zmusic/thirdparty/adlmidi/adlmidi_opl3.cpp
Wohlstand 5bd573478b Updated libADLMIDI to version 1.5.1
Changelog
 * Added an ability to disable the automatical arpeggio
 * Added an ability to set the count of loops (how many times to play the song)
 * Added an ability to disable/enable playing of selected MIDI channels
 * Fixed memory damages and crashes while playing XMI files
 * Added bank-specific MT32 defaults (to don't confuse XMI playback between different games, works for AIL and IBK only, and for WOPL if set at the header)
 * Added the chip channels allocation mode option
 * Fixed the playback of multi-song XMI files
 * Added an ability to switch the XMI song on the fly

ALSO (future updates)
 * Fixed the work on big endian processors
 * Fixed ARM64 build on some platforms
 * Improved support of the EA-MUS files (Thanks to [dashodanger](https://github.com/dashodanger))
 * Fixed crash on attempt to change the volume of a blank note
2023-01-02 08:11:31 +01:00

1817 lines
57 KiB
C++

/*
* libADLMIDI is a free Software MIDI synthesizer library with OPL3 emulation
*
* Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* ADLMIDI Library API: Copyright (c) 2015-2022 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adlmidi_opl3.hpp"
#include "adlmidi_private.hpp"
#include <stdlib.h>
#include <cassert>
#ifndef DISABLE_EMBEDDED_BANKS
#include "wopl/wopl_file.h"
#endif
#ifdef ADLMIDI_HW_OPL
static const unsigned OPLBase = 0x388;
#else
# if defined(ADLMIDI_DISABLE_NUKED_EMULATOR) && \
defined(ADLMIDI_DISABLE_DOSBOX_EMULATOR) && \
defined(ADLMIDI_DISABLE_OPAL_EMULATOR) && \
defined(ADLMIDI_DISABLE_JAVA_EMULATOR)
# error "No emulators enabled. You must enable at least one emulator to use this library!"
# endif
// Nuked OPL3 emulator, Most accurate, but requires the powerful CPU
# ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
# include "chips/nuked_opl3.h"
# include "chips/nuked_opl3_v174.h"
# endif
// DosBox 0.74 OPL3 emulator, Well-accurate and fast
# ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
# include "chips/dosbox_opl3.h"
# endif
// Opal emulator
# ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
# include "chips/opal_opl3.h"
# endif
// Java emulator
# ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
# include "chips/java_opl3.h"
# endif
#endif
static const unsigned adl_emulatorSupport = 0
#ifndef ADLMIDI_HW_OPL
# ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
| (1u << ADLMIDI_EMU_NUKED) | (1u << ADLMIDI_EMU_NUKED_174)
# endif
# ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
| (1u << ADLMIDI_EMU_DOSBOX)
# endif
# ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
| (1u << ADLMIDI_EMU_OPAL)
# endif
# ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
| (1u << ADLMIDI_EMU_JAVA)
# endif
#endif
;
//! Check emulator availability
bool adl_isEmulatorAvailable(int emulator)
{
return (adl_emulatorSupport & (1u << (unsigned)emulator)) != 0;
}
//! Find highest emulator
int adl_getHighestEmulator()
{
int emu = -1;
for(unsigned m = adl_emulatorSupport; m > 0; m >>= 1)
++emu;
return emu;
}
//! Find lowest emulator
int adl_getLowestEmulator()
{
int emu = -1;
unsigned m = adl_emulatorSupport;
if(m > 0)
{
for(emu = 0; (m & 1) == 0; m >>= 1)
++emu;
}
return emu;
}
//! Per-channel and per-operator registers map
static const uint16_t g_operatorsMap[(NUM_OF_CHANNELS + NUM_OF_RM_CHANNELS) * 2] =
{
// Channels 0-2
0x000, 0x003, 0x001, 0x004, 0x002, 0x005, // operators 0, 3, 1, 4, 2, 5
// Channels 3-5
0x008, 0x00B, 0x009, 0x00C, 0x00A, 0x00D, // operators 6, 9, 7,10, 8,11
// Channels 6-8
0x010, 0x013, 0x011, 0x014, 0x012, 0x015, // operators 12,15, 13,16, 14,17
// Same for second card
0x100, 0x103, 0x101, 0x104, 0x102, 0x105, // operators 18,21, 19,22, 20,23
0x108, 0x10B, 0x109, 0x10C, 0x10A, 0x10D, // operators 24,27, 25,28, 26,29
0x110, 0x113, 0x111, 0x114, 0x112, 0x115, // operators 30,33, 31,34, 32,35
//==For Rhythm-mode percussions
// Channel 18
0x010, 0x013, // operators 12,15
// Channel 19
0xFFF, 0x014, // operator 16
// Channel 19
0x012, 0xFFF, // operator 14
// Channel 19
0xFFF, 0x015, // operator 17
// Channel 19
0x011, 0xFFF, // operator 13
//==For Rhythm-mode percussions in CMF, snare and cymbal operators has inverted!
0x010, 0x013, // operators 12,15
// Channel 19
0x014, 0xFFF, // operator 16
// Channel 19
0x012, 0xFFF, // operator 14
// Channel 19
0x015, 0xFFF, // operator 17
// Channel 19
0x011, 0xFFF // operator 13
};
//! Channel map to regoster offsets
static const uint16_t g_channelsMap[NUM_OF_CHANNELS] =
{
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8
0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set)
0x006, 0x007, 0x008, 0x008, 0x008 // <- hw percussions, hihats and cymbals using tom-tom's channel as pitch source
};
//! Channel map to regoster offsets (separated copy for panning)
static const uint16_t g_channelsMapPan[NUM_OF_CHANNELS] =
{
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8
0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set)
0x006, 0x007, 0x008, 0xFFF, 0xFFF // <- hw percussions, 0xFFF = no support for pitch/pan
};
/*
In OPL3 mode:
0 1 2 6 7 8 9 10 11 16 17 18
op0 op1 op2 op12 op13 op14 op18 op19 op20 op30 op31 op32
op3 op4 op5 op15 op16 op17 op21 op22 op23 op33 op34 op35
3 4 5 13 14 15
op6 op7 op8 op24 op25 op26
op9 op10 op11 op27 op28 op29
Ports:
+0 +1 +2 +10 +11 +12 +100 +101 +102 +110 +111 +112
+3 +4 +5 +13 +14 +15 +103 +104 +105 +113 +114 +115
+8 +9 +A +108 +109 +10A
+B +C +D +10B +10C +10D
Percussion:
bassdrum = op(0): 0xBD bit 0x10, operators 12 (0x10) and 15 (0x13) / channels 6, 6b
snare = op(3): 0xBD bit 0x08, operators 16 (0x14) / channels 7b
tomtom = op(4): 0xBD bit 0x04, operators 14 (0x12) / channels 8
cym = op(5): 0xBD bit 0x02, operators 17 (0x17) / channels 8b
hihat = op(2): 0xBD bit 0x01, operators 13 (0x11) / channels 7
In OPTi mode ("extended FM" in 82C924, 82C925, 82C931 chips):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
op0 op4 op6 op10 op12 op16 op18 op22 op24 op28 op30 op34 op36 op38 op40 op42 op44 op46
op1 op5 op7 op11 op13 op17 op19 op23 op25 op29 op31 op35 op37 op39 op41 op43 op45 op47
op2 op8 op14 op20 op26 op32
op3 op9 op15 op21 op27 op33 for a total of 6 quad + 12 dual
Ports: ???
*/
/***************************************************************
* Volume model tables *
***************************************************************/
// Mapping from MIDI volume level to OPL level value.
