mirror of
https://github.com/ZDoom/ZDRay.git
synced 2024-12-02 00:11:55 +00:00
934 lines
39 KiB
C++
934 lines
39 KiB
C++
//
|
|
// Copyright (C) 2013-2016 LunarG, Inc.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
#include "../Include/Common.h"
|
|
#include "reflection.h"
|
|
#include "LiveTraverser.h"
|
|
#include "localintermediate.h"
|
|
|
|
#include "gl_types.h"
|
|
|
|
//
|
|
// Grow the reflection database through a friend traverser class of TReflection and a
|
|
// collection of functions to do a liveness traversal that note what uniforms are used
|
|
// in semantically non-dead code.
|
|
//
|
|
// Can be used multiple times, once per stage, to grow a program reflection.
|
|
//
|
|
// High-level algorithm for one stage:
|
|
//
|
|
// 1. Put the entry point on the list of live functions.
|
|
//
|
|
// 2. Traverse any live function, while skipping if-tests with a compile-time constant
|
|
// condition of false, and while adding any encountered function calls to the live
|
|
// function list.
|
|
//
|
|
// Repeat until the live function list is empty.
|
|
//
|
|
// 3. Add any encountered uniform variables and blocks to the reflection database.
|
|
//
|
|
// Can be attempted with a failed link, but will return false if recursion had been detected, or
|
|
// there wasn't exactly one entry point.
|
|
//
|
|
|
|
namespace glslang {
|
|
|
|
//
|
|
// The traverser: mostly pass through, except
|
|
// - processing binary nodes to see if they are dereferences of an aggregates to track
|
|
// - processing symbol nodes to see if they are non-aggregate objects to track
|
|
//
|
|
// This ignores semantically dead code by using TLiveTraverser.
|
|
//
|
|
// This is in the glslang namespace directly so it can be a friend of TReflection.
|
|
//
|
|
|
|
class TReflectionTraverser : public TLiveTraverser {
|
|
public:
|
|
TReflectionTraverser(const TIntermediate& i, TReflection& r) :
|
|
TLiveTraverser(i), reflection(r) { }
|
|
|
|
virtual bool visitBinary(TVisit, TIntermBinary* node);
|
|
virtual void visitSymbol(TIntermSymbol* base);
|
|
|
|
// Add a simple reference to a uniform variable to the uniform database, no dereference involved.
|
|
// However, no dereference doesn't mean simple... it could be a complex aggregate.
|
|
void addUniform(const TIntermSymbol& base)
|
|
{
|
|
if (processedDerefs.find(&base) == processedDerefs.end()) {
|
|
processedDerefs.insert(&base);
|
|
|
|
// Use a degenerate (empty) set of dereferences to immediately put as at the end of
|
|
// the dereference change expected by blowUpActiveAggregate.
|
|
TList<TIntermBinary*> derefs;
|
|
blowUpActiveAggregate(base.getType(), base.getName(), derefs, derefs.end(), -1, -1, 0);
|
|
}
|
|
}
|
|
|
|
void addAttribute(const TIntermSymbol& base)
|
|
{
|
|
if (processedDerefs.find(&base) == processedDerefs.end()) {
|
|
processedDerefs.insert(&base);
|
|
|
|
const TString &name = base.getName();
|
|
const TType &type = base.getType();
|
|
|
|
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name.c_str());
|
|
if (it == reflection.nameToIndex.end()) {
|
|
reflection.nameToIndex[name.c_str()] = (int)reflection.indexToAttribute.size();
|
|
reflection.indexToAttribute.push_back(TObjectReflection(name.c_str(), type, 0, mapToGlType(type), 0, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// shared calculation by getOffset and getOffsets
|
|
void updateOffset(const TType& parentType, const TType& memberType, int& offset, int& memberSize)
|
|
{
|
|
int dummyStride;
|
|
|
|
// modify just the children's view of matrix layout, if there is one for this member
|
|
TLayoutMatrix subMatrixLayout = memberType.getQualifier().layoutMatrix;
|
|
int memberAlignment = intermediate.getMemberAlignment(memberType, memberSize, dummyStride,
|
|
parentType.getQualifier().layoutPacking,
|
|
subMatrixLayout != ElmNone
|
|
? subMatrixLayout == ElmRowMajor
|
|
: parentType.getQualifier().layoutMatrix == ElmRowMajor);
|
|
RoundToPow2(offset, memberAlignment);
|
|
}
|
|
|
|
// Lookup or calculate the offset of a block member, using the recursively
|
|
// defined block offset rules.
