
|
F2203->OPN.ST.timer_handler = timer_handler;
|
|
F2203->OPN.ST.IRQ_Handler = IRQHandler;
|
|
F2203->OPN.ST.SSG = ssg;
|
|
|
|
for (unsigned i = 0; i < 3; i++)
|
|
{
|
|
F2203->CH[i].pan_volume_l = 46340;
|
|
F2203->CH[i].pan_volume_r = 46340;
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
YM2203_save_state(F2203, device);
|
|
#endif
|
|
return F2203;
|
|
}
|
|
|
|
void ym2203_clock_changed(void *chip, int clock, int rate)
|
|
{
|
|
ym2203_state *FM2203 = (ym2203_state *)chip;
|
|
|
|
FM2203->OPN.ST.clock = clock;
|
|
FM2203->OPN.ST.rate = rate;
|
|
}
|
|
|
|
/* shut down emulator */
|
|
void ym2203_shutdown(void *chip)
|
|
{
|
|
ym2203_state *FM2203 = (ym2203_state *)chip;
|
|
|
|
FMCloseTable();
|
|
delete FM2203;
|
|
}
|
|
|
|
/* YM2203 I/O interface */
|
|
int ym2203_write(void *chip,int a,uint8_t v)
|
|
{
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
FM_OPN *OPN = &F2203->OPN;
|
|
|
|
if( !(a&1) )
|
|
{ /* address port */
|
|
OPN->ST.address = (v &= 0xff);
|
|
|
|
/* Write register to SSG emulator */
|
|
if( v < 16 ) (*OPN->ST.SSG->write)(OPN->ST.device,0,v);
|
|
|
|
/* prescaler select : 2d,2e,2f */
|
|
if( v >= 0x2d && v <= 0x2f )
|
|
OPNPrescaler_w(OPN , v , 1);
|
|
}
|
|
else
|
|
{ /* data port */
|
|
int addr = OPN->ST.address;
|
|
F2203->REGS[addr] = v;
|
|
switch( addr & 0xf0 )
|
|
{
|
|
case 0x00: /* 0x00-0x0f : SSG section */
|
|
/* Write data to SSG emulator */
|
|
(*OPN->ST.SSG->write)(OPN->ST.device,a,v);
|
|
break;
|
|
case 0x20: /* 0x20-0x2f : Mode section */
|
|
ym2203_device::update_request(OPN->ST.device);
|
|
/* write register */
|
|
OPNWriteMode(OPN,addr,v);
|
|
break;
|
|
default: /* 0x30-0xff : OPN section */
|
|
ym2203_device::update_request(OPN->ST.device);
|
|
/* write register */
|
|
OPNWriteReg(OPN,addr,v);
|
|
}
|
|
FM_BUSY_SET(&OPN->ST,1);
|
|
}
|
|
return OPN->ST.irq;
|
|
}
|
|
|
|
uint8_t ym2203_read(void *chip,int a)
|
|
{
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
int addr = F2203->OPN.ST.address;
|
|
uint8_t ret = 0;
|
|
|
|
if( !(a&1) )
|
|
{ /* status port */
|
|
ret = FM_STATUS_FLAG(&F2203->OPN.ST);
|
|
}
|
|
else
|
|
{ /* data port (only SSG) */
|
|
if( addr < 16 ) ret = (*F2203->OPN.ST.SSG->read)(F2203->OPN.ST.device);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ym2203_timer_over(void *chip,int c)
|
|
{
|
|
ym2203_state *F2203 = (ym2203_state *)chip;
|
|
|
|
if( c )
|
|
{ /* Timer B */
|
|
TimerBOver( &(F2203->OPN.ST) );
|
|
}
|
|
else
|
|
{ /* Timer A */
|
|
ym2203_device::update_request(F2203->OPN.ST.device);
|
|
/* timer update */
|
|
TimerAOver( &(F2203->OPN.ST) );
|
|
/* CSM mode key,TL control */
|
|
if( F2203->OPN.ST.mode & 0x80 )
|
|
{ /* CSM mode auto key on */
|
|
CSMKeyControll( F2203->OPN.type, &(F2203->CH[2]) );
|
|
}
|
|
}
|
|
return F2203->OPN.ST.irq;
|
|
}
|
|
#endif /* BUILD_YM2203 */
|
|
|
|
|
|
|
|
#if (BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B)
|
|
|
|
namespace {
|
|
/**** YM2610 ADPCM defines ****/
|
|
CONSTEXPR unsigned ADPCM_SHIFT = 16; /* frequency step rate */
|
|
CONSTEXPR unsigned ADPCMA_ADDRESS_SHIFT = 8; /* adpcm A address shift */
|
|
|
|
/* speedup purposes only */
|
|
static int jedi_table[ 49*16 ];
|
|
|
|
/* ADPCM type A channel struct */
|
|
struct ADPCM_CH
|
|
{
|
|
uint8_t flag; /* port state */
|
|
uint8_t flagMask; /* arrived flag mask */
|
|
uint8_t now_data; /* current ROM data */
|
|
uint32_t now_addr; /* current ROM address */
|
|
uint32_t now_step;
|
|
uint32_t step;
|
|
uint32_t start; /* sample data start address*/
|
|
uint32_t end; /* sample data end address */
|
|
uint8_t IL; /* Instrument Level */
|
|
int32_t adpcm_acc; /* accumulator */
|
|
int32_t adpcm_step; /* step */
|
|
int32_t adpcm_out; /* (speedup) hiro-shi!! */
|
|
int8_t vol_mul; /* volume in "0.75dB" steps */
|
|
uint8_t vol_shift; /* volume in "-6dB" steps */
|
|
int32_t *pan; /* &out_adpcm[OPN_xxxx] */
|
|
};
|
|
|
|
/* here's the virtual YM2610 */
|
|
struct ym2610_state
|
|
{
|
|
uint8_t REGS[512]; /* registers */
|
|
FM_OPN OPN; /* OPN state */
|
|
FM_CH CH[6]; /* channel state */
|
|
uint8_t addr_A1; /* address line A1 */
|
|
|
|
/* ADPCM-A unit */
|
|
FM_READBYTE read_byte;
|
|
uint8_t adpcmTL; /* adpcmA total level */
|
|
ADPCM_CH adpcm[6]; /* adpcm channels */
|
|
uint32_t adpcmreg[0x30]; /* registers */
|
|
uint8_t adpcm_arrivedEndAddress;
|
|
YM_DELTAT deltaT; /* Delta-T ADPCM unit */
|
|
|
|
uint8_t flagmask; /* YM2608 only */
|
|
uint8_t irqmask; /* YM2608 only */
|
|
|
|
device_t *device;
|
|
|
|
/* different from the usual ADPCM table */
|
|
//static CONSTEXPR int step_inc[8] = { -1*16, -1*16, -1*16, -1*16, 2*16, 5*16, 7*16, 9*16 };
|
|
static int step_inc[8];
|
|
|
|
/* ADPCM A (Non control type) : calculate one channel output */
|
|
inline void ADPCMA_calc_chan( ADPCM_CH *ch )
|
|
{
|
|
uint32_t step;
|
|
uint8_t data;
|
|
|
|
|
|
ch->now_step += ch->step;
|
|
if ( ch->now_step >= uint32_t(1<<ADPCM_SHIFT) )
|
|
{
|
|
step = ch->now_step >> ADPCM_SHIFT;
|
|
ch->now_step &= (1<<ADPCM_SHIFT)-1;
|
|
do{
|
|
/* end check */
|
|
/* 11-06-2001 JB: corrected comparison. Was > instead of == */
|
|
/* YM2610 checks lower 20 bits only, the 4 MSB bits are sample bank */
|
|
/* Here we use 1<<21 to compensate for nibble calculations */
|
|
|
|
if ( (ch->now_addr & ((1<<21)-1)) == ((ch->end<<1) & ((1<<21)-1)) )
|
|
{
|
|
ch->flag = 0;
|
|
adpcm_arrivedEndAddress |= ch->flagMask;
|
|
return;
|
|
}
|
|
#if 0
|
|
if ( ch->now_addr > (pcmsizeA<<1) )
|
|
{
|
|
LOG(LOG_WAR,("YM2610: Attempting to play past adpcm rom size!\n" ));
|
|
return;
|
|
}
|
|
#endif
|
|
if ( ch->now_addr&1 )
|
|
data = ch->now_data & 0x0f;
|
|
else
|
|
{
|
|
ch->now_data = read_byte(device, ch->now_addr>>1);
|
|
data = (ch->now_data >> 4) & 0x0f;
|
|
}
|
|
|
|
ch->now_addr++;
|
|
|
|
ch->adpcm_acc += jedi_table[ch->adpcm_step + data];
|
|
|
|
/* extend 12-bit signed int */
|
|