static const uint_fast32_t s_dmx_volume_model[128] =
{
0, 1, 3, 5, 6, 8, 10, 11,
13, 14, 16, 17, 19, 20, 22, 23,
25, 26, 27, 29, 30, 32, 33, 34,
36, 37, 39, 41, 43, 45, 47, 49,
50, 52, 54, 55, 57, 59, 60, 61,
63, 64, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 79, 80, 81,
82, 83, 84, 84, 85, 86, 87, 88,
89, 90, 91, 92, 92, 93, 94, 95,
96, 96, 97, 98, 99, 99, 100, 101,
101, 102, 103, 103, 104, 105, 105, 106,
107, 107, 108, 109, 109, 110, 110, 111,
112, 112, 113, 113, 114, 114, 115, 115,
116, 117, 117, 118, 118, 119, 119, 120,
120, 121, 121, 122, 122, 123, 123, 123,
124, 124, 125, 125, 126, 126, 127, 127,
};
static const uint_fast32_t s_w9x_sb16_volume_model[32] =
{
80, 63, 40, 36, 32, 28, 23, 21,
19, 17, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 5, 4, 4,
3, 3, 2, 2, 1, 1, 0, 0
};
static const uint_fast32_t s_w9x_generic_fm_volume_model[32] =
{
40, 36, 32, 28, 23, 21, 19, 17,
15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 5, 4, 4, 3, 3,
2, 2, 1, 1, 1, 0, 0, 0
};
static const uint_fast32_t s_ail_vel_graph[16] =
{
82, 85, 88, 91, 94, 97, 100, 103,
106, 109, 112, 115, 118, 121, 124, 127
};
static const uint_fast32_t s_hmi_volume_table[64] =
{
0x3F, 0x3A, 0x35, 0x30, 0x2C, 0x29, 0x25, 0x24,
0x23, 0x22, 0x21, 0x20, 0x1F, 0x1E, 0x1D, 0x1C,
0x1B, 0x1A, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14,
0x13, 0x12, 0x11, 0x10, 0x0F, 0x0E, 0x0E, 0x0D,
0x0D, 0x0C, 0x0C, 0x0B, 0x0B, 0x0A, 0x0A, 0x09,
0x09, 0x08, 0x08, 0x07, 0x07, 0x06, 0x06, 0x06,
0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x03,
0x03, 0x03, 0x02, 0x02, 0x02, 0x01, 0x01, 0x00,
};
/***************************************************************
* Standard frequency formula *
* *************************************************************/
static inline double s_commonFreq(double tone)
{
return BEND_COEFFICIENT * std::exp(0.057762265 * tone);
}
/***************************************************************
* DMX frequency model *
* *************************************************************/
// DMX volumes table
static const int_fast32_t s_dmx_freq_table[] =
{
0x0133, 0x0133, 0x0134, 0x0134, 0x0135, 0x0136, 0x0136, 0x0137,
0x0137, 0x0138, 0x0138, 0x0139, 0x0139, 0x013A, 0x013B, 0x013B,
0x013C, 0x013C, 0x013D, 0x013D, 0x013E, 0x013F, 0x013F, 0x0140,
0x0140, 0x0141, 0x0142, 0x0142, 0x0143, 0x0143, 0x0144, 0x0144,
0x0145, 0x0146, 0x0146, 0x0147, 0x0147, 0x0148, 0x0149, 0x0149,
0x014A, 0x014A, 0x014B, 0x014C, 0x014C, 0x014D, 0x014D, 0x014E,
0x014F, 0x014F, 0x0150, 0x0150, 0x0151, 0x0152, 0x0152, 0x0153,
0x0153, 0x0154, 0x0155, 0x0155, 0x0156, 0x0157, 0x0157, 0x0158,
0x0158, 0x0159, 0x015A, 0x015A, 0x015B, 0x015B, 0x015C, 0x015D,
0x015D, 0x015E, 0x015F, 0x015F, 0x0160, 0x0161, 0x0161, 0x0162,
0x0162, 0x0163, 0x0164, 0x0164, 0x0165, 0x0166, 0x0166, 0x0167,
0x0168, 0x0168, 0x0169, 0x016A, 0x016A, 0x016B, 0x016C, 0x016C,
0x016D, 0x016E, 0x016E, 0x016F, 0x0170, 0x0170, 0x0171, 0x0172,
0x0172, 0x0173, 0x0174, 0x0174, 0x0175, 0x0176, 0x0176, 0x0177,
0x0178, 0x0178, 0x0179, 0x017A, 0x017A, 0x017B, 0x017C, 0x017C,
0x017D, 0x017E, 0x017E, 0x017F, 0x0180, 0x0181, 0x0181, 0x0182,
0x0183, 0x0183, 0x0184, 0x0185, 0x0185, 0x0186, 0x0187, 0x0188,
0x0188, 0x0189, 0x018A, 0x018A, 0x018B, 0x018C, 0x018D, 0x018D,
0x018E, 0x018F, 0x018F, 0x0190, 0x0191, 0x0192, 0x0192, 0x0193,
0x0194, 0x0194, 0x0195, 0x0196, 0x0197, 0x0197, 0x0198, 0x0199,
0x019A, 0x019A, 0x019B, 0x019C, 0x019D, 0x019D, 0x019E, 0x019F,
0x01A0, 0x01A0, 0x01A1, 0x01A2, 0x01A3, 0x01A3, 0x01A4, 0x01A5,
0x01A6, 0x01A6, 0x01A7, 0x01A8, 0x01A9, 0x01A9, 0x01AA, 0x01AB,
0x01AC, 0x01AD, 0x01AD, 0x01AE, 0x01AF, 0x01B0, 0x01B0, 0x01B1,
0x01B2, 0x01B3, 0x01B4, 0x01B4, 0x01B5, 0x01B6, 0x01B7, 0x01B8,
0x01B8, 0x01B9, 0x01BA, 0x01BB, 0x01BC, 0x01BC, 0x01BD, 0x01BE,
0x01BF, 0x01C0, 0x01C0, 0x01C1, 0x01C2, 0x01C3, 0x01C4, 0x01C4,
0x01C5, 0x01C6, 0x01C7, 0x01C8, 0x01C9, 0x01C9, 0x01CA, 0x01CB,
0x01CC, 0x01CD, 0x01CE, 0x01CE, 0x01CF, 0x01D0, 0x01D1, 0x01D2,
0x01D3, 0x01D3, 0x01D4, 0x01D5, 0x01D6, 0x01D7, 0x01D8, 0x01D8,
0x01D9, 0x01DA, 0x01DB, 0x01DC, 0x01DD, 0x01DE, 0x01DE, 0x01DF,
0x01E0, 0x01E1, 0x01E2, 0x01E3, 0x01E4, 0x01E5, 0x01E5, 0x01E6,
0x01E7, 0x01E8, 0x01E9, 0x01EA, 0x01EB, 0x01EC, 0x01ED, 0x01ED,
0x01EE, 0x01EF, 0x01F0, 0x01F1, 0x01F2, 0x01F3, 0x01F4, 0x01F5,
0x01F6, 0x01F6, 0x01F7, 0x01F8, 0x01F9, 0x01FA, 0x01FB, 0x01FC,
0x01FD, 0x01FE, 0x01FF,
0x0200, 0x0201, 0x0201, 0x0202, 0x0203, 0x0204, 0x0205, 0x0206,
0x0207, 0x0208, 0x0209, 0x020A, 0x020B, 0x020C, 0x020D, 0x020E,
0x020F, 0x0210, 0x0210, 0x0211, 0x0212, 0x0213, 0x0214, 0x0215,
0x0216, 0x0217, 0x0218, 0x0219, 0x021A, 0x021B, 0x021C, 0x021D,
0x021E, 0x021F, 0x0220, 0x0221, 0x0222, 0x0223, 0x0224, 0x0225,
0x0226, 0x0227, 0x0228, 0x0229, 0x022A, 0x022B, 0x022C, 0x022D,
0x022E, 0x022F, 0x0230, 0x0231, 0x0232, 0x0233, 0x0234, 0x0235,
0x0236, 0x0237, 0x0238, 0x0239, 0x023A, 0x023B, 0x023C, 0x023D,
0x023E, 0x023F, 0x0240, 0x0241, 0x0242, 0x0244, 0x0245, 0x0246,
0x0247, 0x0248, 0x0249, 0x024A, 0x024B, 0x024C, 0x024D, 0x024E,
0x024F, 0x0250, 0x0251, 0x0252, 0x0253, 0x0254, 0x0256, 0x0257,
0x0258, 0x0259, 0x025A, 0x025B, 0x025C, 0x025D, 0x025E, 0x025F,
0x0260, 0x0262, 0x0263, 0x0264, 0x0265, 0x0266, 0x0267, 0x0268,
0x0269, 0x026A, 0x026C, 0x026D, 0x026E, 0x026F, 0x0270, 0x0271,
0x0272, 0x0273, 0x0275, 0x0276, 0x0277, 0x0278, 0x0279, 0x027A,
0x027B, 0x027D, 0x027E, 0x027F, 0x0280, 0x0281, 0x0282, 0x0284,
0x0285, 0x0286, 0x0287, 0x0288, 0x0289, 0x028B, 0x028C, 0x028D,
0x028E, 0x028F, 0x0290, 0x0292, 0x0293, 0x0294, 0x0295, 0x0296,
0x0298, 0x0299, 0x029A, 0x029B, 0x029C, 0x029E, 0x029F, 0x02A0,
0x02A1, 0x02A2, 0x02A4, 0x02A5, 0x02A6, 0x02A7, 0x02A9, 0x02AA,