|
|
int getOffset(const TType& type, int index)
|
|
{
|
|
const TTypeList& memberList = *type.getStruct();
|
|
|
|
// Don't calculate offset if one is present, it could be user supplied
|
|
// and different than what would be calculated. That is, this is faster,
|
|
// but not just an optimization.
|
|
if (memberList[index].type->getQualifier().hasOffset())
|
|
return memberList[index].type->getQualifier().layoutOffset;
|
|
|
|
int memberSize = 0;
|
|
int offset = 0;
|
|
for (int m = 0; m <= index; ++m) {
|
|
updateOffset(type, *memberList[m].type, offset, memberSize);
|
|
|
|
if (m < index)
|
|
offset += memberSize;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
// Lookup or calculate the offset of all block members at once, using the recursively
|
|
// defined block offset rules.
|
|
void getOffsets(const TType& type, TVector<int>& offsets)
|
|
{
|
|
const TTypeList& memberList = *type.getStruct();
|
|
|
|
int memberSize = 0;
|
|
int offset = 0;
|
|
for (size_t m = 0; m < offsets.size(); ++m) {
|
|
// if the user supplied an offset, snap to it now
|
|
if (memberList[m].type->getQualifier().hasOffset())
|
|
offset = memberList[m].type->getQualifier().layoutOffset;
|
|
|
|
// calculate the offset of the next member and align the current offset to this member
|
|
updateOffset(type, *memberList[m].type, offset, memberSize);
|
|
|
|
// save the offset of this member
|
|
offsets[m] = offset;
|
|
|
|
// update for the next member
|
|
offset += memberSize;
|
|
}
|
|
}
|
|
|
|
// Calculate the stride of an array type
|
|
int getArrayStride(const TType& baseType, const TType& type)
|
|
{
|
|
int dummySize;
|
|
int stride;
|
|
|
|
// consider blocks to have 0 stride, so that all offsets are relative to the start of their block
|
|
if (type.getBasicType() == EbtBlock)
|
|
return 0;
|
|
|
|
TLayoutMatrix subMatrixLayout = type.getQualifier().layoutMatrix;
|
|
intermediate.getMemberAlignment(type, dummySize, stride,
|
|
baseType.getQualifier().layoutPacking,
|
|
subMatrixLayout != ElmNone
|
|
? subMatrixLayout == ElmRowMajor
|
|
: baseType.getQualifier().layoutMatrix == ElmRowMajor);
|
|
|
|
return stride;
|
|
}
|
|
|
|
// Calculate the block data size.
|
|
// Block arrayness is not taken into account, each element is backed by a separate buffer.
|
|
int getBlockSize(const TType& blockType)
|
|
{
|
|
const TTypeList& memberList = *blockType.getStruct();
|
|
int lastIndex = (int)memberList.size() - 1;
|
|
int lastOffset = getOffset(blockType, lastIndex);
|
|
|
|
int lastMemberSize;
|
|
int dummyStride;
|
|
intermediate.getMemberAlignment(*memberList[lastIndex].type, lastMemberSize, dummyStride,
|
|
blockType.getQualifier().layoutPacking,
|
|
blockType.getQualifier().layoutMatrix == ElmRowMajor);
|
|
|
|
return lastOffset + lastMemberSize;
|
|
}
|
|
|
|
// Traverse the provided deref chain, including the base, and
|
|
// - build a full reflection-granularity name, array size, etc. entry out of it, if it goes down to that granularity
|
|
// - recursively expand any variable array index in the middle of that traversal
|
|
// - recursively expand what's left at the end if the deref chain did not reach down to reflection granularity
|
|
//
|
|
// arraySize tracks, just for the final dereference in the chain, if there was a specific known size.
|
|
// A value of 0 for arraySize will mean to use the full array's size.