if (ch->adpcm_acc & ~0x7ff)
|
|
ch->adpcm_acc |= ~0xfff;
|
|
else
|
|
ch->adpcm_acc &= 0xfff;
|
|
|
|
ch->adpcm_step += step_inc[data & 7];
|
|
Limit( ch->adpcm_step, 48*16, 0*16 );
|
|
|
|
}while(--step);
|
|
|
|
/* calc pcm * volume data */
|
|
ch->adpcm_out = ((ch->adpcm_acc * ch->vol_mul) >> ch->vol_shift) & ~3; /* multiply, shift and mask out 2 LSB bits */
|
|
}
|
|
|
|
/* output for work of output channels (out_adpcm[OPNxxxx])*/
|
|
*(ch->pan) += ch->adpcm_out;
|
|
}
|
|
|
|
/* ADPCM type A Write */
|
|
void FM_ADPCMAWrite(int r,int v)
|
|
{
|
|
uint8_t c = r&0x07;
|
|
|
|
adpcmreg[r] = v&0xff; /* stock data */
|
|
switch( r )
|
|
{
|
|
case 0x00: /* DM,--,C5,C4,C3,C2,C1,C0 */
|
|
if( !(v&0x80) )
|
|
{
|
|
/* KEY ON */
|
|
for( c = 0; c < 6; c++ )
|
|
{
|
|
if( (v>>c)&1 )
|
|
{
|
|
/**** start adpcm ****/
|
|
adpcm[c].step = (uint32_t)((float)(1<<ADPCM_SHIFT)*((float)OPN.ST.freqbase)/3.0f);
|
|
adpcm[c].now_addr = adpcm[c].start<<1;
|
|
adpcm[c].now_step = 0;
|
|
adpcm[c].adpcm_acc = 0;
|
|
adpcm[c].adpcm_step= 0;
|
|
adpcm[c].adpcm_out = 0;
|
|
adpcm[c].flag = 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* KEY OFF */
|
|
for( c = 0; c < 6; c++ )
|
|
if( (v>>c)&1 )
|
|
adpcm[c].flag = 0;
|
|
}
|
|
break;
|
|
case 0x01: /* B0-5 = TL */
|
|
adpcmTL = (v & 0x3f) ^ 0x3f;
|
|
for( c = 0; c < 6; c++ )
|
|
{
|
|
int volume = adpcmTL + adpcm[c].IL;
|
|
|
|
if ( volume >= 63 ) /* This is correct, 63 = quiet */
|
|
{
|
|
adpcm[c].vol_mul = 0;
|
|
adpcm[c].vol_shift = 0;
|
|
}
|
|
else
|
|
{
|
|
adpcm[c].vol_mul = 15 - (volume & 7); /* so called 0.75 dB */
|
|
adpcm[c].vol_shift = 1 + (volume >> 3); /* Yamaha engineers used the approximation: each -6 dB is close to divide by two (shift right) */
|
|
}
|
|
|
|
/* calc pcm * volume data */
|
|
adpcm[c].adpcm_out = ((adpcm[c].adpcm_acc * adpcm[c].vol_mul) >> adpcm[c].vol_shift) & ~3; /* multiply, shift and mask out low 2 bits */
|
|
}
|
|
break;
|
|
default:
|
|
c = r&0x07;
|
|
if( c >= 0x06 ) return;
|
|
switch( r&0x38 )
|
|
{
|
|
case 0x08: /* B7=L,B6=R, B4-0=IL */
|
|
{
|
|
int volume;
|
|
|
|
adpcm[c].IL = (v & 0x1f) ^ 0x1f;
|
|
|
|
volume = adpcmTL + adpcm[c].IL;
|
|
|
|
if ( volume >= 63 ) /* This is correct, 63 = quiet */
|
|
{
|
|
adpcm[c].vol_mul = 0;
|
|
adpcm[c].vol_shift = 0;
|
|
}
|
|
else
|
|
{
|
|
adpcm[c].vol_mul = 15 - (volume & 7); /* so called 0.75 dB */
|
|
adpcm[c].vol_shift = 1 + (volume >> 3); /* Yamaha engineers used the approximation: each -6 dB is close to divide by two (shift right) */
|
|
}
|
|
|
|
adpcm[c].pan = &OPN.out_adpcm[(v>>6)&0x03];
|
|
|
|
/* calc pcm * volume data */
|
|
adpcm[c].adpcm_out = ((adpcm[c].adpcm_acc * adpcm[c].vol_mul) >> adpcm[c].vol_shift) & ~3; /* multiply, shift and mask out low 2 bits */
|
|
}
|
|
break;
|
|
case 0x10:
|
|
case 0x18:
|
|
adpcm[c].start = ( (adpcmreg[0x18 + c]*0x0100 | adpcmreg[0x10 + c]) << ADPCMA_ADDRESS_SHIFT);
|
|
break;
|
|
case 0x20:
|
|
case 0x28:
|
|
adpcm[c].end = ( (adpcmreg[0x28 + c]*0x0100 | adpcmreg[0x20 + c]) << ADPCMA_ADDRESS_SHIFT);
|
|
adpcm[c].end += (1<<ADPCMA_ADDRESS_SHIFT) - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
int ym2610_state::step_inc[8] = { -1*16, -1*16, -1*16, -1*16, 2*16, 5*16, 7*16, 9*16 };
|
|
|
|
/* here is the virtual YM2608 */
|
|
typedef ym2610_state ym2608_state;
|
|
|
|
|
|
/* Algorithm and tables verified on real YM2608 and YM2610 */
|
|
|
|
/* usual ADPCM table (16 * 1.1^N) */
|
|
CONSTEXPR int steps[49] =
|
|
{
|
|
16, 17, 19, 21, 23, 25, 28,
|
|
31, 34, 37, 41, 45, 50, 55,
|
|
60, 66, 73, 80, 88, 97, 107,
|
|
118, 130, 143, 157, 173, 190, 209,
|
|
230, 253, 279, 307, 337, 371, 408,
|
|
449, 494, 544, 598, 658, 724, 796,
|
|
876, 963, 1060, 1166, 1282, 1411, 1552
|
|
};
|
|
|
|
|
|
void Init_ADPCMATable()
|
|
{
|
|
int step, nib;
|
|
|
|
for (step = 0; step < 49; step++)
|
|
{
|
|
/* loop over all nibbles and compute the difference */
|
|
for (nib = 0; nib < 16; nib++)
|
|
{
|
|
int value = (2*(nib & 0x07) + 1) * steps[step] / 8;
|
|
jedi_table[step*16 + nib] = (nib&0x08) ? -value : value;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
/* FM channel save , internal state only */
|
|
void FMsave_state_adpcma(device_t *device,ADPCM_CH *adpcm)
|
|
{
|
|
int ch;
|
|
|
|
for(ch=0;ch<6;ch++,adpcm++)
|
|
{
|
|
device->save_item(NAME(adpcm->flag), ch);
|
|
device->save_item(NAME(adpcm->now_data), ch);
|
|
device->save_item(NAME(adpcm->now_addr), ch);
|
|
device->save_item(NAME(adpcm->now_step), ch);
|
|
device->save_item(NAME(adpcm->adpcm_acc), ch);
|
|
device->save_item(NAME(adpcm->adpcm_step), ch);
|
|
device->save_item(NAME(adpcm->adpcm_out), ch);
|
|
}
|
|
}
|
|
#endif /* MAME_EMU_SAVE_H */
|
|
} // anonymous namespace
|
|
|
|
#endif /* (BUILD_YM2608||BUILD_YM2610||BUILD_YM2610B) */
|
|
|
|
|
|
#if BUILD_YM2608
|
|
/*****************************************************************************/
|
|
/* YM2608 local section */
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
static const unsigned int YM2608_ADPCM_ROM_addr[2*6] = {
|
|
0x0000, 0x01bf, /* bass drum */
|
|
0x01c0, 0x043f, /* snare drum */
|
|
0x0440, 0x1b7f, /* top cymbal */
|
|
0x1b80, 0x1cff, /* high hat */
|
|
0x1d00, 0x1f7f, /* tom tom */
|
|
0x1f80, 0x1fff /* rim shot */
|
|
};
|
|
|
|
|
|
/* flag enable control 0x110 */
|
|
static inline void YM2608IRQFlagWrite(FM_OPN *OPN, ym2608_state *F2608, int v)
|
|
{
|
|
if( v & 0x80 )
|
|
{ /* Reset IRQ flag */
|
|
FM_STATUS_RESET(&OPN->ST, 0xf7); /* don't touch BUFRDY flag otherwise we'd have to call ymdeltat module to set the flag back */
|
|
}
|
|
else
|
|
{ /* Set status flag mask */
|
|
F2608->flagmask = (~(v&0x1f));
|
|
FM_IRQMASK_SET(&OPN->ST, (F2608->irqmask & F2608->flagmask) );
|
|
}
|
|
}
|
|
|
|
/* compatible mode & IRQ enable control 0x29 */
|
|
static inline void YM2608IRQMaskWrite(FM_OPN *OPN, ym2608_state *F2608, int v)
|
|
{
|
|
/* SCH,xx,xxx,EN_ZERO,EN_BRDY,EN_EOS,EN_TB,EN_TA */