0x02AB, 0x02AC, 0x02AE, 0x02AF, 0x02B0, 0x02B1, 0x02B2, 0x02B4,
0x02B5, 0x02B6, 0x02B7, 0x02B9, 0x02BA, 0x02BB, 0x02BD, 0x02BE,
0x02BF, 0x02C0, 0x02C2, 0x02C3, 0x02C4, 0x02C5, 0x02C7, 0x02C8,
0x02C9, 0x02CB, 0x02CC, 0x02CD, 0x02CE, 0x02D0, 0x02D1, 0x02D2,
0x02D4, 0x02D5, 0x02D6, 0x02D8, 0x02D9, 0x02DA, 0x02DC, 0x02DD,
0x02DE, 0x02E0, 0x02E1, 0x02E2, 0x02E4, 0x02E5, 0x02E6, 0x02E8,
0x02E9, 0x02EA, 0x02EC, 0x02ED, 0x02EE, 0x02F0, 0x02F1, 0x02F2,
0x02F4, 0x02F5, 0x02F6, 0x02F8, 0x02F9, 0x02FB, 0x02FC, 0x02FD,
0x02FF, 0x0300, 0x0302, 0x0303, 0x0304, 0x0306, 0x0307, 0x0309,
0x030A, 0x030B, 0x030D, 0x030E, 0x0310, 0x0311, 0x0312, 0x0314,
0x0315, 0x0317, 0x0318, 0x031A, 0x031B, 0x031C, 0x031E, 0x031F,
0x0321, 0x0322, 0x0324, 0x0325, 0x0327, 0x0328, 0x0329, 0x032B,
0x032C, 0x032E, 0x032F, 0x0331, 0x0332, 0x0334, 0x0335, 0x0337,
0x0338, 0x033A, 0x033B, 0x033D, 0x033E, 0x0340, 0x0341, 0x0343,
0x0344, 0x0346, 0x0347, 0x0349, 0x034A, 0x034C, 0x034D, 0x034F,
0x0350, 0x0352, 0x0353, 0x0355, 0x0357, 0x0358, 0x035A, 0x035B,
0x035D, 0x035E, 0x0360, 0x0361, 0x0363, 0x0365, 0x0366, 0x0368,
0x0369, 0x036B, 0x036C, 0x036E, 0x0370, 0x0371, 0x0373, 0x0374,
0x0376, 0x0378, 0x0379, 0x037B, 0x037C, 0x037E, 0x0380, 0x0381,
0x0383, 0x0384, 0x0386, 0x0388, 0x0389, 0x038B, 0x038D, 0x038E,
0x0390, 0x0392, 0x0393, 0x0395, 0x0397, 0x0398, 0x039A, 0x039C,
0x039D, 0x039F, 0x03A1, 0x03A2, 0x03A4, 0x03A6, 0x03A7, 0x03A9,
0x03AB, 0x03AC, 0x03AE, 0x03B0, 0x03B1, 0x03B3, 0x03B5, 0x03B7,
0x03B8, 0x03BA, 0x03BC, 0x03BD, 0x03BF, 0x03C1, 0x03C3, 0x03C4,
0x03C6, 0x03C8, 0x03CA, 0x03CB, 0x03CD, 0x03CF, 0x03D1, 0x03D2,
0x03D4, 0x03D6, 0x03D8, 0x03DA, 0x03DB, 0x03DD, 0x03DF, 0x03E1,
0x03E3, 0x03E4, 0x03E6, 0x03E8, 0x03EA, 0x03EC, 0x03ED, 0x03EF,
0x03F1, 0x03F3, 0x03F5, 0x03F6, 0x03F8, 0x03FA, 0x03FC, 0x03FE,
0x036C
};
static inline double s_dmxFreq(double tone)
{
uint_fast32_t noteI = (uint_fast32_t)(tone);
int_fast32_t bendI = 0;
int_fast32_t outHz = 0;
double bendDec = tone - (int)tone;
bendI = (int_fast32_t)((bendDec * 128.0) / 2.0) + 128;
bendI = bendI >> 1;
int_fast32_t oct = 0;
int_fast32_t freqIndex = (noteI << 5) + bendI;
#define MAX_FREQ_IDX 283 // 284 - with the DMX side bug
if(freqIndex < 0)
freqIndex = 0;
else if(freqIndex >= MAX_FREQ_IDX)
{
freqIndex -= MAX_FREQ_IDX;
oct = freqIndex / 384;
freqIndex = (freqIndex % 384) + MAX_FREQ_IDX;
}
#undef MAX_FREQ_IDX
outHz = s_dmx_freq_table[freqIndex];
while(oct > 1)
{
outHz *= 2;
oct -= 1;
}
return (double)outHz;
}
/***************************************************************
* Apogee Sound System frequency model *
***************************************************************/
static const int_fast32_t s_apogee_freq_table[31 + 1][12] =
{
{ 0x157, 0x16b, 0x181, 0x198, 0x1b0, 0x1ca, 0x1e5, 0x202, 0x220, 0x241, 0x263, 0x287 },
{ 0x157, 0x16b, 0x181, 0x198, 0x1b0, 0x1ca, 0x1e5, 0x202, 0x220, 0x242, 0x264, 0x288 },
{ 0x158, 0x16c, 0x182, 0x199, 0x1b1, 0x1cb, 0x1e6, 0x203, 0x221, 0x243, 0x265, 0x289 },
{ 0x158, 0x16c, 0x183, 0x19a, 0x1b2, 0x1cc, 0x1e7, 0x204, 0x222, 0x244, 0x266, 0x28a },
{ 0x159, 0x16d, 0x183, 0x19a, 0x1b3, 0x1cd, 0x1e8, 0x205, 0x223, 0x245, 0x267, 0x28b },
{ 0x15a, 0x16e, 0x184, 0x19b, 0x1b3, 0x1ce, 0x1e9, 0x206, 0x224, 0x246, 0x268, 0x28c },
{ 0x15a, 0x16e, 0x185, 0x19c, 0x1b4, 0x1ce, 0x1ea, 0x207, 0x225, 0x247, 0x269, 0x28e },
{ 0x15b, 0x16f, 0x185, 0x19d, 0x1b5, 0x1cf, 0x1eb, 0x208, 0x226, 0x248, 0x26a, 0x28f },
{ 0x15b, 0x170, 0x186, 0x19d, 0x1b6, 0x1d0, 0x1ec, 0x209, 0x227, 0x249, 0x26b, 0x290 },
{ 0x15c, 0x170, 0x187, 0x19e, 0x1b7, 0x1d1, 0x1ec, 0x20a, 0x228, 0x24a, 0x26d, 0x291 },
{ 0x15d, 0x171, 0x188, 0x19f, 0x1b7, 0x1d2, 0x1ed, 0x20b, 0x229, 0x24b, 0x26e, 0x292 },
{ 0x15d, 0x172, 0x188, 0x1a0, 0x1b8, 0x1d3, 0x1ee, 0x20c, 0x22a, 0x24c, 0x26f, 0x293 },
{ 0x15e, 0x172, 0x189, 0x1a0, 0x1b9, 0x1d4, 0x1ef, 0x20d, 0x22b, 0x24d, 0x270, 0x295 },
{ 0x15f, 0x173, 0x18a, 0x1a1, 0x1ba, 0x1d4, 0x1f0, 0x20e, 0x22c, 0x24e, 0x271, 0x296 },
{ 0x15f, 0x174, 0x18a, 0x1a2, 0x1bb, 0x1d5, 0x1f1, 0x20f, 0x22d, 0x24f, 0x272, 0x297 },
{ 0x160, 0x174, 0x18b, 0x1a3, 0x1bb, 0x1d6, 0x1f2, 0x210, 0x22e, 0x250, 0x273, 0x298 },
{ 0x161, 0x175, 0x18c, 0x1a3, 0x1bc, 0x1d7, 0x1f3, 0x211, 0x22f, 0x251, 0x274, 0x299 },
{ 0x161, 0x176, 0x18c, 0x1a4, 0x1bd, 0x1d8, 0x1f4, 0x212, 0x230, 0x252, 0x276, 0x29b },
{ 0x162, 0x176, 0x18d, 0x1a5, 0x1be, 0x1d9, 0x1f5, 0x212, 0x231, 0x254, 0x277, 0x29c },
{ 0x162, 0x177, 0x18e, 0x1a6, 0x1bf, 0x1d9, 0x1f5, 0x213, 0x232, 0x255, 0x278, 0x29d },
{ 0x163, 0x178, 0x18f, 0x1a6, 0x1bf, 0x1da, 0x1f6, 0x214, 0x233, 0x256, 0x279, 0x29e },
{ 0x164, 0x179, 0x18f, 0x1a7, 0x1c0, 0x1db, 0x1f7, 0x215, 0x235, 0x257, 0x27a, 0x29f },
{ 0x164, 0x179, 0x190, 0x1a8, 0x1c1, 0x1dc, 0x1f8, 0x216, 0x236, 0x258, 0x27b, 0x2a1 },
{ 0x165, 0x17a, 0x191, 0x1a9, 0x1c2, 0x1dd, 0x1f9, 0x217, 0x237, 0x259, 0x27c, 0x2a2 },
{ 0x166, 0x17b, 0x192, 0x1aa, 0x1c3, 0x1de, 0x1fa, 0x218, 0x238, 0x25a, 0x27e, 0x2a3 },
{ 0x166, 0x17b, 0x192, 0x1aa, 0x1c3, 0x1df, 0x1fb, 0x219, 0x239, 0x25b, 0x27f, 0x2a4 },
{ 0x167, 0x17c, 0x193, 0x1ab, 0x1c4, 0x1e0, 0x1fc, 0x21a, 0x23a, 0x25c, 0x280, 0x2a6 },
{ 0x168, 0x17d, 0x194, 0x1ac, 0x1c5, 0x1e0, 0x1fd, 0x21b, 0x23b, 0x25d, 0x281, 0x2a7 },
{ 0x168, 0x17d, 0x194, 0x1ad, 0x1c6, 0x1e1, 0x1fe, 0x21c, 0x23c, 0x25e, 0x282, 0x2a8 },
{ 0x169, 0x17e, 0x195, 0x1ad, 0x1c7, 0x1e2, 0x1ff, 0x21d, 0x23d, 0x260, 0x283, 0x2a9 },
{ 0x16a, 0x17f, 0x196, 0x1ae, 0x1c8, 0x1e3, 0x1ff, 0x21e, 0x23e, 0x261, 0x284, 0x2ab },
{ 0x16a, 0x17f, 0x197, 0x1af, 0x1c8, 0x1e4, 0x200, 0x21f, 0x23f, 0x262, 0x286, 0x2ac }
};
static inline double s_apogeeFreq(double tone)
{
uint_fast32_t noteI = (uint_fast32_t)(tone);