|
|
void blowUpActiveAggregate(const TType& baseType, const TString& baseName, const TList<TIntermBinary*>& derefs,
|
|
TList<TIntermBinary*>::const_iterator deref, int offset, int blockIndex, int arraySize)
|
|
{
|
|
// process the part of the dereference chain that was explicit in the shader
|
|
TString name = baseName;
|
|
const TType* terminalType = &baseType;
|
|
for (; deref != derefs.end(); ++deref) {
|
|
TIntermBinary* visitNode = *deref;
|
|
terminalType = &visitNode->getType();
|
|
int index;
|
|
switch (visitNode->getOp()) {
|
|
case EOpIndexIndirect: {
|
|
int stride = getArrayStride(baseType, visitNode->getLeft()->getType());
|
|
|
|
// Visit all the indices of this array, and for each one add on the remaining dereferencing
|
|
for (int i = 0; i < std::max(visitNode->getLeft()->getType().getOuterArraySize(), 1); ++i) {
|
|
TString newBaseName = name;
|
|
if (baseType.getBasicType() != EbtBlock)
|
|
newBaseName.append(TString("[") + String(i) + "]");
|
|
TList<TIntermBinary*>::const_iterator nextDeref = deref;
|
|
++nextDeref;
|
|
TType derefType(*terminalType, 0);
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, nextDeref, offset, blockIndex, arraySize);
|
|
|
|
if (offset >= 0)
|
|
offset += stride;
|
|
}
|
|
|
|
// it was all completed in the recursive calls above
|
|
return;
|
|
}
|
|
case EOpIndexDirect:
|
|
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
|
|
if (baseType.getBasicType() != EbtBlock) {
|
|
name.append(TString("[") + String(index) + "]");
|
|
|
|
if (offset >= 0)
|
|
offset += getArrayStride(baseType, visitNode->getLeft()->getType()) * index;
|
|
}
|
|
break;
|
|
case EOpIndexDirectStruct:
|
|
index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
|
|
if (offset >= 0)
|
|
offset += getOffset(visitNode->getLeft()->getType(), index);
|
|
if (name.size() > 0)
|
|
name.append(".");
|
|
name.append((*visitNode->getLeft()->getType().getStruct())[index].type->getFieldName());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// if the terminalType is still too coarse a granularity, this is still an aggregate to expand, expand it...
|
|
if (! isReflectionGranularity(*terminalType)) {
|
|
// the base offset of this node, that children are relative to
|
|
int baseOffset = offset;
|
|
|
|
if (terminalType->isArray()) {
|
|
// Visit all the indices of this array, and for each one,
|
|
// fully explode the remaining aggregate to dereference
|
|
|
|
int stride = 0;
|
|
if (offset >= 0)
|
|
stride = getArrayStride(baseType, *terminalType);
|
|
|
|
for (int i = 0; i < std::max(terminalType->getOuterArraySize(), 1); ++i) {
|
|
TString newBaseName = name;
|
|
newBaseName.append(TString("[") + String(i) + "]");
|
|
TType derefType(*terminalType, 0);
|
|
if (offset >= 0)
|
|
offset = baseOffset + stride * i;
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
|
|
}
|
|
} else {
|
|
// Visit all members of this aggregate, and for each one,
|
|
// fully explode the remaining aggregate to dereference
|
|
const TTypeList& typeList = *terminalType->getStruct();
|
|
|
|
TVector<int> memberOffsets;
|
|
|
|
if (baseOffset >= 0) {
|
|
memberOffsets.resize(typeList.size());
|
|
getOffsets(*terminalType, memberOffsets);
|
|
}
|
|
|
|
for (int i = 0; i < (int)typeList.size(); ++i) {
|
|
TString newBaseName = name;
|
|
newBaseName.append(TString(".") + typeList[i].type->getFieldName());
|
|
TType derefType(*terminalType, i);
|
|
if (offset >= 0)
|
|
offset = baseOffset + memberOffsets[i];
|
|
blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
|
|
}
|
|
}
|
|
|
|
// it was all completed in the recursive calls above
|
|
return;
|
|
}
|
|
|
|
// Finally, add a full string to the reflection database, and update the array size if necessary.
|
|
// If the dereferenced entity to record is an array, compute the size and update the maximum size.
|
|
|
|
// there might not be a final array dereference, it could have been copied as an array object
|
|
if (arraySize == 0)
|
|
arraySize = mapToGlArraySize(*terminalType);
|
|
|
|
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name.c_str());
|
|
if (it == reflection.nameToIndex.end()) {
|
|
reflection.nameToIndex[name.c_str()] = (int)reflection.indexToUniform.size();
|
|
reflection.indexToUniform.push_back(TObjectReflection(name.c_str(), *terminalType, offset,
|
|
mapToGlType(*terminalType),
|
|
arraySize, blockIndex));
|
|
} else if (arraySize > 1) {
|
|
int& reflectedArraySize = reflection.indexToUniform[it->second].size;
|
|
reflectedArraySize = std::max(arraySize, reflectedArraySize);
|
|
}
|
|
}
|
|
|
|
// Add a uniform dereference where blocks/struct/arrays are involved in the access.