|
|
|
|
/* extend 3ch. enable/disable */
|
|
if(v&0x80)
|
|
OPN->type |= TYPE_6CH; /* OPNA mode - 6 FM channels */
|
|
else
|
|
OPN->type &= ~TYPE_6CH; /* OPN mode - 3 FM channels */
|
|
|
|
/* IRQ MASK store and set */
|
|
F2608->irqmask = v&0x1f;
|
|
FM_IRQMASK_SET(&OPN->ST, (F2608->irqmask & F2608->flagmask) );
|
|
}
|
|
|
|
/* Generate samples for one of the YM2608s */
|
|
void ym2608_update_one(void *chip, FMSAMPLE **buffer, int length)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
FM_OPN *OPN = &F2608->OPN;
|
|
YM_DELTAT *DELTAT = &F2608->deltaT;
|
|
int i,j;
|
|
FMSAMPLE *bufL,*bufR;
|
|
FM_CH *cch[6];
|
|
int32_t *out_fm = OPN->out_fm;
|
|
|
|
/* set bufer */
|
|
bufL = buffer[0];
|
|
bufR = buffer[1];
|
|
|
|
cch[0] = &F2608->CH[0];
|
|
cch[1] = &F2608->CH[1];
|
|
cch[2] = &F2608->CH[2];
|
|
cch[3] = &F2608->CH[3];
|
|
cch[4] = &F2608->CH[4];
|
|
cch[5] = &F2608->CH[5];
|
|
|
|
/* refresh PG and EG */
|
|
refresh_fc_eg_chan( OPN, cch[0] );
|
|
refresh_fc_eg_chan( OPN, cch[1] );
|
|
if( (OPN->ST.mode & 0xc0) )
|
|
{
|
|
/* 3SLOT MODE */
|
|
if( cch[2]->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT1] , OPN->SL3.fc[1] , OPN->SL3.kcode[1] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT2] , OPN->SL3.fc[2] , OPN->SL3.kcode[2] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT3] , OPN->SL3.fc[0] , OPN->SL3.kcode[0] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT4] , cch[2]->fc , cch[2]->kcode );
|
|
}
|
|
}
|
|
else
|
|
refresh_fc_eg_chan( OPN, cch[2] );
|
|
refresh_fc_eg_chan( OPN, cch[3] );
|
|
refresh_fc_eg_chan( OPN, cch[4] );
|
|
refresh_fc_eg_chan( OPN, cch[5] );
|
|
|
|
|
|
/* buffering */
|
|
for(i=0; i < length ; i++)
|
|
{
|
|
advance_lfo(OPN);
|
|
|
|
/* clear output acc. */
|
|
OPN->out_adpcm[OUTD_LEFT] = OPN->out_adpcm[OUTD_RIGHT] = OPN->out_adpcm[OUTD_CENTER] = 0;
|
|
OPN->out_delta[OUTD_LEFT] = OPN->out_delta[OUTD_RIGHT] = OPN->out_delta[OUTD_CENTER] = 0;
|
|
/* clear outputs */
|
|
out_fm[0] = 0;
|
|
out_fm[1] = 0;
|
|
out_fm[2] = 0;
|
|
out_fm[3] = 0;
|
|
out_fm[4] = 0;
|
|
out_fm[5] = 0;
|
|
|
|
/* calculate FM */
|
|
chan_calc(OPN, cch[0], 0 );
|
|
chan_calc(OPN, cch[1], 1 );
|
|
chan_calc(OPN, cch[2], 2 );
|
|
chan_calc(OPN, cch[3], 3 );
|
|
chan_calc(OPN, cch[4], 4 );
|
|
chan_calc(OPN, cch[5], 5 );
|
|
|
|
/* deltaT ADPCM */
|
|
if( DELTAT->portstate&0x80 )
|
|
DELTAT->ADPCM_CALC();
|
|
|
|
/* ADPCMA */
|
|
for( j = 0; j < 6; j++ )
|
|
{
|
|
if( F2608->adpcm[j].flag )
|
|
F2608->ADPCMA_calc_chan( &F2608->adpcm[j]);
|
|
}
|
|
|
|
/* advance envelope generator */
|
|
OPN->eg_timer += OPN->eg_timer_add;
|
|
while (OPN->eg_timer >= OPN->eg_timer_overflow)
|
|
{
|
|
OPN->eg_timer -= OPN->eg_timer_overflow;
|
|
OPN->eg_cnt++;
|
|
|
|
advance_eg_channel(OPN, &cch[0]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[1]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[2]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[3]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[4]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[5]->SLOT[SLOT1]);
|
|
}
|
|
|
|
/* buffering */
|
|
{
|
|
int lt,rt;
|
|
|
|
lt = OPN->out_adpcm[OUTD_LEFT] + OPN->out_adpcm[OUTD_CENTER];
|
|
rt = OPN->out_adpcm[OUTD_RIGHT] + OPN->out_adpcm[OUTD_CENTER];
|
|
lt += (OPN->out_delta[OUTD_LEFT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
rt += (OPN->out_delta[OUTD_RIGHT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
|
|
/* libOPNMIDI: 6-channels mixing */
|
|
#define PANLAW_L(ch, chpan) (((out_fm[ch]>>1) * cch[ch]->pan_volume_l / 65535) & OPN->pan[chpan]);
|
|
#define PANLAW_R(ch, chpan) (((out_fm[ch]>>1) * cch[ch]->pan_volume_r / 65535) & OPN->pan[chpan]);
|
|
lt = PANLAW_L(0, 0);
|
|
rt = PANLAW_R(0, 1);
|
|
lt += PANLAW_L(1, 2);
|
|
rt += PANLAW_R(1, 3);
|
|
lt += PANLAW_L(2, 4);
|
|
rt += PANLAW_R(2, 5);
|
|
lt += PANLAW_L(3, 6);
|
|
rt += PANLAW_R(3, 7);
|
|
lt += PANLAW_L(4, 8);
|
|
rt += PANLAW_R(4, 9);
|
|
lt += PANLAW_L(5, 10);
|
|
rt += PANLAW_R(5, 11);
|
|
#undef PANLAW_L
|
|
#undef PANLAW_R
|
|
|
|
lt >>= FINAL_SH;
|
|
rt >>= FINAL_SH;
|
|
|
|
Limit( lt, MAXOUT, MINOUT );
|
|
Limit( rt, MAXOUT, MINOUT );
|
|
/* buffering */
|
|
bufL[i] = lt;
|
|
bufR[i] = rt;
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
SAVE_ALL_CHANNELS
|
|
#endif
|
|
|
|
}
|
|
|
|
/* timer A control */
|
|
INTERNAL_TIMER_A( &OPN->ST , cch[2] )
|
|
}
|
|
INTERNAL_TIMER_B(&OPN->ST,length)
|
|
|
|
|
|
/* check IRQ for DELTA-T EOS */
|
|
FM_STATUS_SET(&OPN->ST, 0);
|
|
|
|
}
|
|
#ifdef MAME_EMU_SAVE_H
|
|
void ym2608_postload(void *chip)
|
|
{
|
|
if (chip)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
int r;
|
|
|
|
/* prescaler */
|
|
OPNPrescaler_w(&F2608->OPN,1,2);
|
|
F2608->deltaT.freqbase = F2608->OPN.ST.freqbase;
|
|
/* IRQ mask / mode */
|
|
YM2608IRQMaskWrite(&F2608->OPN, F2608, F2608->REGS[0x29]);
|
|
/* SSG registers */
|
|
for(r=0;r<16;r++)
|
|
{
|
|
(*F2608->OPN.ST.SSG->write)(F2608->OPN.ST.device,0,r);
|
|
(*F2608->OPN.ST.SSG->write)(F2608->OPN.ST.device,1,F2608->REGS[r]);
|
|
}
|
|
|
|
/* OPN registers */
|
|
/* DT / MULTI , TL , KS / AR , AMON / DR , SR , SL / RR , SSG-EG */
|
|
for(r=0x30;r<0x9e;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2608->OPN,r,F2608->REGS[r]);
|
|
OPNWriteReg(&F2608->OPN,r|0x100,F2608->REGS[r|0x100]);
|
|
}
|
|
/* FB / CONNECT , L / R / AMS / PMS */
|
|
for(r=0xb0;r<0xb6;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2608->OPN,r,F2608->REGS[r]);
|
|
OPNWriteReg(&F2608->OPN,r|0x100,F2608->REGS[r|0x100]);
|
|
}
|
|
/* FM channels */
|
|
/*FM_channel_postload(F2608->CH,6);*/
|
|
/* rhythm(ADPCMA) */
|
|
F2608->FM_ADPCMAWrite(1,F2608->REGS[0x111]);
|
|
for( r=0x08 ; r<0x0c ; r++)
|
|
F2608->FM_ADPCMAWrite(r,F2608->REGS[r+0x110]);
|
|
/* Delta-T ADPCM unit */
|
|
F2608->deltaT.postload( &F2608->REGS[0x100] );
|
|
}
|
|
}
|
|
|
|