int_fast32_t bendI = 0;
int_fast32_t outHz = 0;
double bendDec = tone - (int)tone;
int_fast32_t octave;
int_fast32_t scaleNote;
bendI = (int_fast32_t)(bendDec * 32) + 32;
noteI += bendI / 32;
noteI -= 1;
scaleNote = noteI % 12;
octave = noteI / 12;
outHz = s_apogee_freq_table[bendI % 32][scaleNote];
while(octave > 1)
{
outHz *= 2;
octave -= 1;
}
return (double)outHz;
}
/***************************************************************
* Windows 9x FM drivers frequency model *
***************************************************************/
//static const double s_9x_opl_samplerate = 50000.0;
//static const double s_9x_opl_tune = 440.0;
static const uint_fast8_t s_9x_opl_pitchfrac = 8;
static const uint_fast32_t s_9x_opl_freq[12] =
{
0xAB7, 0xB5A, 0xC07, 0xCBE, 0xD80, 0xE4D, 0xF27, 0x100E, 0x1102, 0x1205, 0x1318, 0x143A
};
static const int32_t s_9x_opl_uppitch = 31;
static const int32_t s_9x_opl_downpitch = 27;
static uint_fast32_t s_9x_opl_applypitch(uint_fast32_t freq, int_fast32_t pitch)
{
int32_t diff;
if(pitch > 0)
{
diff = (pitch * s_9x_opl_uppitch) >> s_9x_opl_pitchfrac;
freq += (diff * freq) >> 15;
}
else if (pitch < 0)
{
diff = (-pitch * s_9x_opl_downpitch) >> s_9x_opl_pitchfrac;
freq -= (diff * freq) >> 15;
}
return freq;
}
static inline double s_9xFreq(double tone)
{
uint_fast32_t note = (uint_fast32_t)(tone);
int_fast32_t bend;
double bendDec = tone - (int)tone; // 0.0 ± 1.0 - one halftone
uint_fast32_t freq;
uint_fast32_t freqpitched;
uint_fast32_t octave;
uint_fast32_t bendMsb;
uint_fast32_t bendLsb;
bend = (int_fast32_t)(bendDec * 4096) + 8192; // convert to MIDI standard value
bendMsb = (bend >> 7) & 0x7F;
bendLsb = (bend & 0x7F);
bend = (bendMsb << 9) | (bendLsb << 2);
bend = (int16_t)(uint16_t)(bend + 0x8000);
octave = note / 12;
freq = s_9x_opl_freq[note % 12];
if(octave < 5)
freq >>= (5 - octave);
else if (octave > 5)
freq <<= (octave - 5);
freqpitched = s_9x_opl_applypitch(freq, bend);
freqpitched *= 2;
return (double)freqpitched;
}
/***************************************************************
* HMI Sound Operating System frequency model *
***************************************************************/
const size_t s_hmi_freqtable_size = 103;
static uint_fast32_t s_hmi_freqtable[s_hmi_freqtable_size] =
{
0x0157, 0x016B, 0x0181, 0x0198, 0x01B0, 0x01CA, 0x01E5, 0x0202, 0x0220, 0x0241, 0x0263, 0x0287,
0x0557, 0x056B, 0x0581, 0x0598, 0x05B0, 0x05CA, 0x05E5, 0x0602, 0x0620, 0x0641, 0x0663, 0x0687,
0x0957, 0x096B, 0x0981, 0x0998, 0x09B0, 0x09CA, 0x09E5, 0x0A02, 0x0A20, 0x0A41, 0x0A63, 0x0A87,
0x0D57, 0x0D6B, 0x0D81, 0x0D98, 0x0DB0, 0x0DCA, 0x0DE5, 0x0E02, 0x0E20, 0x0E41, 0x0E63, 0x0E87,
0x1157, 0x116B, 0x1181, 0x1198, 0x11B0, 0x11CA, 0x11E5, 0x1202, 0x1220, 0x1241, 0x1263, 0x1287,
0x1557, 0x156B, 0x1581, 0x1598, 0x15B0, 0x15CA, 0x15E5, 0x1602, 0x1620, 0x1641, 0x1663, 0x1687,
0x1957, 0x196B, 0x1981, 0x1998, 0x19B0, 0x19CA, 0x19E5, 0x1A02, 0x1A20, 0x1A41, 0x1A63, 0x1A87,
0x1D57, 0x1D6B, 0x1D81, 0x1D98, 0x1DB0, 0x1DCA, 0x1DE5, 0x1E02, 0x1E20, 0x1E41, 0x1E63, 0x1E87,
0x1EAE, 0x1EB7, 0x1F02, 0x1F30, 0x1F60, 0x1F94, 0x1FCA
};
const size_t s_hmi_bendtable_size = 12;
static uint_fast32_t s_hmi_bendtable[s_hmi_bendtable_size] =
{
0x144, 0x132, 0x121, 0x110, 0x101, 0xf8, 0xe5, 0xd8, 0xcc, 0xc1, 0xb6, 0xac
};
#define hmi_range_fix(formula, maxVal) \
( \
(formula) < 0 ? \
0 : \
( \
(formula) >= (int32_t)maxVal ? \
(int32_t)maxVal : \
(formula) \
)\
)
static uint_fast32_t s_hmi_bend_calc(uint_fast32_t bend, int_fast32_t note)
{
const int_fast32_t midi_bend_range = 1;
uint_fast32_t bendFactor, outFreq, fmOctave, fmFreq, newFreq, idx;
int_fast32_t noteMod12;
note -= 12;
// while(doNote >= 12) // ugly way to MOD 12
// doNote -= 12;
noteMod12 = (note % 12);
outFreq = s_hmi_freqtable[note];
fmOctave = outFreq & 0x1c00;
fmFreq = outFreq & 0x3ff;
if(bend < 64)
{
bendFactor = ((63 - bend) * 1000) >> 6;
idx = hmi_range_fix(note - midi_bend_range, s_hmi_freqtable_size);
newFreq = outFreq - s_hmi_freqtable[idx];
if(newFreq > 719)
{
newFreq = fmFreq - s_hmi_bendtable[midi_bend_range - 1];
newFreq &= 0x3ff;
}
newFreq = (newFreq * bendFactor) / 1000;
outFreq -= newFreq;
}
else
{
bendFactor = ((bend - 64) * 1000) >> 6;
idx = hmi_range_fix(note + midi_bend_range, s_hmi_freqtable_size);
newFreq = s_hmi_freqtable[idx] - outFreq;
if(newFreq > 719)
{
idx = hmi_range_fix(11 - noteMod12, s_hmi_bendtable_size);
fmFreq = s_hmi_bendtable[idx];
outFreq = (fmOctave + 1024) | fmFreq;
idx = hmi_range_fix(note + midi_bend_range, s_hmi_freqtable_size);
newFreq = s_hmi_freqtable[idx] - outFreq;
}
newFreq = (newFreq * bendFactor) / 1000;
outFreq += newFreq;
}
return outFreq;
}
#undef hmi_range_fix
static inline double s_hmiFreq(double tone)
{
int_fast32_t note = (int_fast32_t)(tone);
double bendDec = tone - (int)tone; // 0.0 ± 1.0 - one halftone
int_fast32_t bend;
uint_fast32_t inFreq;
uint_fast32_t freq;
int_fast32_t octave;
int_fast32_t octaveOffset = 0;
bend = (int_fast32_t)(bendDec * 64.0) + 64;
while(note < 12)
{
octaveOffset--;
note += 12;
}
while(note > 114)
{
octaveOffset++;
note -= 12;
}
if(bend == 64)
inFreq = s_hmi_freqtable[note - 12];
else
inFreq = s_hmi_bend_calc(bend, note);
freq = inFreq & 0x3FF;
octave = (inFreq >> 10) & 0x07;
octave += octaveOffset;
while(octave > 0)
{
freq *= 2;
octave -= 1;
}
return freq;
}
/***************************************************************
* Audio Interface Library frequency model *
***************************************************************/
static const uint_fast16_t s_ail_freqtable[] = {
0x02b2, 0x02b4, 0x02b7, 0x02b9, 0x02bc, 0x02be, 0x02c1, 0x02c3,