|
|
// Handles the situation where the left node is at the correct or too coarse a
|
|
// granularity for reflection. (That is, further dereferences up the tree will be
|
|
// skipped.) Earlier dereferences, down the tree, will be handled
|
|
// at the same time, and logged to prevent reprocessing as the tree is traversed.
|
|
//
|
|
// Note: Other things like the following must be caught elsewhere:
|
|
// - a simple non-array, non-struct variable (no dereference even conceivable)
|
|
// - an aggregrate consumed en masse, without a dereference
|
|
//
|
|
// So, this code is for cases like
|
|
// - a struct/block dereferencing a member (whether the member is array or not)
|
|
// - an array of struct
|
|
// - structs/arrays containing the above
|
|
//
|
|
void addDereferencedUniform(TIntermBinary* topNode)
|
|
{
|
|
// See if too fine-grained to process (wait to get further down the tree)
|
|
const TType& leftType = topNode->getLeft()->getType();
|
|
if ((leftType.isVector() || leftType.isMatrix()) && ! leftType.isArray())
|
|
return;
|
|
|
|
// We have an array or structure or block dereference, see if it's a uniform
|
|
// based dereference (if not, skip it).
|
|
TIntermSymbol* base = findBase(topNode);
|
|
if (! base || ! base->getQualifier().isUniformOrBuffer())
|
|
return;
|
|
|
|
// See if we've already processed this (e.g., in the middle of something
|
|
// we did earlier), and if so skip it
|
|
if (processedDerefs.find(topNode) != processedDerefs.end())
|
|
return;
|
|
|
|
// Process this uniform dereference
|
|
|
|
int offset = -1;
|
|
int blockIndex = -1;
|
|
bool anonymous = false;
|
|
|
|
// See if we need to record the block itself
|
|
bool block = base->getBasicType() == EbtBlock;
|
|
if (block) {
|
|
offset = 0;
|
|
anonymous = IsAnonymous(base->getName());
|
|
|
|
const TString& blockName = base->getType().getTypeName();
|
|
|
|
if (base->getType().isArray()) {
|
|
TType derefType(base->getType(), 0);
|
|
|
|
assert(! anonymous);
|
|
for (int e = 0; e < base->getType().getCumulativeArraySize(); ++e)
|
|
blockIndex = addBlockName(blockName + "[" + String(e) + "]", derefType,
|
|
getBlockSize(base->getType()));
|
|
} else
|
|
blockIndex = addBlockName(blockName, base->getType(), getBlockSize(base->getType()));
|
|
}
|
|
|
|
// Process the dereference chain, backward, accumulating the pieces for later forward traversal.
|
|
// If the topNode is a reflection-granularity-array dereference, don't include that last dereference.
|
|
TList<TIntermBinary*> derefs;
|
|
for (TIntermBinary* visitNode = topNode; visitNode; visitNode = visitNode->getLeft()->getAsBinaryNode()) {
|
|
if (isReflectionGranularity(visitNode->getLeft()->getType()))
|
|
continue;
|
|
|
|
derefs.push_front(visitNode);
|
|
processedDerefs.insert(visitNode);
|
|
}
|
|
processedDerefs.insert(base);
|
|
|
|
// See if we have a specific array size to stick to while enumerating the explosion of the aggregate
|
|
int arraySize = 0;
|
|
if (isReflectionGranularity(topNode->getLeft()->getType()) && topNode->getLeft()->isArray()) {
|
|
if (topNode->getOp() == EOpIndexDirect)
|
|
arraySize = topNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst() + 1;
|
|
}
|
|
|
|
// Put the dereference chain together, forward
|
|
TString baseName;
|
|
if (! anonymous) {
|
|
if (block)
|
|
baseName = base->getType().getTypeName();
|
|
else
|
|
baseName = base->getName();
|
|
}
|
|
blowUpActiveAggregate(base->getType(), baseName, derefs, derefs.begin(), offset, blockIndex, arraySize);
|
|
}
|
|
|
|
int addBlockName(const TString& name, const TType& type, int size)
|
|
{
|
|
int blockIndex;
|
|
TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name.c_str());
|
|
if (reflection.nameToIndex.find(name.c_str()) == reflection.nameToIndex.end()) {
|
|
blockIndex = (int)reflection.indexToUniformBlock.size();
|
|
reflection.nameToIndex[name.c_str()] = blockIndex;
|
|
reflection.indexToUniformBlock.push_back(TObjectReflection(name.c_str(), type, -1, -1, size, -1));
|
|
} else
|
|
blockIndex = it->second;
|
|
|
|
return blockIndex;
|
|
}
|
|
|
|
// Are we at a level in a dereference chain at which individual active uniform queries are made?