static void YM2608_save_state(ym2608_state *F2608, device_t *device)
|
|
{
|
|
device->save_item(NAME(F2608->REGS));
|
|
FMsave_state_st(device,&F2608->OPN.ST);
|
|
FMsave_state_channel(device,F2608->CH,6);
|
|
/* 3slots */
|
|
device->save_item(NAME(F2608->OPN.SL3.fc));
|
|
device->save_item(NAME(F2608->OPN.SL3.fn_h));
|
|
device->save_item(NAME(F2608->OPN.SL3.kcode));
|
|
/* address register1 */
|
|
device->save_item(NAME(F2608->addr_A1));
|
|
/* rhythm(ADPCMA) */
|
|
FMsave_state_adpcma(device,F2608->adpcm);
|
|
/* Delta-T ADPCM unit */
|
|
F2608->deltaT.savestate(device);
|
|
}
|
|
#endif /* MAME_EMU_SAVE_H */
|
|
|
|
static void YM2608_deltat_status_set(void *chip, uint8_t changebits)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
FM_STATUS_SET(&(F2608->OPN.ST), changebits);
|
|
}
|
|
static void YM2608_deltat_status_reset(void *chip, uint8_t changebits)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
FM_STATUS_RESET(&(F2608->OPN.ST), changebits);
|
|
}
|
|
/* YM2608(OPNA) */
|
|
void * ym2608_init(device_t *device, int clock, int rate,
|
|
FM_READBYTE InternalReadByte,
|
|
FM_READBYTE ExternalReadByte, FM_WRITEBYTE ExternalWriteByte,
|
|
FM_TIMERHANDLER timer_handler,FM_IRQHANDLER IRQHandler, const ssg_callbacks *ssg)
|
|
{
|
|
ym2608_state *F2608;
|
|
|
|
/* allocate extend state space */
|
|
F2608 = new ym2608_state;
|
|
memset(F2608, 0, sizeof(*F2608));
|
|
/* allocate total level table (128kb space) */
|
|
if( !init_tables() )
|
|
{
|
|
delete F2608;
|
|
return NULLPTR;
|
|
}
|
|
|
|
F2608->device = device;
|
|
F2608->OPN.type = TYPE_YM2608;
|
|
F2608->OPN.P_CH = F2608->CH;
|
|
F2608->OPN.ST.device = device;
|
|
F2608->OPN.ST.clock = clock;
|
|
F2608->OPN.ST.rate = rate;
|
|
|
|
/* External handlers */
|
|
F2608->OPN.ST.timer_handler = timer_handler;
|
|
F2608->OPN.ST.IRQ_Handler = IRQHandler;
|
|
F2608->OPN.ST.SSG = ssg;
|
|
|
|
/* DELTA-T */
|
|
F2608->deltaT.read_byte = ExternalReadByte;
|
|
F2608->deltaT.write_byte = ExternalWriteByte;
|
|
|
|
/*F2608->deltaT.write_time = 20.0 / clock;*/ /* a single byte write takes 20 cycles of main clock */
|
|
/*F2608->deltaT.read_time = 18.0 / clock;*/ /* a single byte read takes 18 cycles of main clock */
|
|
|
|
F2608->deltaT.status_set_handler = YM2608_deltat_status_set;
|
|
F2608->deltaT.status_reset_handler = YM2608_deltat_status_reset;
|
|
F2608->deltaT.status_change_which_chip = F2608;
|
|
F2608->deltaT.status_change_EOS_bit = 0x04; /* status flag: set bit2 on End Of Sample */
|
|
F2608->deltaT.status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY */
|
|
F2608->deltaT.status_change_ZERO_bit = 0x10; /* status flag: set bit4 if silence continues for more than 290 milliseconds while recording the ADPCM */
|
|
|
|
/* ADPCM Rhythm */
|
|
F2608->read_byte = InternalReadByte;
|
|
|
|
Init_ADPCMATable();
|
|
|
|
for (unsigned i = 0; i < 6; i++)
|
|
{
|
|
F2608->CH[i].pan_volume_l = 46340;
|
|
F2608->CH[i].pan_volume_r = 46340;
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
YM2608_save_state(F2608, device);
|
|
#endif
|
|
return F2608;
|
|
}
|
|
|
|
void ym2608_clock_changed(void *chip, int clock, int rate)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
|
|
F2608->OPN.ST.clock = clock;
|
|
F2608->OPN.ST.rate = rate;
|
|
}
|
|
|
|
/* shut down emulator */
|
|
void ym2608_shutdown(void *chip)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
|
|
FMCloseTable();
|
|
delete F2608;
|
|
}
|
|
|
|
/* reset one of chips */
|
|
void ym2608_reset_chip(void *chip)
|
|
{
|
|
int i;
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
FM_OPN *OPN = &F2608->OPN;
|
|
YM_DELTAT *DELTAT = &F2608->deltaT;
|
|
|
|
/* Reset Prescaler */
|
|
OPNPrescaler_w(OPN , 0 , 2);
|
|
F2608->deltaT.freqbase = OPN->ST.freqbase;
|
|
/* reset SSG section */
|
|
(*OPN->ST.SSG->reset)(OPN->ST.device);
|
|
|
|
/* status clear */
|
|
FM_BUSY_CLEAR(&OPN->ST);
|
|
|
|
/* register 0x29 - default value after reset is:
|
|
enable only 3 FM channels and enable all the status flags */
|
|
YM2608IRQMaskWrite(OPN, F2608, 0x1f ); /* default value for D4-D0 is 1 */
|
|
|
|
/* register 0x10, A1=1 - default value is 1 for D4, D3, D2, 0 for the rest */
|
|
YM2608IRQFlagWrite(OPN, F2608, 0x1c ); /* default: enable timer A and B, disable EOS, BRDY and ZERO */
|
|
|
|
OPNWriteMode(OPN,0x27,0x30); /* mode 0 , timer reset */
|
|
|
|
OPN->eg_timer = 0;
|
|
OPN->eg_cnt = 0;
|
|
|
|
FM_STATUS_RESET(&OPN->ST, 0xff);
|
|
|
|
reset_channels( &OPN->ST , F2608->CH , 6 );
|
|
/* reset OPerator paramater */
|
|
for(i = 0xb6 ; i >= 0xb4 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0xc0);
|
|
OPNWriteReg(OPN,i|0x100,0xc0);
|
|
}
|
|
for(i = 0xb2 ; i >= 0x30 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0);
|
|
OPNWriteReg(OPN,i|0x100,0);
|
|
}
|
|
for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(OPN,i,0);
|
|
|
|
/* ADPCM - percussion sounds */
|
|
for( i = 0; i < 6; i++ )
|
|
{
|
|
if (i<=3) /* channels 0,1,2,3 */
|
|
F2608->adpcm[i].step = (uint32_t)((float)(1<<ADPCM_SHIFT)*((float)F2608->OPN.ST.freqbase)/3.0f);
|
|
else /* channels 4 and 5 work with slower clock */
|
|
F2608->adpcm[i].step = (uint32_t)((float)(1<<ADPCM_SHIFT)*((float)F2608->OPN.ST.freqbase)/6.0f);
|
|
|
|
F2608->adpcm[i].start = YM2608_ADPCM_ROM_addr[i*2];
|
|
F2608->adpcm[i].end = YM2608_ADPCM_ROM_addr[i*2+1];
|
|
|
|
F2608->adpcm[i].now_addr = 0;
|
|
F2608->adpcm[i].now_step = 0;
|
|
/* F2608->adpcm[i].delta = 21866; */
|
|
F2608->adpcm[i].vol_mul = 0;
|
|
F2608->adpcm[i].pan = &OPN->out_adpcm[OUTD_CENTER]; /* default center */
|
|
F2608->adpcm[i].flagMask = 0;
|
|
F2608->adpcm[i].flag = 0;
|
|
F2608->adpcm[i].adpcm_acc = 0;
|
|
F2608->adpcm[i].adpcm_step= 0;
|
|
F2608->adpcm[i].adpcm_out = 0;
|
|
}
|
|
F2608->adpcmTL = 0x3f;
|
|
|
|
F2608->adpcm_arrivedEndAddress = 0; /* not used */
|
|
|
|
/* DELTA-T unit */
|
|
DELTAT->freqbase = OPN->ST.freqbase;
|
|
DELTAT->output_pointer = OPN->out_delta;