0x02c6, 0x02c9, 0x02cb, 0x02ce, 0x02d0, 0x02d3, 0x02d6, 0x02d8,
0x02db, 0x02dd, 0x02e0, 0x02e3, 0x02e5, 0x02e8, 0x02eb, 0x02ed,
0x02f0, 0x02f3, 0x02f6, 0x02f8, 0x02fb, 0x02fe, 0x0301, 0x0303,
0x0306, 0x0309, 0x030c, 0x030f, 0x0311, 0x0314, 0x0317, 0x031a,
0x031d, 0x0320, 0x0323, 0x0326, 0x0329, 0x032b, 0x032e, 0x0331,
0x0334, 0x0337, 0x033a, 0x033d, 0x0340, 0x0343, 0x0346, 0x0349,
0x034c, 0x034f, 0x0352, 0x0356, 0x0359, 0x035c, 0x035f, 0x0362,
0x0365, 0x0368, 0x036b, 0x036f, 0x0372, 0x0375, 0x0378, 0x037b,
0x037f, 0x0382, 0x0385, 0x0388, 0x038c, 0x038f, 0x0392, 0x0395,
0x0399, 0x039c, 0x039f, 0x03a3, 0x03a6, 0x03a9, 0x03ad, 0x03b0,
0x03b4, 0x03b7, 0x03bb, 0x03be, 0x03c1, 0x03c5, 0x03c8, 0x03cc,
0x03cf, 0x03d3, 0x03d7, 0x03da, 0x03de, 0x03e1, 0x03e5, 0x03e8,
0x03ec, 0x03f0, 0x03f3, 0x03f7, 0x03fb, 0x03fe, 0xfe01, 0xfe03,
0xfe05, 0xfe07, 0xfe08, 0xfe0a, 0xfe0c, 0xfe0e, 0xfe10, 0xfe12,
0xfe14, 0xfe16, 0xfe18, 0xfe1a, 0xfe1c, 0xfe1e, 0xfe20, 0xfe21,
0xfe23, 0xfe25, 0xfe27, 0xfe29, 0xfe2b, 0xfe2d, 0xfe2f, 0xfe31,
0xfe34, 0xfe36, 0xfe38, 0xfe3a, 0xfe3c, 0xfe3e, 0xfe40, 0xfe42,
0xfe44, 0xfe46, 0xfe48, 0xfe4a, 0xfe4c, 0xfe4f, 0xfe51, 0xfe53,
0xfe55, 0xfe57, 0xfe59, 0xfe5c, 0xfe5e, 0xfe60, 0xfe62, 0xfe64,
0xfe67, 0xfe69, 0xfe6b, 0xfe6d, 0xfe6f, 0xfe72, 0xfe74, 0xfe76,
0xfe79, 0xfe7b, 0xfe7d, 0xfe7f, 0xfe82, 0xfe84, 0xfe86, 0xfe89,
0xfe8b, 0xfe8d, 0xfe90, 0xfe92, 0xfe95, 0xfe97, 0xfe99, 0xfe9c,
0xfe9e, 0xfea1, 0xfea3, 0xfea5, 0xfea8, 0xfeaa, 0xfead, 0xfeaf
};
static const uint_fast8_t s_ail_note_octave[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07
};
static const uint_fast8_t s_ail_note_halftone[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b
};
static inline double s_ailFreq(double tone)
{
int_fast32_t note = (int_fast32_t)(tone);
double bendDec = tone - (int)tone; // 0.0 ± 1.0 - one halftone
int_fast32_t pitch;
uint_fast16_t freq;
int_fast32_t octave;
int_fast32_t octaveOffset = 0;
uint_fast8_t halftones;
pitch = (int_fast32_t)(bendDec * 4096) + 8192; // convert to MIDI standard value
pitch = ((pitch - 0x2000) / 0x20) * 2;
note -= 12;
while(note < 0)
{
octaveOffset--;
note += 12;
}
while(note > 95)
{
octaveOffset++;
note -= 12;
}
pitch += (((uint_fast8_t)note) << 8) + 8;
pitch /= 16;
while (pitch < 12 * 16) {
pitch += 12 * 16;
}
while (pitch > 96 * 16 - 1) {
pitch -= 12 * 16;
}
halftones = (s_ail_note_halftone[pitch >> 4] << 4) + (pitch & 0x0f);
freq = s_ail_freqtable[halftones];
octave = s_ail_note_octave[pitch >> 4];
if((freq & 0x8000) == 0)
{
if (octave > 0) {
octave--;
} else {
freq /= 2;
}
}
freq &= 0x3FF;
octave += octaveOffset;
while(octave > 0)
{
freq *= 2;
octave -= 1;
}
return freq;
}
enum
{
MasterVolumeDefault = 127
};
enum
{
OPL_PANNING_LEFT = 0x10,
OPL_PANNING_RIGHT = 0x20,
OPL_PANNING_BOTH = 0x30
};
static OplInstMeta makeEmptyInstrument()
{
OplInstMeta ins;
memset(&ins, 0, sizeof(OplInstMeta));
ins.flags = OplInstMeta::Flag_NoSound;
return ins;
}
const OplInstMeta OPL3::m_emptyInstrument = makeEmptyInstrument();
OPL3::OPL3() :
m_numChips(1),
m_numFourOps(0),
m_deepTremoloMode(false),
m_deepVibratoMode(false),
m_rhythmMode(false),
m_softPanning(false),
m_masterVolume(MasterVolumeDefault),
m_musicMode(MODE_MIDI),
m_volumeScale(VOLUME_Generic),
m_channelAlloc(ADLMIDI_ChanAlloc_AUTO)
{
m_insBankSetup.volumeModel = OPL3::VOLUME_Generic;
m_insBankSetup.deepTremolo = false;
m_insBankSetup.deepVibrato = false;
m_insBankSetup.scaleModulators = false;
m_insBankSetup.mt32defaults = false;
#ifdef DISABLE_EMBEDDED_BANKS
m_embeddedBank = CustomBankTag;
#else
setEmbeddedBank(0);
#endif
}
OPL3::~OPL3()
{
#ifdef ADLMIDI_HW_OPL
silenceAll();
writeRegI(0, 0x0BD, 0);
writeRegI(0, 0x104, 0);
writeRegI(0, 0x105, 0);
silenceAll();
#endif
}
bool OPL3::setupLocked()
{
return (m_musicMode == MODE_CMF ||
m_musicMode == MODE_IMF ||
m_musicMode == MODE_RSXX);
}
void OPL3::setEmbeddedBank(uint32_t bank)
{
#ifndef DISABLE_EMBEDDED_BANKS
m_embeddedBank = bank;
//Embedded banks are supports 128:128 GM set only
m_insBanks.clear();
if(bank >= static_cast<uint32_t>(g_embeddedBanksCount))
return;
const BanksDump::BankEntry &bankEntry = g_embeddedBanks[m_embeddedBank];
m_insBankSetup.deepTremolo = ((bankEntry.bankSetup >> 8) & 0x01) != 0;
m_insBankSetup.deepVibrato = ((bankEntry.bankSetup >> 8) & 0x02) != 0;
m_insBankSetup.mt32defaults = ((bankEntry.bankSetup >> 8) & 0x04) != 0;
m_insBankSetup.volumeModel = (bankEntry.bankSetup & 0xFF);
m_insBankSetup.scaleModulators = false;
for(int ss = 0; ss < 2; ss++)
{
bank_count_t maxBanks = ss ? bankEntry.banksPercussionCount : bankEntry.banksMelodicCount;
bank_count_t banksOffset = ss ? bankEntry.banksOffsetPercussive : bankEntry.banksOffsetMelodic;
for(bank_count_t bankID = 0; bankID < maxBanks; bankID++)
{
size_t bankIndex = g_embeddedBanksMidiIndex[banksOffset + bankID];
const BanksDump::MidiBank &bankData = g_embeddedBanksMidi[bankIndex];
size_t bankMidiIndex = static_cast<size_t>((bankData.msb * 256) + bankData.lsb) + (ss ? static_cast<size_t>(PercussionTag) : 0);
Bank &bankTarget = m_insBanks[bankMidiIndex];
for(size_t instId = 0; instId < 128; instId++)
{
midi_bank_idx_t instIndex = bankData.insts[instId];
if(instIndex < 0)
{
bankTarget.ins[instId].flags = OplInstMeta::Flag_NoSound;
continue;
}
BanksDump::InstrumentEntry instIn = g_embeddedBanksInstruments[instIndex];
OplInstMeta &instOut = bankTarget.ins[instId];
adlFromInstrument(instIn, instOut);
}
}
}
#else
ADL_UNUSED(bank);
#endif
}
void OPL3::writeReg(size_t chip, uint16_t address, uint8_t value)
{
#ifdef ADLMIDI_HW_OPL
ADL_UNUSED(chip);
unsigned o = address >> 8;
unsigned port = OPLBase + o * 2;
# ifdef __DJGPP__
outportb(port, address);