|
|
bool isReflectionGranularity(const TType& type)
|
|
{
|
|
return type.getBasicType() != EbtBlock && type.getBasicType() != EbtStruct;
|
|
}
|
|
|
|
// For a binary operation indexing into an aggregate, chase down the base of the aggregate.
|
|
// Return 0 if the topology does not fit this situation.
|
|
TIntermSymbol* findBase(const TIntermBinary* node)
|
|
{
|
|
TIntermSymbol *base = node->getLeft()->getAsSymbolNode();
|
|
if (base)
|
|
return base;
|
|
TIntermBinary* left = node->getLeft()->getAsBinaryNode();
|
|
if (! left)
|
|
return nullptr;
|
|
|
|
return findBase(left);
|
|
}
|
|
|
|
//
|
|
// Translate a glslang sampler type into the GL API #define number.
|
|
//
|
|
int mapSamplerToGlType(TSampler sampler)
|
|
{
|
|
if (! sampler.image) {
|
|
// a sampler...
|
|
switch (sampler.type) {
|
|
case EbtFloat:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY : GL_SAMPLER_1D;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY_SHADOW : GL_SAMPLER_1D_SHADOW;
|
|
}
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY : GL_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY_SHADOW : GL_SAMPLER_2D_SHADOW;
|
|
}
|
|
case true: return sampler.arrayed ? GL_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_SAMPLER_3D;
|
|
case EsdCube:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY : GL_SAMPLER_CUBE;
|
|
case true: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW : GL_SAMPLER_CUBE_SHADOW;
|
|
}
|
|
case EsdRect:
|
|
return sampler.shadow ? GL_SAMPLER_2D_RECT_SHADOW : GL_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_SAMPLER_BUFFER;
|
|
}
|
|
#ifdef AMD_EXTENSIONS
|
|
case EbtFloat16:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_1D_ARRAY_AMD : GL_FLOAT16_SAMPLER_1D_AMD;
|
|
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_1D_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_1D_SHADOW_AMD;
|
|
}
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_ARRAY_AMD : GL_FLOAT16_SAMPLER_2D_AMD;
|
|
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_2D_SHADOW_AMD;
|
|
}
|
|
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_2D_MULTISAMPLE_ARRAY_AMD : GL_FLOAT16_SAMPLER_2D_MULTISAMPLE_AMD;
|
|
}
|
|
case Esd3D:
|
|
return GL_FLOAT16_SAMPLER_3D_AMD;
|
|
case EsdCube:
|
|
switch ((int)sampler.shadow) {
|
|
case false: return sampler.arrayed ? GL_FLOAT16_SAMPLER_CUBE_MAP_ARRAY_AMD : GL_FLOAT16_SAMPLER_CUBE_AMD;
|
|
case true: return sampler.arrayed ? GL_FLOAT16_SAMPLER_CUBE_MAP_ARRAY_SHADOW_AMD : GL_FLOAT16_SAMPLER_CUBE_SHADOW_AMD;
|
|
}
|
|
case EsdRect:
|
|
return sampler.shadow ? GL_FLOAT16_SAMPLER_2D_RECT_SHADOW_AMD : GL_FLOAT16_SAMPLER_2D_RECT_AMD;
|
|
case EsdBuffer:
|
|
return GL_FLOAT16_SAMPLER_BUFFER_AMD;
|
|
}
|
|
#endif
|
|
case EbtInt:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_INT_SAMPLER_1D_ARRAY : GL_INT_SAMPLER_1D;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_INT_SAMPLER_2D_ARRAY : GL_INT_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY
|
|
: GL_INT_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_INT_SAMPLER_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_INT_SAMPLER_CUBE_MAP_ARRAY : GL_INT_SAMPLER_CUBE;
|
|
case EsdRect:
|
|
return GL_INT_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_INT_SAMPLER_BUFFER;
|
|
}
|
|
case EbtUint:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_1D_ARRAY : GL_UNSIGNED_INT_SAMPLER_1D;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D;
|
|
case true: return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY
|
|
: GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_UNSIGNED_INT_SAMPLER_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_SAMPLER_CUBE;
|
|
case EsdRect:
|
|
return GL_UNSIGNED_INT_SAMPLER_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_UNSIGNED_INT_SAMPLER_BUFFER;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
} else {
|
|
// an image...