|
|
DELTAT->portshift = 5; /* always 5bits shift */ /* ASG */
|
|
DELTAT->output_range = 1<<23;
|
|
DELTAT->ADPCM_Reset(OUTD_CENTER,YM_DELTAT::EMULATION_MODE_NORMAL,F2608->device);
|
|
}
|
|
|
|
/* YM2608 write */
|
|
/* n = number */
|
|
/* a = address */
|
|
/* v = value */
|
|
int ym2608_write(void *chip, int a,uint8_t v)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
FM_OPN *OPN = &F2608->OPN;
|
|
int addr;
|
|
|
|
v &= 0xff; /*adjust to 8 bit bus */
|
|
|
|
|
|
switch(a&3)
|
|
{
|
|
case 0: /* address port 0 */
|
|
OPN->ST.address = v;
|
|
F2608->addr_A1 = 0;
|
|
|
|
/* Write register to SSG emulator */
|
|
if( v < 16 ) (*OPN->ST.SSG->write)(OPN->ST.device,0,v);
|
|
/* prescaler selecter : 2d,2e,2f */
|
|
if( v >= 0x2d && v <= 0x2f )
|
|
{
|
|
OPNPrescaler_w(OPN , v , 2);
|
|
F2608->deltaT.freqbase = OPN->ST.freqbase;
|
|
}
|
|
break;
|
|
|
|
case 1: /* data port 0 */
|
|
if (F2608->addr_A1 != 0)
|
|
break; /* verified on real YM2608 */
|
|
|
|
addr = OPN->ST.address;
|
|
F2608->REGS[addr] = v;
|
|
switch(addr & 0xf0)
|
|
{
|
|
case 0x00: /* SSG section */
|
|
/* Write data to SSG emulator */
|
|
(*OPN->ST.SSG->write)(OPN->ST.device,a,v);
|
|
break;
|
|
case 0x10: /* 0x10-0x1f : Rhythm section */
|
|
ym2608_device::update_request(OPN->ST.device);
|
|
F2608->FM_ADPCMAWrite(addr-0x10,v);
|
|
break;
|
|
case 0x20: /* Mode Register */
|
|
switch(addr)
|
|
{
|
|
case 0x29: /* SCH,xx,xxx,EN_ZERO,EN_BRDY,EN_EOS,EN_TB,EN_TA */
|
|
YM2608IRQMaskWrite(OPN, F2608, v);
|
|
break;
|
|
default:
|
|
ym2608_device::update_request(OPN->ST.device);
|
|
OPNWriteMode(OPN,addr,v);
|
|
}
|
|
break;
|
|
default: /* OPN section */
|
|
ym2608_device::update_request(OPN->ST.device);
|
|
OPNWriteReg(OPN,addr,v);
|
|
}
|
|
break;
|
|
|
|
case 2: /* address port 1 */
|
|
OPN->ST.address = v;
|
|
F2608->addr_A1 = 1;
|
|
break;
|
|
|
|
case 3: /* data port 1 */
|
|
if (F2608->addr_A1 != 1)
|
|
break; /* verified on real YM2608 */
|
|
|
|
addr = OPN->ST.address;
|
|
F2608->REGS[addr | 0x100] = v;
|
|
ym2608_device::update_request(OPN->ST.device);
|
|
switch( addr & 0xf0 )
|
|
{
|
|
case 0x00: /* DELTAT PORT */
|
|
switch( addr )
|
|
{
|
|
case 0x0e: /* DAC data */
|
|
F2608->device->logerror("YM2608: write to DAC data (unimplemented) value=%02x\n",v);
|
|
break;
|
|
default:
|
|
/* 0x00-0x0d */
|
|
F2608->deltaT.ADPCM_Write(addr,v);
|
|
}
|
|
break;
|
|
case 0x10: /* IRQ Flag control */
|
|
if( addr == 0x10 )
|
|
{
|
|
YM2608IRQFlagWrite(OPN, F2608, v);
|
|
}
|
|
break;
|
|
default:
|
|
OPNWriteReg(OPN,addr | 0x100,v);
|
|
}
|
|
}
|
|
return OPN->ST.irq;
|
|
}
|
|
|
|
// libOPNMIDI: soft panning
|
|
void ym2608_write_pan(void *chip, int c, unsigned char v)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
assert((c >= 0) && (c < 6));
|
|
F2608->CH[c].pan_volume_l = panlawtable[v & 0x7F];
|
|
F2608->CH[c].pan_volume_r = panlawtable[0x7F - (v & 0x7F)];
|
|
}
|
|
|
|
uint8_t ym2608_read(void *chip,int a)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
int addr = F2608->OPN.ST.address;
|
|
uint8_t ret = 0;
|
|
|
|
switch( a&3 )
|
|
{
|
|
case 0: /* status 0 : YM2203 compatible */
|
|
/* BUSY:x:x:x:x:x:FLAGB:FLAGA */
|
|
ret = FM_STATUS_FLAG(&F2608->OPN.ST) & 0x83;
|
|
break;
|
|
|
|
case 1: /* status 0, ID */
|
|
if( addr < 16 ) ret = (*F2608->OPN.ST.SSG->read)(F2608->OPN.ST.device);
|
|
else if(addr == 0xff) ret = 0x01; /* ID code */
|
|
break;
|
|
|
|
case 2: /* status 1 : status 0 + ADPCM status */
|
|
/* BUSY : x : PCMBUSY : ZERO : BRDY : EOS : FLAGB : FLAGA */
|
|
ret = (FM_STATUS_FLAG(&F2608->OPN.ST) & (F2608->flagmask|0x80)) | ((F2608->deltaT.PCM_BSY & 1)<<5) ;
|
|
break;
|
|
|
|
case 3:
|
|
if(addr == 0x08)
|
|
{
|
|
ret = F2608->deltaT.ADPCM_Read();
|
|
}
|
|
else
|
|
{
|
|
if(addr == 0x0f)
|
|
{
|
|
F2608->device->logerror("YM2608 A/D conversion is accessed but not implemented !\n");
|
|
ret = 0x80; /* 2's complement PCM data - result from A/D conversion */
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ym2608_timer_over(void *chip,int c)
|
|
{
|
|
ym2608_state *F2608 = (ym2608_state *)chip;
|
|
|
|
switch(c)
|
|
{
|
|
#if 0
|
|
case 2:
|
|
{ /* BUFRDY flag */
|
|
F2608->deltaT.BRDY_callback();
|
|
}
|
|
break;
|
|
#endif
|
|
case 1:
|
|
{ /* Timer B */
|
|
TimerBOver( &(F2608->OPN.ST) );
|
|
}
|
|
break;
|
|
case 0:
|
|
{ /* Timer A */
|
|
ym2608_device::update_request(F2608->OPN.ST.device);
|
|
/* timer update */
|
|
TimerAOver( &(F2608->OPN.ST) );
|
|
/* CSM mode key,TL controll */
|
|
if( F2608->OPN.ST.mode & 0x80 )
|
|
{ /* CSM mode total level latch and auto key on */
|
|
CSMKeyControll( F2608->OPN.type, &(F2608->CH[2]) );
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return F2608->OPN.ST.irq;
|
|
}
|
|
|
|
#endif /* BUILD_YM2608 */
|
|
|
|
|
|
|
|
#if (BUILD_YM2610||BUILD_YM2610B)
|
|
/* YM2610(OPNB) */
|
|
|
|
/* Generate samples for one of the YM2610s */
|
|
void ym2610_update_one(void *chip, FMSAMPLE **buffer, int length)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
FM_OPN *OPN = &F2610->OPN;
|
|
YM_DELTAT *DELTAT = &F2610->deltaT;
|
|
int i,j;
|
|
FMSAMPLE *bufL,*bufR;
|
|
FM_CH *cch[4];
|
|
int32_t *out_fm = OPN->out_fm;
|
|
|
|
/* buffer setup */
|
|
bufL = buffer[0];
|
|
bufR = buffer[1];
|
|
|
|
cch[0] = &F2610->CH[1];
|
|
cch[1] = &F2610->CH[2];
|
|
cch[2] = &F2610->CH[4];
|
|
cch[3] = &F2610->CH[5];
|
|
|
|
#ifdef YM2610B_WARNING
|
|
#define FM_KEY_IS(SLOT) ((SLOT)->key)
|
|
#define FM_MSG_YM2610B "YM2610-%p.CH%d is playing,Check whether the type of the chip is YM2610B\n"
|
|
/* Check YM2610B warning message */
|
|
if( FM_KEY_IS(&F2610->CH[0].SLOT[3]) )
|
|
LOG(F2610->device,LOG_WAR,(FM_MSG_YM2610B,F2610->OPN.ST.device,0));
|
|
if( FM_KEY_IS(&F2610->CH[3].SLOT[3]) )
|
|
LOG(F2610->device,LOG_WAR,(FM_MSG_YM2610B,F2610->OPN.ST.device,3));
|
|
#endif
|
|
|
|
/* refresh PG and EG */
|
|
refresh_fc_eg_chan( OPN, cch[0] );