for(unsigned c = 0; c < 6; ++c) inportb(port);
outportb(port + 1, value);
for(unsigned c = 0; c < 35; ++c) inportb(port);
# endif
# ifdef __WATCOMC__
outp(port, address);
for(uint16_t c = 0; c < 6; ++c) inp(port);
outp(port + 1, value);
for(uint16_t c = 0; c < 35; ++c) inp(port);
# endif//__WATCOMC__
#else//ADLMIDI_HW_OPL
m_chips[chip]->writeReg(address, value);
#endif
}
void OPL3::writeRegI(size_t chip, uint32_t address, uint32_t value)
{
#ifdef ADLMIDI_HW_OPL
writeReg(chip, static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#else//ADLMIDI_HW_OPL
m_chips[chip]->writeReg(static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#endif
}
void OPL3::writePan(size_t chip, uint32_t address, uint32_t value)
{
#ifndef ADLMIDI_HW_OPL
m_chips[chip]->writePan(static_cast<uint16_t>(address), static_cast<uint8_t>(value));
#else
ADL_UNUSED(chip);
ADL_UNUSED(address);
ADL_UNUSED(value);
#endif
}
void OPL3::noteOff(size_t c)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
if(cc >= OPL3_CHANNELS_RHYTHM_BASE)
{
m_regBD[chip] &= ~(0x10 >> (cc - OPL3_CHANNELS_RHYTHM_BASE));
writeRegI(chip, 0xBD, m_regBD[chip]);
return;
}
writeRegI(chip, 0xB0 + g_channelsMap[cc], m_keyBlockFNumCache[c] & 0xDF);
}
void OPL3::noteOn(size_t c1, size_t c2, double tone)
{
size_t chip = c1 / NUM_OF_CHANNELS, cc1 = c1 % NUM_OF_CHANNELS, cc2 = c2 % NUM_OF_CHANNELS;
uint32_t octave = 0, ftone = 0, mul_offset = 0;
// Hertz range: 0..131071
double hertz;
// Use different frequency formulas in depend on a volume model
switch(m_volumeScale)
{
case VOLUME_DMX:
case VOLUME_DMX_FIXED:
hertz = s_dmxFreq(tone);
break;
case VOLUME_APOGEE:
case VOLUME_APOGEE_FIXED:
hertz = s_apogeeFreq(tone);
break;
case VOLUME_9X:
case VOLUME_9X_GENERIC_FM:
hertz = s_9xFreq(tone);
break;
case VOLUME_HMI:
case VOLUME_HMI_OLD:
hertz = s_hmiFreq(tone);
break;
case VOLUME_AIL:
hertz = s_ailFreq(tone);
break;
default:
hertz = s_commonFreq(tone);
}
if(hertz < 0)
return;
//Basic range until max of octaves reaching
while((hertz >= 1023.5) && (octave < 0x1C00))
{
hertz /= 2.0; // Calculate octave
octave += 0x400;
}
//Extended range, rely on frequency multiplication increment
while(hertz >= 1022.75)
{
hertz /= 2.0; // Calculate octave
mul_offset++;
}
ftone = octave + static_cast<uint32_t>(hertz /*+ 0.5*/);
uint32_t chn = g_channelsMap[cc1];
const OplTimbre &patch1 = m_insCache[c1];
const OplTimbre &patch2 = m_insCache[c2 < m_insCache.size() ? c2 : 0];
if(cc1 < OPL3_CHANNELS_RHYTHM_BASE)
{
ftone += 0x2000u; /* Key-ON [KON] */
const bool natural_4op = (m_channelCategory[c1] == ChanCat_4op_First);
const size_t opsCount = natural_4op ? 4 : 2;
const uint16_t op_addr[4] =
{
g_operatorsMap[cc1 * 2 + 0], g_operatorsMap[cc1 * 2 + 1],
g_operatorsMap[cc2 * 2 + 0], g_operatorsMap[cc2 * 2 + 1]
};
const uint32_t ops[4] =
{
patch1.modulator_E862 & 0xFF,
patch1.carrier_E862 & 0xFF,
patch2.modulator_E862 & 0xFF,
patch2.carrier_E862 & 0xFF
};
for(size_t op = 0; op < opsCount; op++)
{
if(op_addr[op] == 0xFFF)
continue;
if(mul_offset > 0)
{
uint32_t dt = ops[op] & 0xF0;
uint32_t mul = ops[op] & 0x0F;
if((mul + mul_offset) > 0x0F)
{
mul_offset = 0;
mul = 0x0F;
}
writeRegI(chip, 0x20 + op_addr[op], (dt | (mul + mul_offset)) & 0xFF);
}
else
{
writeRegI(chip, 0x20 + op_addr[op], ops[op] & 0xFF);
}
}
}
if(chn != 0xFFF)
{
writeRegI(chip , 0xA0 + chn, (ftone & 0xFF));
writeRegI(chip , 0xB0 + chn, (ftone >> 8));
m_keyBlockFNumCache[c1] = (ftone >> 8);
}
if(cc1 >= OPL3_CHANNELS_RHYTHM_BASE)
{
m_regBD[chip ] |= (0x10 >> (cc1 - OPL3_CHANNELS_RHYTHM_BASE));
writeRegI(chip , 0x0BD, m_regBD[chip ]);
//x |= 0x800; // for test
}
}
static inline uint_fast32_t brightnessToOPL(uint_fast32_t brightness)
{
double b = static_cast<double>(brightness);
double ret = ::round(127.0 * ::sqrt(b * (1.0 / 127.0))) / 2.0;
return static_cast<uint_fast32_t>(ret);
}
void OPL3::touchNote(size_t c,
uint_fast32_t velocity,
uint_fast32_t channelVolume,
uint_fast32_t channelExpression,
uint_fast32_t brightness,
bool isDrum)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
const OplTimbre &adli = m_insCache[c];
size_t cmf_offset = ((m_musicMode == MODE_CMF) && cc >= OPL3_CHANNELS_RHYTHM_BASE) ? 10 : 0;
uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset];
uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset];
uint8_t srcMod = adli.modulator_40,
srcCar = adli.carrier_40;
uint32_t mode = 1; // 2-op AM
uint_fast32_t kslMod = srcMod & 0xC0;
uint_fast32_t kslCar = srcCar & 0xC0;
uint_fast32_t tlMod = srcMod & 0x3F;
uint_fast32_t tlCar = srcCar & 0x3F;
uint_fast32_t modulator;
uint_fast32_t carrier;
uint_fast32_t volume = 0;
uint_fast32_t midiVolume = 0;
bool do_modulator = false;
bool do_carrier = true;
static const bool do_ops[10][2] =
{
{ false, true }, /* 2 op FM */
{ true, true }, /* 2 op AM */
{ false, false }, /* 4 op FM-FM ops 1&2 */
{ true, false }, /* 4 op AM-FM ops 1&2 */
{ false, true }, /* 4 op FM-AM ops 1&2 */
{ true, false }, /* 4 op AM-AM ops 1&2 */
{ false, true }, /* 4 op FM-FM ops 3&4 */
{ false, true }, /* 4 op AM-FM ops 3&4 */
{ false, true }, /* 4 op FM-AM ops 3&4 */
{ true, true } /* 4 op AM-AM ops 3&4 */
};
// ------ Mix volumes and compute average ------
switch(m_volumeScale)
{
default:
case VOLUME_Generic:
{
volume = velocity * m_masterVolume *
channelVolume * channelExpression;
/* If the channel has arpeggio, the effective volume of
* *this* instrument is actually lower due to timesharing.
* To compensate, add extra volume that corresponds to the
* time this note is *not* heard.
* Empirical tests however show that a full equal-proportion
* increment sounds wrong. Therefore, using the square root.