|
|
switch (sampler.type) {
|
|
case EbtFloat:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_IMAGE_1D_ARRAY : GL_IMAGE_1D;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_IMAGE_2D_ARRAY : GL_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_IMAGE_2D_MULTISAMPLE_ARRAY : GL_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_IMAGE_CUBE_MAP_ARRAY : GL_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_IMAGE_BUFFER;
|
|
}
|
|
#ifdef AMD_EXTENSIONS
|
|
case EbtFloat16:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_FLOAT16_IMAGE_1D_ARRAY_AMD : GL_FLOAT16_IMAGE_1D_AMD;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_FLOAT16_IMAGE_2D_ARRAY_AMD : GL_FLOAT16_IMAGE_2D_AMD;
|
|
case true: return sampler.arrayed ? GL_FLOAT16_IMAGE_2D_MULTISAMPLE_ARRAY_AMD : GL_FLOAT16_IMAGE_2D_MULTISAMPLE_AMD;
|
|
}
|
|
case Esd3D:
|
|
return GL_FLOAT16_IMAGE_3D_AMD;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_FLOAT16_IMAGE_CUBE_MAP_ARRAY_AMD : GL_FLOAT16_IMAGE_CUBE_AMD;
|
|
case EsdRect:
|
|
return GL_FLOAT16_IMAGE_2D_RECT_AMD;
|
|
case EsdBuffer:
|
|
return GL_FLOAT16_IMAGE_BUFFER_AMD;
|
|
}
|
|
#endif
|
|
case EbtInt:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_INT_IMAGE_1D_ARRAY : GL_INT_IMAGE_1D;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_INT_IMAGE_2D_ARRAY : GL_INT_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_INT_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_INT_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_INT_IMAGE_CUBE_MAP_ARRAY : GL_INT_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_INT_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_INT_IMAGE_BUFFER;
|
|
}
|
|
case EbtUint:
|
|
switch ((int)sampler.dim) {
|
|
case Esd1D:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_1D_ARRAY : GL_UNSIGNED_INT_IMAGE_1D;
|
|
case Esd2D:
|
|
switch ((int)sampler.ms) {
|
|
case false: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_ARRAY : GL_UNSIGNED_INT_IMAGE_2D;
|
|
case true: return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY
|
|
: GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE;
|
|
}
|
|
case Esd3D:
|
|
return GL_UNSIGNED_INT_IMAGE_3D;
|
|
case EsdCube:
|
|
return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_IMAGE_CUBE;
|
|
case EsdRect:
|
|
return GL_UNSIGNED_INT_IMAGE_2D_RECT;
|
|
case EsdBuffer:
|
|
return GL_UNSIGNED_INT_IMAGE_BUFFER;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Translate a glslang type into the GL API #define number.
|
|
// Ignores arrayness.