|
|
if( (OPN->ST.mode & 0xc0) )
|
|
{
|
|
/* 3SLOT MODE */
|
|
if( cch[1]->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
refresh_fc_eg_slot(OPN, &cch[1]->SLOT[SLOT1] , OPN->SL3.fc[1] , OPN->SL3.kcode[1] );
|
|
refresh_fc_eg_slot(OPN, &cch[1]->SLOT[SLOT2] , OPN->SL3.fc[2] , OPN->SL3.kcode[2] );
|
|
refresh_fc_eg_slot(OPN, &cch[1]->SLOT[SLOT3] , OPN->SL3.fc[0] , OPN->SL3.kcode[0] );
|
|
refresh_fc_eg_slot(OPN, &cch[1]->SLOT[SLOT4] , cch[1]->fc , cch[1]->kcode );
|
|
}
|
|
}
|
|
else
|
|
refresh_fc_eg_chan( OPN, cch[1] );
|
|
refresh_fc_eg_chan( OPN, cch[2] );
|
|
refresh_fc_eg_chan( OPN, cch[3] );
|
|
|
|
/* buffering */
|
|
for(i=0; i < length ; i++)
|
|
{
|
|
advance_lfo(OPN);
|
|
|
|
/* clear output acc. */
|
|
OPN->out_adpcm[OUTD_LEFT] = OPN->out_adpcm[OUTD_RIGHT] = OPN->out_adpcm[OUTD_CENTER] = 0;
|
|
OPN->out_delta[OUTD_LEFT] = OPN->out_delta[OUTD_RIGHT] = OPN->out_delta[OUTD_CENTER] = 0;
|
|
/* clear outputs */
|
|
out_fm[1] = 0;
|
|
out_fm[2] = 0;
|
|
out_fm[4] = 0;
|
|
out_fm[5] = 0;
|
|
|
|
/* advance envelope generator */
|
|
OPN->eg_timer += OPN->eg_timer_add;
|
|
while (OPN->eg_timer >= OPN->eg_timer_overflow)
|
|
{
|
|
OPN->eg_timer -= OPN->eg_timer_overflow;
|
|
OPN->eg_cnt++;
|
|
|
|
advance_eg_channel(OPN, &cch[0]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[1]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[2]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[3]->SLOT[SLOT1]);
|
|
}
|
|
|
|
/* calculate FM */
|
|
chan_calc(OPN, cch[0], 1 ); /*remapped to 1*/
|
|
chan_calc(OPN, cch[1], 2 ); /*remapped to 2*/
|
|
chan_calc(OPN, cch[2], 4 ); /*remapped to 4*/
|
|
chan_calc(OPN, cch[3], 5 ); /*remapped to 5*/
|
|
|
|
/* deltaT ADPCM */
|
|
if( DELTAT->portstate&0x80 )
|
|
DELTAT->ADPCM_CALC();
|
|
|
|
/* ADPCMA */
|
|
for( j = 0; j < 6; j++ )
|
|
{
|
|
if( F2610->adpcm[j].flag )
|
|
F2610->ADPCMA_calc_chan(&F2610->adpcm[j]);
|
|
}
|
|
|
|
/* buffering */
|
|
{
|
|
int lt,rt;
|
|
|
|
lt = OPN->out_adpcm[OUTD_LEFT] + OPN->out_adpcm[OUTD_CENTER];
|
|
rt = OPN->out_adpcm[OUTD_RIGHT] + OPN->out_adpcm[OUTD_CENTER];
|
|
lt += (OPN->out_delta[OUTD_LEFT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
rt += (OPN->out_delta[OUTD_RIGHT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
|
|
|
|
lt += ((out_fm[1]>>1) & OPN->pan[2]); /* the shift right was verified on real chip */
|
|
rt += ((out_fm[1]>>1) & OPN->pan[3]);
|
|
lt += ((out_fm[2]>>1) & OPN->pan[4]);
|
|
rt += ((out_fm[2]>>1) & OPN->pan[5]);
|
|
|
|
lt += ((out_fm[4]>>1) & OPN->pan[8]);
|
|
rt += ((out_fm[4]>>1) & OPN->pan[9]);
|
|
lt += ((out_fm[5]>>1) & OPN->pan[10]);
|
|
rt += ((out_fm[5]>>1) & OPN->pan[11]);
|
|
|
|
|
|
lt >>= FINAL_SH;
|
|
rt >>= FINAL_SH;
|
|
|
|
Limit( lt, MAXOUT, MINOUT );
|
|
Limit( rt, MAXOUT, MINOUT );
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
SAVE_ALL_CHANNELS
|
|
#endif
|
|
|
|
/* buffering */
|
|
bufL[i] = lt;
|
|
bufR[i] = rt;
|
|
}
|
|
|
|
/* timer A control */
|
|
INTERNAL_TIMER_A( &OPN->ST , cch[1] )
|
|
}
|
|
INTERNAL_TIMER_B(&OPN->ST,length)
|
|
|
|
}
|
|
|
|
#if BUILD_YM2610B
|
|
/* Generate samples for one of the YM2610Bs */
|
|
void ym2610b_update_one(void *chip, FMSAMPLE **buffer, int length)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
FM_OPN *OPN = &F2610->OPN;
|
|
YM_DELTAT *DELTAT = &F2610->deltaT;
|
|
int i,j;
|
|
FMSAMPLE *bufL,*bufR;
|
|
FM_CH *cch[6];
|
|
int32_t *out_fm = OPN->out_fm;
|
|
|
|
/* buffer setup */
|
|
bufL = buffer[0];
|
|
bufR = buffer[1];
|
|
|
|
cch[0] = &F2610->CH[0];
|
|
cch[1] = &F2610->CH[1];
|
|
cch[2] = &F2610->CH[2];
|
|
cch[3] = &F2610->CH[3];
|
|
cch[4] = &F2610->CH[4];
|
|
cch[5] = &F2610->CH[5];
|
|
|
|
/* refresh PG and EG */
|
|
refresh_fc_eg_chan( OPN, cch[0] );
|
|
refresh_fc_eg_chan( OPN, cch[1] );
|
|
if( (OPN->ST.mode & 0xc0) )
|
|
{
|
|
/* 3SLOT MODE */
|
|
if( cch[2]->SLOT[SLOT1].Incr==-1)
|
|
{
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT1] , OPN->SL3.fc[1] , OPN->SL3.kcode[1] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT2] , OPN->SL3.fc[2] , OPN->SL3.kcode[2] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT3] , OPN->SL3.fc[0] , OPN->SL3.kcode[0] );
|
|
refresh_fc_eg_slot(OPN, &cch[2]->SLOT[SLOT4] , cch[2]->fc , cch[2]->kcode );
|
|
}
|
|
}
|
|
else
|
|
refresh_fc_eg_chan( OPN, cch[2] );
|
|
refresh_fc_eg_chan( OPN, cch[3] );
|
|
refresh_fc_eg_chan( OPN, cch[4] );
|
|
refresh_fc_eg_chan( OPN, cch[5] );
|
|
|
|
/* buffering */
|
|
for(i=0; i < length ; i++)
|
|
{
|
|
advance_lfo(OPN);
|
|
|
|
/* clear output acc. */
|
|
OPN->out_adpcm[OUTD_LEFT] = OPN->out_adpcm[OUTD_RIGHT] = OPN->out_adpcm[OUTD_CENTER] = 0;
|
|
OPN->out_delta[OUTD_LEFT] = OPN->out_delta[OUTD_RIGHT] = OPN->out_delta[OUTD_CENTER] = 0;
|
|
/* clear outputs */
|
|
out_fm[0] = 0;
|
|
out_fm[1] = 0;
|
|
out_fm[2] = 0;
|
|
out_fm[3] = 0;
|
|
out_fm[4] = 0;
|
|
out_fm[5] = 0;
|
|
|
|
/* advance envelope generator */
|
|
OPN->eg_timer += OPN->eg_timer_add;
|
|
while (OPN->eg_timer >= OPN->eg_timer_overflow)
|
|
{
|
|
OPN->eg_timer -= OPN->eg_timer_overflow;
|
|
OPN->eg_cnt++;
|
|
|
|
advance_eg_channel(OPN, &cch[0]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[1]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[2]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[3]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[4]->SLOT[SLOT1]);
|
|
advance_eg_channel(OPN, &cch[5]->SLOT[SLOT1]);
|
|
}
|
|
|
|
/* calculate FM */
|
|
chan_calc(OPN, cch[0], 0 );
|
|
chan_calc(OPN, cch[1], 1 );
|
|
chan_calc(OPN, cch[2], 2 );
|
|
chan_calc(OPN, cch[3], 3 );
|
|
chan_calc(OPN, cch[4], 4 );
|
|
chan_calc(OPN, cch[5], 5 );
|
|
|
|
/* deltaT ADPCM */
|
|
if( DELTAT->portstate&0x80 )
|
|
DELTAT->ADPCM_CALC();
|
|
|
|
/* ADPCMA */
|
|
for( j = 0; j < 6; j++ )
|
|
{
|
|
if( F2610->adpcm[j].flag )
|
|
F2610->ADPCMA_calc_chan(&F2610->adpcm[j]);
|
|
}
|
|
|
|
/* buffering */
|
|
{
|
|