*/
//volume = (int)(volume * std::sqrt( (double) ch[c].users.size() ));
const double c1 = 11.541560327111707;
const double c2 = 1.601379199767093e+02;
const uint_fast32_t minVolume = 1108075; // 8725 * 127
// The formula below: SOLVE(V=127^4 * 2^( (A-63.49999) / 8), A)
if(volume > minVolume)
{
double lv = std::log(static_cast<double>(volume));
volume = static_cast<uint_fast32_t>(lv * c1 - c2);
}
else
volume = 0;
}
break;
case VOLUME_NATIVE:
{
volume = velocity * channelVolume * channelExpression;
// 4096766 = (127 * 127 * 127) / 2
volume = (volume * m_masterVolume) / 4096766;
}
break;
case VOLUME_DMX:
case VOLUME_DMX_FIXED:
{
volume = (channelVolume * channelExpression * m_masterVolume) / 16129;
volume = (s_dmx_volume_model[volume] + 1) << 1;
volume = (s_dmx_volume_model[(velocity < 128) ? velocity : 127] * volume) >> 9;
}
break;
case VOLUME_APOGEE:
case VOLUME_APOGEE_FIXED:
{
midiVolume = (channelVolume * channelExpression * m_masterVolume / 16129);
}
break;
case VOLUME_9X:
{
volume = (channelVolume * channelExpression * m_masterVolume) / 16129;
volume = s_w9x_sb16_volume_model[volume >> 2];
}
break;
case VOLUME_9X_GENERIC_FM:
{
volume = (channelVolume * channelExpression * m_masterVolume) / 16129;
volume = s_w9x_generic_fm_volume_model[volume >> 2];
}
break;
case VOLUME_AIL:
{
midiVolume = (channelVolume * channelExpression) * 2;
midiVolume >>= 8;
if(midiVolume != 0)
midiVolume++;
velocity = (velocity & 0x7F) >> 3;
velocity = s_ail_vel_graph[velocity];
midiVolume = (midiVolume * velocity) * 2;
midiVolume >>= 8;
if(midiVolume != 0)
midiVolume++;
if(m_masterVolume < 127)
midiVolume = (midiVolume * m_masterVolume) / 127;
}
break;
case VOLUME_HMI:
case VOLUME_HMI_OLD:
{
volume = (channelVolume * channelExpression * m_masterVolume) / 16129;
volume = (((volume * 128) / 127) * velocity) >> 7;
volume = s_hmi_volume_table[volume >> 1];
}
break;
}
if(volume > 63)
volume = 63;
if(midiVolume > 127)
midiVolume = 127;
if(m_channelCategory[c] == ChanCat_Regular ||
m_channelCategory[c] == ChanCat_Rhythm_Bass)
{
mode = adli.feedconn & 1; // 2-op FM or 2-op AM
}
else if(m_channelCategory[c] == ChanCat_4op_First ||
m_channelCategory[c] == ChanCat_4op_Second)
{
const OplTimbre *i0, *i1;
if(m_channelCategory[c] == ChanCat_4op_First)
{
i0 = &adli;
i1 = &m_insCache[c + 3];
mode = 2; // 4-op xx-xx ops 1&2
}
else
{
i0 = &m_insCache[c - 3];
i1 = &adli;
mode = 6; // 4-op xx-xx ops 3&4
}
mode += (i0->feedconn & 1) + (i1->feedconn & 1) * 2;
}
do_modulator = do_ops[mode][0] || m_scaleModulators;
do_carrier = do_ops[mode][1] || m_scaleModulators;
// ------ Compute the total level register output data ------
if(m_musicMode == MODE_RSXX)
{
tlCar -= volume / 2;
}
else if(m_volumeScale == Synth::VOLUME_APOGEE ||
m_volumeScale == Synth::VOLUME_APOGEE_FIXED)
{
// volume = ((64 * (velocity + 0x80)) * volume) >> 15;
if(do_carrier)
{
tlCar = 63 - tlCar;
tlCar *= velocity + 0x80;
tlCar = (midiVolume * tlCar) >> 15;
tlCar = tlCar ^ 63;
}
if(do_modulator)
{
uint_fast32_t mod = tlCar;
tlMod = 63 - tlMod;
tlMod *= velocity + 0x80;
if(m_volumeScale == Synth::VOLUME_APOGEE_FIXED || mode > 1)
mod = tlMod; // Fix the AM voices bug
// NOTE: Here is a bug of Apogee Sound System that makes modulator
// to not work properly on AM instruments. The fix of this bug, you
// need to replace the tlCar with tmMod in this formula.
// Don't do the bug on 4-op voices.
tlMod = (midiVolume * mod) >> 15;
tlMod ^= 63;
}
}
else if(m_volumeScale == Synth::VOLUME_DMX && mode <= 1)
{
tlCar = (63 - volume);
if(do_modulator)
{
if(tlMod < tlCar)
tlMod = tlCar;
}
}
else if(m_volumeScale == Synth::VOLUME_9X)
{
if(do_carrier)
tlCar += volume + s_w9x_sb16_volume_model[velocity >> 2];
if(do_modulator)
tlMod += volume + s_w9x_sb16_volume_model[velocity >> 2];
if(tlCar > 0x3F)
tlCar = 0x3F;
if(tlMod > 0x3F)
tlMod = 0x3F;
}
else if(m_volumeScale == Synth::VOLUME_9X_GENERIC_FM)
{
if(do_carrier)
tlCar += volume + s_w9x_generic_fm_volume_model[velocity >> 2];
if(do_modulator)
tlMod += volume + s_w9x_generic_fm_volume_model[velocity >> 2];
if(tlCar > 0x3F)
tlCar = 0x3F;
if(tlMod > 0x3F)
tlMod = 0x3F;
}
else if(m_volumeScale == Synth::VOLUME_AIL)
{
uint_fast32_t v0_val = (~srcMod) & 0x3f;
uint_fast32_t v1_val = (~srcCar) & 0x3f;
if(do_modulator)
v0_val = (v0_val * midiVolume) / 127;
if(do_carrier)
v1_val = (v1_val * midiVolume) / 127;
tlMod = (~v0_val) & 0x3F;
tlCar = (~v1_val) & 0x3F;
}
else if(m_volumeScale == Synth::VOLUME_HMI)
{
uint_fast32_t vol;
if(do_modulator)
{
vol = (64 - volume) << 1;
vol *= (64 - tlMod);
tlMod = (8192 - vol) >> 7;
}
if(do_carrier)
{
vol = (64 - volume) << 1;
vol *= (64 - tlCar);
tlCar = (8192 - vol) >> 7;
}
}
else if(m_volumeScale == Synth::VOLUME_HMI_OLD)
{
uint_fast32_t vol;
if(adli.feedconn == 0 && !isDrum)
{
vol = (channelVolume * channelExpression * 64) / 16129;
vol = (((vol * 128) / 127) * velocity) >> 7;
vol = s_hmi_volume_table[vol >> 1];
vol = (64 - vol) << 1;
vol *= (64 - tlCar);
tlMod = (8192 - vol) >> 7;
}
if(isDrum) // TODO: VERIFY A CORRECTNESS OF THIS!!!
vol = s_hmi_volume_table[velocity >> 1];
vol = (64 - volume) << 1;
vol *= (64 - tlCar);
tlCar = (8192 - vol) >> 7;
}
else
{
if(do_modulator)
tlMod = 63 - volume + (volume * tlMod) / 63;
if(do_carrier)
tlCar = 63 - volume + (volume * tlCar) / 63;
}
if(brightness != 127 && !isDrum)
{
brightness = brightnessToOPL(brightness);
if(!do_modulator)
tlMod = 63 - brightness + (brightness * tlMod) / 63;
if(!do_carrier)
tlCar = 63 - brightness + (brightness * tlCar) / 63;
}
modulator = (kslMod & 0xC0) | (tlMod & 63);
carrier = (kslCar & 0xC0) | (tlCar & 63);
if(o1 != 0xFFF)
writeRegI(chip, 0x40 + o1, modulator);
if(o2 != 0xFFF)
writeRegI(chip, 0x40 + o2, carrier);
// Correct formula (ST3, AdPlug):
// 63-((63-(instrvol))/63)*chanvol
// Reduces to (tested identical):
// 63 - chanvol + chanvol*instrvol/63
// Also (slower, floats):
// 63 + chanvol * (instrvol / 63.0 - 1)
}
void OPL3::setPatch(size_t c, const OplTimbre &instrument)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
static const uint8_t data[4] = {0x20, 0x60, 0x80, 0xE0};
m_insCache[c] = instrument;
size_t cmf_offset = ((m_musicMode == MODE_CMF) && (cc >= OPL3_CHANNELS_RHYTHM_BASE)) ? 10 : 0;
uint16_t o1 = g_operatorsMap[cc * 2 + 0 + cmf_offset];
uint16_t o2 = g_operatorsMap[cc * 2 + 1 + cmf_offset];
unsigned x = instrument.modulator_E862, y = instrument.carrier_E862;
for(size_t a = 0; a < 4; ++a, x >>= 8, y >>= 8)
{
if(o1 != 0xFFF)
writeRegI(chip, data[a] + o1, x & 0xFF);
if(o2 != 0xFFF)
writeRegI(chip, data[a] + o2, y & 0xFF);
}
}
void OPL3::setPan(size_t c, uint8_t value)
{
size_t chip = c / NUM_OF_CHANNELS, cc = c % NUM_OF_CHANNELS;
if(g_channelsMapPan[cc] != 0xFFF)
{
#ifndef ADLMIDI_HW_OPL
if (m_softPanning)
{
writePan(chip, g_channelsMapPan[cc], value);
writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | OPL_PANNING_BOTH);
}
else
{
#endif
int panning = 0;
if(value < 64 + 32) panning |= OPL_PANNING_LEFT;
if(value >= 64 - 32) panning |= OPL_PANNING_RIGHT;
writePan(chip, g_channelsMapPan[cc], 64);
writeRegI(chip, 0xC0 + g_channelsMapPan[cc], m_insCache[c].feedconn | panning);
#ifndef ADLMIDI_HW_OPL
}
#endif
}
}
void OPL3::silenceAll() // Silence all OPL channels.