|
|
//
|
|
int mapToGlType(const TType& type)
|
|
{
|
|
switch (type.getBasicType()) {
|
|
case EbtSampler:
|
|
return mapSamplerToGlType(type.getSampler());
|
|
case EbtStruct:
|
|
case EbtBlock:
|
|
case EbtVoid:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (type.isVector()) {
|
|
int offset = type.getVectorSize() - 2;
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat: return GL_FLOAT_VEC2 + offset;
|
|
case EbtDouble: return GL_DOUBLE_VEC2 + offset;
|
|
#ifdef AMD_EXTENSIONS
|
|
case EbtFloat16: return GL_FLOAT16_VEC2_NV + offset;
|
|
#endif
|
|
case EbtInt: return GL_INT_VEC2 + offset;
|
|
case EbtUint: return GL_UNSIGNED_INT_VEC2 + offset;
|
|
case EbtInt64: return GL_INT64_ARB + offset;
|
|
case EbtUint64: return GL_UNSIGNED_INT64_ARB + offset;
|
|
case EbtBool: return GL_BOOL_VEC2 + offset;
|
|
case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER + offset;
|
|
default: return 0;
|
|
}
|
|
}
|
|
if (type.isMatrix()) {
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat:
|
|
switch (type.getMatrixCols()) {
|
|
case 2:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT2;
|
|
case 3: return GL_FLOAT_MAT2x3;
|
|
case 4: return GL_FLOAT_MAT2x4;
|
|
default: return 0;
|
|
}
|
|
case 3:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT3x2;
|
|
case 3: return GL_FLOAT_MAT3;
|
|
case 4: return GL_FLOAT_MAT3x4;
|
|
default: return 0;
|
|
}
|
|
case 4:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT_MAT4x2;
|
|
case 3: return GL_FLOAT_MAT4x3;
|
|
case 4: return GL_FLOAT_MAT4;
|
|
default: return 0;
|
|
}
|
|
}
|
|
case EbtDouble:
|
|
switch (type.getMatrixCols()) {
|
|
case 2:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT2;
|
|
case 3: return GL_DOUBLE_MAT2x3;
|
|
case 4: return GL_DOUBLE_MAT2x4;
|
|
default: return 0;
|
|
}
|
|
case 3:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT3x2;
|
|
case 3: return GL_DOUBLE_MAT3;
|
|
case 4: return GL_DOUBLE_MAT3x4;
|
|
default: return 0;
|
|
}
|
|
case 4:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_DOUBLE_MAT4x2;
|
|
case 3: return GL_DOUBLE_MAT4x3;
|
|
case 4: return GL_DOUBLE_MAT4;
|
|
default: return 0;
|
|
}
|
|
}
|
|
#ifdef AMD_EXTENSIONS
|
|
case EbtFloat16:
|
|
switch (type.getMatrixCols()) {
|
|
case 2:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT16_MAT2_AMD;
|
|
case 3: return GL_FLOAT16_MAT2x3_AMD;
|
|
case 4: return GL_FLOAT16_MAT2x4_AMD;
|
|
default: return 0;
|
|
}
|
|
case 3:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT16_MAT3x2_AMD;
|
|
case 3: return GL_FLOAT16_MAT3_AMD;
|
|
case 4: return GL_FLOAT16_MAT3x4_AMD;
|
|
default: return 0;
|
|
}
|
|
case 4:
|
|
switch (type.getMatrixRows()) {
|
|
case 2: return GL_FLOAT16_MAT4x2_AMD;
|
|
case 3: return GL_FLOAT16_MAT4x3_AMD;
|
|
case 4: return GL_FLOAT16_MAT4_AMD;
|
|
default: return 0;
|
|
}
|
|
}
|
|
#endif
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
if (type.getVectorSize() == 1) {
|
|
switch (type.getBasicType()) {
|
|
case EbtFloat: return GL_FLOAT;
|
|
case EbtDouble: return GL_DOUBLE;
|
|
#ifdef AMD_EXTENSIONS
|
|
case EbtFloat16: return GL_FLOAT16_NV;
|
|
#endif
|
|
case EbtInt: return GL_INT;
|
|
case EbtUint: return GL_UNSIGNED_INT;
|
|
case EbtInt64: return GL_INT64_ARB;
|
|
case EbtUint64: return GL_UNSIGNED_INT64_ARB;
|
|
case EbtBool: return GL_BOOL;
|
|
case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mapToGlArraySize(const TType& type)
|
|
{
|
|
return type.isArray() ? type.getOuterArraySize() : 1;
|
|
}
|
|
|
|
TReflection& reflection;
|
|
std::set<const TIntermNode*> processedDerefs;
|
|
|
|
protected:
|
|
TReflectionTraverser(TReflectionTraverser&);
|
|
TReflectionTraverser& operator=(TReflectionTraverser&);
|
|
};
|
|
|
|
//
|
|
// Implement the traversal functions of interest.
|
|
//
|
|
|
|
// To catch dereferenced aggregates that must be reflected.
|
|
// This catches them at the highest level possible in the tree.
|
|
bool TReflectionTraverser::visitBinary(TVisit /* visit */, TIntermBinary* node)
|
|
{
|
|
switch (node->getOp()) {
|
|
case EOpIndexDirect:
|
|
case EOpIndexIndirect:
|
|
case EOpIndexDirectStruct:
|
|
addDereferencedUniform(node);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// still need to visit everything below, which could contain sub-expressions
|
|
// containing different uniforms
|
|
return true;
|
|
}
|
|
|
|
// To reflect non-dereferenced objects.