int lt,rt;
|
|
|
|
lt = OPN->out_adpcm[OUTD_LEFT] + OPN->out_adpcm[OUTD_CENTER];
|
|
rt = OPN->out_adpcm[OUTD_RIGHT] + OPN->out_adpcm[OUTD_CENTER];
|
|
lt += (OPN->out_delta[OUTD_LEFT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
rt += (OPN->out_delta[OUTD_RIGHT] + OPN->out_delta[OUTD_CENTER])>>9;
|
|
|
|
lt += ((out_fm[0]>>1) & OPN->pan[0]); /* the shift right is verified on YM2610 */
|
|
rt += ((out_fm[0]>>1) & OPN->pan[1]);
|
|
lt += ((out_fm[1]>>1) & OPN->pan[2]);
|
|
rt += ((out_fm[1]>>1) & OPN->pan[3]);
|
|
lt += ((out_fm[2]>>1) & OPN->pan[4]);
|
|
rt += ((out_fm[2]>>1) & OPN->pan[5]);
|
|
lt += ((out_fm[3]>>1) & OPN->pan[6]);
|
|
rt += ((out_fm[3]>>1) & OPN->pan[7]);
|
|
lt += ((out_fm[4]>>1) & OPN->pan[8]);
|
|
rt += ((out_fm[4]>>1) & OPN->pan[9]);
|
|
lt += ((out_fm[5]>>1) & OPN->pan[10]);
|
|
rt += ((out_fm[5]>>1) & OPN->pan[11]);
|
|
|
|
|
|
lt >>= FINAL_SH;
|
|
rt >>= FINAL_SH;
|
|
|
|
Limit( lt, MAXOUT, MINOUT );
|
|
Limit( rt, MAXOUT, MINOUT );
|
|
|
|
#ifdef SAVE_SAMPLE
|
|
SAVE_ALL_CHANNELS
|
|
#endif
|
|
|
|
/* buffering */
|
|
bufL[i] = lt;
|
|
bufR[i] = rt;
|
|
}
|
|
|
|
/* timer A control */
|
|
INTERNAL_TIMER_A( &OPN->ST , cch[2] )
|
|
}
|
|
INTERNAL_TIMER_B(&OPN->ST,length)
|
|
|
|
}
|
|
#endif /* BUILD_YM2610B */
|
|
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
void ym2610_postload(void *chip)
|
|
{
|
|
if (chip)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
int r;
|
|
|
|
/* SSG registers */
|
|
for(r=0;r<16;r++)
|
|
{
|
|
(*F2610->OPN.ST.SSG->write)(F2610->OPN.ST.device,0,r);
|
|
(*F2610->OPN.ST.SSG->write)(F2610->OPN.ST.device,1,F2610->REGS[r]);
|
|
}
|
|
|
|
/* OPN registers */
|
|
/* DT / MULTI , TL , KS / AR , AMON / DR , SR , SL / RR , SSG-EG */
|
|
for(r=0x30;r<0x9e;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2610->OPN,r,F2610->REGS[r]);
|
|
OPNWriteReg(&F2610->OPN,r|0x100,F2610->REGS[r|0x100]);
|
|
}
|
|
/* FB / CONNECT , L / R / AMS / PMS */
|
|
for(r=0xb0;r<0xb6;r++)
|
|
if((r&3) != 3)
|
|
{
|
|
OPNWriteReg(&F2610->OPN,r,F2610->REGS[r]);
|
|
OPNWriteReg(&F2610->OPN,r|0x100,F2610->REGS[r|0x100]);
|
|
}
|
|
/* FM channels */
|
|
/*FM_channel_postload(F2610->CH,6);*/
|
|
|
|
/* rhythm(ADPCMA) */
|
|
F2610->FM_ADPCMAWrite(1,F2610->REGS[0x101]);
|
|
for( r=0 ; r<6 ; r++)
|
|
{
|
|
F2610->FM_ADPCMAWrite(r+0x08,F2610->REGS[r+0x108]);
|
|
F2610->FM_ADPCMAWrite(r+0x10,F2610->REGS[r+0x110]);
|
|
F2610->FM_ADPCMAWrite(r+0x18,F2610->REGS[r+0x118]);
|
|
F2610->FM_ADPCMAWrite(r+0x20,F2610->REGS[r+0x120]);
|
|
F2610->FM_ADPCMAWrite(r+0x28,F2610->REGS[r+0x128]);
|
|
}
|
|
/* Delta-T ADPCM unit */
|
|
F2610->deltaT.postload( &F2610->REGS[0x010] );
|
|
}
|
|
}
|
|
|
|
static void YM2610_save_state(ym2610_state *F2610, device_t *device)
|
|
{
|
|
device->save_item(NAME(F2610->REGS));
|
|
FMsave_state_st(device,&F2610->OPN.ST);
|
|
FMsave_state_channel(device,F2610->CH,6);
|
|
/* 3slots */
|
|
device->save_item(NAME(F2610->OPN.SL3.fc));
|
|
device->save_item(NAME(F2610->OPN.SL3.fn_h));
|
|
device->save_item(NAME(F2610->OPN.SL3.kcode));
|
|
/* address register1 */
|
|
device->save_item(NAME(F2610->addr_A1));
|
|
|
|
device->save_item(NAME(F2610->adpcm_arrivedEndAddress));
|
|
/* rhythm(ADPCMA) */
|
|
FMsave_state_adpcma(device,F2610->adpcm);
|
|
/* Delta-T ADPCM unit */
|
|
F2610->deltaT.savestate(device);
|
|
}
|
|
#endif /* MAME_EMU_SAVE_H */
|
|
|
|
static void YM2610_deltat_status_set(void *chip, uint8_t changebits)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
F2610->adpcm_arrivedEndAddress |= changebits;
|
|
}
|
|
static void YM2610_deltat_status_reset(void *chip, uint8_t changebits)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
F2610->adpcm_arrivedEndAddress &= (~changebits);
|
|
}
|
|
|
|
void *ym2610_init(device_t *device, int clock, int rate,
|
|
FM_READBYTE adpcm_a_read_byte, FM_READBYTE adpcm_b_read_byte,
|
|
FM_TIMERHANDLER timer_handler,FM_IRQHANDLER IRQHandler, const ssg_callbacks *ssg)
|
|
{
|
|
ym2610_state *F2610;
|
|
|
|
/* allocate extend state space */
|
|
F2610 = new ym2610_state;
|
|
memset(F2610, 0, sizeof(*F2610));
|
|
/* allocate total level table (128kb space) */
|
|
if( !init_tables() )
|
|
{
|
|
delete F2610;
|
|
return nullptr;
|
|
}
|
|
|
|
F2610->device = device;
|
|
/* FM */
|
|
F2610->OPN.type = TYPE_YM2610;
|
|
F2610->OPN.P_CH = F2610->CH;
|
|
F2610->OPN.ST.device = device;
|
|
F2610->OPN.ST.clock = clock;
|
|
F2610->OPN.ST.rate = rate;
|
|
/* Extend handler */
|
|
F2610->OPN.ST.timer_handler = timer_handler;
|
|
F2610->OPN.ST.IRQ_Handler = IRQHandler;
|
|
F2610->OPN.ST.SSG = ssg;
|
|
/* ADPCM */
|
|
F2610->read_byte = adpcm_a_read_byte;
|
|
/* DELTA-T */
|
|
F2610->deltaT.read_byte = adpcm_b_read_byte;
|
|
F2610->deltaT.write_byte = nullptr;
|
|
|
|
F2610->deltaT.status_set_handler = YM2610_deltat_status_set;
|
|
F2610->deltaT.status_reset_handler = YM2610_deltat_status_reset;
|
|
F2610->deltaT.status_change_which_chip = F2610;
|
|
F2610->deltaT.status_change_EOS_bit = 0x80; /* status flag: set bit7 on End Of Sample */
|
|
|
|
Init_ADPCMATable();
|
|
|
|
for (unsigned i = 0; i < 6; i++)
|
|
{
|
|
F2610->CH[i].pan_volume_l = 46340;
|
|
F2610->CH[i].pan_volume_r = 46340;
|
|
}
|
|
|
|
#ifdef MAME_EMU_SAVE_H
|
|
YM2610_save_state(F2610, device);
|
|
#endif
|
|
return F2610;
|
|
}
|
|
|
|
void ym2610_clock_changed(void *chip, int clock, int rate)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
|
|
F2610->OPN.ST.clock = clock;
|
|
F2610->OPN.ST.rate = rate;
|
|
}
|
|
|
|
/* shut down emulator */
|
|
void ym2610_shutdown(void *chip)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
|
|
FMCloseTable();
|
|
delete F2610;
|
|
}
|
|
|
|
/* reset one of chip */
|
|
void ym2610_reset_chip(void *chip)
|
|
{
|
|
int i;
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
FM_OPN *OPN = &F2610->OPN;
|
|
YM_DELTAT *DELTAT = &F2610->deltaT;
|
|
|
|
device_t* dev = F2610->OPN.ST.device;