{
for(size_t c = 0; c < m_numChannels; ++c)
{
noteOff(c);
touchNote(c, 0, 0, 0);
}
}
void OPL3::updateChannelCategories()
{
const uint32_t fours = m_numFourOps;
for(uint32_t chip = 0, fours_left = fours; chip < m_numChips; ++chip)
{
m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20);
writeRegI(chip, 0x0BD, m_regBD[chip]);
uint32_t fours_this_chip = std::min(fours_left, static_cast<uint32_t>(6u));
writeRegI(chip, 0x104, (1 << fours_this_chip) - 1);
fours_left -= fours_this_chip;
}
if(!m_rhythmMode)
{
for(size_t a = 0, n = m_numChips; a < n; ++a)
{
for(size_t b = 0; b < NUM_OF_CHANNELS; ++b)
{
m_channelCategory[a * NUM_OF_CHANNELS + b] =
(b >= OPL3_CHANNELS_RHYTHM_BASE) ? ChanCat_Rhythm_Secondary : ChanCat_Regular;
}
}
}
else
{
for(size_t a = 0, n = m_numChips; a < n; ++a)
{
for(size_t b = 0; b < NUM_OF_CHANNELS; ++b)
{
m_channelCategory[a * NUM_OF_CHANNELS + b] =
(b >= OPL3_CHANNELS_RHYTHM_BASE) ? static_cast<ChanCat>(ChanCat_Rhythm_Bass + (b - OPL3_CHANNELS_RHYTHM_BASE)) :
(b >= 6 && b < 9) ? ChanCat_Rhythm_Secondary : ChanCat_Regular;
}
}
}
uint32_t nextfour = 0;
for(uint32_t a = 0; a < fours; ++a)
{
m_channelCategory[nextfour] = ChanCat_4op_First;
m_channelCategory[nextfour + 3] = ChanCat_4op_Second;
switch(a % 6)
{
case 0:
case 1:
nextfour += 1;
break;
case 2:
nextfour += 9 - 2;
break;
case 3:
case 4:
nextfour += 1;
break;
case 5:
nextfour += NUM_OF_CHANNELS - 9 - 2;
break;
}
}
/**/
/*
In two-op mode, channels 0..8 go as follows:
Op1[port] Op2[port]
Channel 0: 00 00 03 03
Channel 1: 01 01 04 04
Channel 2: 02 02 05 05
Channel 3: 06 08 09 0B
Channel 4: 07 09 10 0C
Channel 5: 08 0A 11 0D
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
In four-op mode, channels 0..8 go as follows:
Op1[port] Op2[port] Op3[port] Op4[port]
Channel 0: 00 00 03 03 06 08 09 0B
Channel 1: 01 01 04 04 07 09 10 0C
Channel 2: 02 02 05 05 08 0A 11 0D
Channel 3: CHANNEL 0 SECONDARY
Channel 4: CHANNEL 1 SECONDARY
Channel 5: CHANNEL 2 SECONDARY
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
Same goes principally for channels 9-17 respectively.
*/
}
void OPL3::commitDeepFlags()
{
for(size_t chip = 0; chip < m_numChips; ++chip)
{
m_regBD[chip] = (m_deepTremoloMode * 0x80 + m_deepVibratoMode * 0x40 + m_rhythmMode * 0x20);
writeRegI(chip, 0x0BD, m_regBD[chip]);
}
}
void OPL3::setVolumeScaleModel(ADLMIDI_VolumeModels volumeModel)
{
switch(volumeModel)
{
default:
case ADLMIDI_VolumeModel_AUTO://Do nothing until restart playing
break;
case ADLMIDI_VolumeModel_Generic:
m_volumeScale = OPL3::VOLUME_Generic;
break;
case ADLMIDI_VolumeModel_NativeOPL3:
m_volumeScale = OPL3::VOLUME_NATIVE;
break;
case ADLMIDI_VolumeModel_DMX:
m_volumeScale = OPL3::VOLUME_DMX;
break;
case ADLMIDI_VolumeModel_APOGEE:
m_volumeScale = OPL3::VOLUME_APOGEE;
break;
case ADLMIDI_VolumeModel_9X:
m_volumeScale = OPL3::VOLUME_9X;
break;
case ADLMIDI_VolumeModel_DMX_Fixed:
m_volumeScale = OPL3::VOLUME_DMX_FIXED;
break;
case ADLMIDI_VolumeModel_APOGEE_Fixed:
m_volumeScale = OPL3::VOLUME_APOGEE_FIXED;
break;
case ADLMIDI_VolumeModel_AIL:
m_volumeScale = OPL3::VOLUME_AIL;
break;
case ADLMIDI_VolumeModel_9X_GENERIC_FM:
m_volumeScale = OPL3::VOLUME_9X_GENERIC_FM;
break;
case ADLMIDI_VolumeModel_HMI:
m_volumeScale = OPL3::VOLUME_HMI;
break;
case ADLMIDI_VolumeModel_HMI_OLD:
m_volumeScale = OPL3::VOLUME_HMI_OLD;
break;
}
}
ADLMIDI_VolumeModels OPL3::getVolumeScaleModel()
{
switch(m_volumeScale)
{
default:
case OPL3::VOLUME_Generic:
return ADLMIDI_VolumeModel_Generic;
case OPL3::VOLUME_NATIVE:
return ADLMIDI_VolumeModel_NativeOPL3;
case OPL3::VOLUME_DMX:
return ADLMIDI_VolumeModel_DMX;
case OPL3::VOLUME_APOGEE:
return ADLMIDI_VolumeModel_APOGEE;
case OPL3::VOLUME_9X:
return ADLMIDI_VolumeModel_9X;
case OPL3::VOLUME_DMX_FIXED:
return ADLMIDI_VolumeModel_DMX_Fixed;
case OPL3::VOLUME_APOGEE_FIXED:
return ADLMIDI_VolumeModel_APOGEE_Fixed;
case OPL3::VOLUME_AIL:
return ADLMIDI_VolumeModel_AIL;
case OPL3::VOLUME_9X_GENERIC_FM:
return ADLMIDI_VolumeModel_9X_GENERIC_FM;
case OPL3::VOLUME_HMI:
return ADLMIDI_VolumeModel_HMI;
case OPL3::VOLUME_HMI_OLD:
return ADLMIDI_VolumeModel_HMI_OLD;
}
}
#ifndef ADLMIDI_HW_OPL
void OPL3::clearChips()
{
for(size_t i = 0; i < m_chips.size(); i++)
m_chips[i].reset(NULL);
m_chips.clear();
}
#endif
void OPL3::reset(int emulator, unsigned long PCM_RATE, void *audioTickHandler)
{
#ifndef ADLMIDI_HW_OPL
clearChips();
#else
(void)emulator;
(void)PCM_RATE;
#endif
#if !defined(ADLMIDI_AUDIO_TICK_HANDLER)
(void)audioTickHandler;
#endif
m_insCache.clear();
m_keyBlockFNumCache.clear();
m_regBD.clear();
#ifndef ADLMIDI_HW_OPL
m_chips.resize(m_numChips, AdlMIDI_SPtr<OPLChipBase>());
#endif
const struct OplTimbre defaultInsCache = { 0x1557403,0x005B381, 0x49,0x80, 0x4, +0 };
m_numChannels = m_numChips * NUM_OF_CHANNELS;
m_insCache.resize(m_numChannels, defaultInsCache);
m_keyBlockFNumCache.resize(m_numChannels, 0);
m_regBD.resize(m_numChips, 0);
m_channelCategory.resize(m_numChannels, 0);
for(size_t p = 0, a = 0; a < m_numChips; ++a)
{
for(size_t b = 0; b < OPL3_CHANNELS_RHYTHM_BASE; ++b)
m_channelCategory[p++] = ChanCat_Regular;
for(size_t b = 0; b < NUM_OF_RM_CHANNELS; ++b)
m_channelCategory[p++] = ChanCat_Rhythm_Secondary;
}
static const uint16_t data[] =
{
0x004, 96, 0x004, 128, // Pulse timer
0x105, 0, 0x105, 1, 0x105, 0, // Pulse OPL3 enable
0x001, 32, 0x105, 1 // Enable wave, OPL3 extensions
};
// size_t fours = m_numFourOps;
for(size_t i = 0; i < m_numChips; ++i)
{
#ifndef ADLMIDI_HW_OPL
OPLChipBase *chip;
switch(emulator)
{
default:
assert(false);
abort();
#ifndef ADLMIDI_DISABLE_NUKED_EMULATOR
case ADLMIDI_EMU_NUKED: /* Latest Nuked OPL3 */
chip = new NukedOPL3;
break;
case ADLMIDI_EMU_NUKED_174: /* Old Nuked OPL3 1.4.7 modified and optimized */
chip = new NukedOPL3v174;
break;
#endif
#ifndef ADLMIDI_DISABLE_DOSBOX_EMULATOR
case ADLMIDI_EMU_DOSBOX:
chip = new DosBoxOPL3;
break;
#endif
#ifndef ADLMIDI_DISABLE_OPAL_EMULATOR
case ADLMIDI_EMU_OPAL:
chip = new OpalOPL3;
break;
#endif
#ifndef ADLMIDI_DISABLE_JAVA_EMULATOR
case ADLMIDI_EMU_JAVA:
chip = new JavaOPL3;
break;
#endif
}
m_chips[i].reset(chip);
chip->setChipId((uint32_t)i);
chip->setRate((uint32_t)PCM_RATE);
if(m_runAtPcmRate)
chip->setRunningAtPcmRate(true);
# if defined(ADLMIDI_AUDIO_TICK_HANDLER)
chip->setAudioTickHandlerInstance(audioTickHandler);
# endif
#endif // ADLMIDI_HW_OPL
/* Clean-up channels from any playing junk sounds */
for(size_t a = 0; a < OPL3_CHANNELS_RHYTHM_BASE; ++a)
writeRegI(i, 0xB0 + g_channelsMap[a], 0x00);
for(size_t a = 0; a < sizeof(data) / sizeof(*data); a += 2)
writeRegI(i, data[a], (data[a + 1]));
}
updateChannelCategories();
silenceAll();
}