|
|
void TReflectionTraverser::visitSymbol(TIntermSymbol* base)
|
|
{
|
|
if (base->getQualifier().storage == EvqUniform)
|
|
addUniform(*base);
|
|
|
|
if (intermediate.getStage() == EShLangVertex && base->getQualifier().isPipeInput())
|
|
addAttribute(*base);
|
|
}
|
|
|
|
//
|
|
// Implement TReflection methods.
|
|
//
|
|
|
|
// Track any required attribute reflection, such as compute shader numthreads.
|
|
//
|
|
void TReflection::buildAttributeReflection(EShLanguage stage, const TIntermediate& intermediate)
|
|
{
|
|
if (stage == EShLangCompute) {
|
|
// Remember thread dimensions
|
|
for (int dim=0; dim<3; ++dim)
|
|
localSize[dim] = intermediate.getLocalSize(dim);
|
|
}
|
|
}
|
|
|
|
// build counter block index associations for buffers
|
|
void TReflection::buildCounterIndices(const TIntermediate& intermediate)
|
|
{
|
|
// search for ones that have counters
|
|
for (int i = 0; i < int(indexToUniformBlock.size()); ++i) {
|
|
const TString counterName(intermediate.addCounterBufferName(indexToUniformBlock[i].name).c_str());
|
|
const int index = getIndex(counterName);
|
|
|
|
if (index >= 0)
|
|
indexToUniformBlock[i].counterIndex = index;
|
|
}
|
|
}
|
|
|
|
// build Shader Stages mask for all uniforms
|
|
void TReflection::buildUniformStageMask(const TIntermediate& intermediate)
|
|
{
|
|
for (int i = 0; i < int(indexToUniform.size()); ++i) {
|
|
indexToUniform[i].stages = static_cast<EShLanguageMask>(indexToUniform[i].stages | 1 << intermediate.getStage());
|
|
}
|
|
}
|
|
|
|
// Merge live symbols from 'intermediate' into the existing reflection database.
|
|
//
|
|
// Returns false if the input is too malformed to do this.
|
|
bool TReflection::addStage(EShLanguage stage, const TIntermediate& intermediate)
|
|
{
|
|
if (intermediate.getTreeRoot() == nullptr ||
|
|
intermediate.getNumEntryPoints() != 1 ||
|
|
intermediate.isRecursive())
|
|
return false;
|
|
|
|
buildAttributeReflection(stage, intermediate);
|
|
|
|
TReflectionTraverser it(intermediate, *this);
|
|
|
|
// put the entry point on the list of functions to process
|
|
it.pushFunction(intermediate.getEntryPointMangledName().c_str());
|
|
|
|
// process all the functions
|
|
while (! it.functions.empty()) {
|
|
TIntermNode* function = it.functions.back();
|
|
it.functions.pop_back();
|
|
function->traverse(&it);
|
|
}
|
|
|
|
buildCounterIndices(intermediate);
|
|
buildUniformStageMask(intermediate);
|
|
|
|
return true;
|
|
}
|
|
|
|
void TReflection::dump()
|
|
{
|
|
printf("Uniform reflection:\n");
|
|
for (size_t i = 0; i < indexToUniform.size(); ++i)
|
|
indexToUniform[i].dump();
|
|
printf("\n");
|
|
|
|
printf("Uniform block reflection:\n");
|
|
for (size_t i = 0; i < indexToUniformBlock.size(); ++i)
|
|
indexToUniformBlock[i].dump();
|
|
printf("\n");
|
|
|
|
printf("Vertex attribute reflection:\n");
|
|
for (size_t i = 0; i < indexToAttribute.size(); ++i)
|
|
indexToAttribute[i].dump();
|
|
printf("\n");
|
|
|
|
if (getLocalSize(0) > 1) {
|
|
static const char* axis[] = { "X", "Y", "Z" };
|
|
|
|
for (int dim=0; dim<3; ++dim)
|
|
if (getLocalSize(dim) > 1)
|
|
printf("Local size %s: %d\n", axis[dim], getLocalSize(dim));
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
// printf("Live names\n");
|
|
// for (TNameToIndex::const_iterator it = nameToIndex.begin(); it != nameToIndex.end(); ++it)
|
|
// printf("%s: %d\n", it->first.c_str(), it->second);
|
|
// printf("\n");
|
|
}
|
|
|
|
} // end namespace glslang
|