|
|
std::string name(dev->tag());
|
|
|
|
/* Reset Prescaler */
|
|
OPNSetPres( OPN, 6*24, 6*24, 4*2); /* OPN 1/6 , SSG 1/4 */
|
|
/* reset SSG section */
|
|
(*OPN->ST.SSG->reset)(OPN->ST.device);
|
|
/* status clear */
|
|
FM_IRQMASK_SET(&OPN->ST,0x03);
|
|
FM_BUSY_CLEAR(&OPN->ST);
|
|
OPNWriteMode(OPN,0x27,0x30); /* mode 0 , timer reset */
|
|
|
|
OPN->eg_timer = 0;
|
|
OPN->eg_cnt = 0;
|
|
|
|
FM_STATUS_RESET(&OPN->ST, 0xff);
|
|
|
|
reset_channels( &OPN->ST , F2610->CH , 6 );
|
|
/* reset OPerator paramater */
|
|
for(i = 0xb6 ; i >= 0xb4 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0xc0);
|
|
OPNWriteReg(OPN,i|0x100,0xc0);
|
|
}
|
|
for(i = 0xb2 ; i >= 0x30 ; i-- )
|
|
{
|
|
OPNWriteReg(OPN,i ,0);
|
|
OPNWriteReg(OPN,i|0x100,0);
|
|
}
|
|
for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(OPN,i,0);
|
|
/**** ADPCM work initial ****/
|
|
for( i = 0; i < 6 ; i++ )
|
|
{
|
|
F2610->adpcm[i].step = (uint32_t)((float)(1<<ADPCM_SHIFT)*((float)F2610->OPN.ST.freqbase)/3.0f);
|
|
F2610->adpcm[i].now_addr = 0;
|
|
F2610->adpcm[i].now_step = 0;
|
|
F2610->adpcm[i].start = 0;
|
|
F2610->adpcm[i].end = 0;
|
|
/* F2610->adpcm[i].delta = 21866; */
|
|
F2610->adpcm[i].vol_mul = 0;
|
|
F2610->adpcm[i].pan = &OPN->out_adpcm[OUTD_CENTER]; /* default center */
|
|
F2610->adpcm[i].flagMask = 1<<i;
|
|
F2610->adpcm[i].flag = 0;
|
|
F2610->adpcm[i].adpcm_acc = 0;
|
|
F2610->adpcm[i].adpcm_step= 0;
|
|
F2610->adpcm[i].adpcm_out = 0;
|
|
}
|
|
F2610->adpcmTL = 0x3f;
|
|
|
|
F2610->adpcm_arrivedEndAddress = 0;
|
|
|
|
/* DELTA-T unit */
|
|
DELTAT->freqbase = OPN->ST.freqbase;
|
|
DELTAT->output_pointer = OPN->out_delta;
|
|
DELTAT->portshift = 8; /* allways 8bits shift */
|
|
DELTAT->output_range = 1<<23;
|
|
DELTAT->ADPCM_Reset(OUTD_CENTER,YM_DELTAT::EMULATION_MODE_YM2610,F2610->device);
|
|
}
|
|
|
|
/* YM2610 write */
|
|
/* n = number */
|
|
/* a = address */
|
|
/* v = value */
|
|
int ym2610_write(void *chip, int a, uint8_t v)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
FM_OPN *OPN = &F2610->OPN;
|
|
int addr;
|
|
int ch;
|
|
|
|
v &= 0xff; /* adjust to 8 bit bus */
|
|
|
|
switch( a&3 )
|
|
{
|
|
case 0: /* address port 0 */
|
|
OPN->ST.address = v;
|
|
F2610->addr_A1 = 0;
|
|
|
|
/* Write register to SSG emulator */
|
|
if( v < 16 ) (*OPN->ST.SSG->write)(OPN->ST.device,0,v);
|
|
break;
|
|
|
|
case 1: /* data port 0 */
|
|
if (F2610->addr_A1 != 0)
|
|
break; /* verified on real YM2608 */
|
|
|
|
addr = OPN->ST.address;
|
|
F2610->REGS[addr] = v;
|
|
switch(addr & 0xf0)
|
|
{
|
|
case 0x00: /* SSG section */
|
|
/* Write data to SSG emulator */
|
|
(*OPN->ST.SSG->write)(OPN->ST.device,a,v);
|
|
break;
|
|
case 0x10: /* DeltaT ADPCM */
|
|
ym2610_device::update_request(OPN->ST.device);
|
|
|
|
switch(addr)
|
|
{
|
|
case 0x10: /* control 1 */
|
|
case 0x11: /* control 2 */
|
|
case 0x12: /* start address L */
|
|
case 0x13: /* start address H */
|
|
case 0x14: /* stop address L */
|
|
case 0x15: /* stop address H */
|
|
|
|
case 0x19: /* delta-n L */
|
|
case 0x1a: /* delta-n H */
|
|
case 0x1b: /* volume */
|
|
{
|
|
F2610->deltaT.ADPCM_Write(addr-0x10,v);
|
|
}
|
|
break;
|
|
|
|
case 0x1c: /* FLAG CONTROL : Extend Status Clear/Mask */
|
|
{
|
|
uint8_t statusmask = ~v;
|
|
/* set arrived flag mask */
|
|
for(ch=0;ch<6;ch++)
|
|
F2610->adpcm[ch].flagMask = statusmask&(1<<ch);
|
|
|
|
F2610->deltaT.status_change_EOS_bit = statusmask & 0x80; /* status flag: set bit7 on End Of Sample */
|
|
|
|
/* clear arrived flag */
|
|
F2610->adpcm_arrivedEndAddress &= statusmask;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
F2610->device->logerror("YM2610: write to unknown deltat register %02x val=%02x\n",addr,v);
|
|
break;
|
|
}
|
|
|
|
break;
|
|
case 0x20: /* Mode Register */
|
|
ym2610_device::update_request(OPN->ST.device);
|
|
OPNWriteMode(OPN,addr,v);
|
|
break;
|
|
default: /* OPN section */
|
|
ym2610_device::update_request(OPN->ST.device);
|
|
/* write register */
|
|
OPNWriteReg(OPN,addr,v);
|
|
}
|
|
break;
|
|
|
|
case 2: /* address port 1 */
|
|
OPN->ST.address = v;
|
|
F2610->addr_A1 = 1;
|
|
break;
|
|
|
|
case 3: /* data port 1 */
|
|
if (F2610->addr_A1 != 1)
|
|
break; /* verified on real YM2608 */
|
|
|
|
ym2610_device::update_request(OPN->ST.device);
|
|
addr = OPN->ST.address;
|
|
F2610->REGS[addr | 0x100] = v;
|
|
if( addr < 0x30 )
|
|
/* 100-12f : ADPCM A section */
|
|
F2610->FM_ADPCMAWrite(addr,v);
|
|
else
|
|
OPNWriteReg(OPN,addr | 0x100,v);
|
|
}
|
|
return OPN->ST.irq;
|
|
}
|
|
|
|
uint8_t ym2610_read(void *chip,int a)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
int addr = F2610->OPN.ST.address;
|
|
uint8_t ret = 0;
|
|
|
|
switch( a&3)
|
|
{
|
|
case 0: /* status 0 : YM2203 compatible */
|
|
ret = FM_STATUS_FLAG(&F2610->OPN.ST) & 0x83;
|
|
break;
|
|
case 1: /* data 0 */
|
|
if( addr < 16 ) ret = (*F2610->OPN.ST.SSG->read)(F2610->OPN.ST.device);
|
|
if( addr == 0xff ) ret = 0x01;
|
|
break;
|
|
case 2: /* status 1 : ADPCM status */
|
|
/* ADPCM STATUS (arrived End Address) */
|
|
/* B,--,A5,A4,A3,A2,A1,A0 */
|
|
/* B = ADPCM-B(DELTA-T) arrived end address */
|
|
/* A0-A5 = ADPCM-A arrived end address */
|
|
ret = F2610->adpcm_arrivedEndAddress;
|
|
break;
|
|
case 3:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ym2610_timer_over(void *chip,int c)
|
|
{
|
|
ym2610_state *F2610 = (ym2610_state *)chip;
|
|
|
|
if( c )
|
|
{ /* Timer B */
|
|
TimerBOver( &(F2610->OPN.ST) );
|
|
}
|
|
else
|
|
{ /* Timer A */
|
|
ym2610_device::update_request(F2610->OPN.ST.device);
|
|
/* timer update */
|
|
TimerAOver( &(F2610->OPN.ST) );
|
|
/* CSM mode key,TL controll */
|
|
if( F2610->OPN.ST.mode & 0x80 )
|
|
{ /* CSM mode total level latch and auto key on */
|
|
CSMKeyControll( F2610->OPN.type, &(F2610->CH[2]) );
|
|
}
|
|
}
|
|
return F2610->OPN.ST.irq;
|
|
}
|
|
|
|
#endif /* (BUILD_YM2610||BUILD_YM2610B) */
|