zdoom-macos-deps/deps/highway/include/hwy/robust_statistics.h
2023-08-23 17:53:54 +03:00

148 lines
4.7 KiB
C++

// Copyright 2023 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef HIGHWAY_HWY_ROBUST_STATISTICS_H_
#define HIGHWAY_HWY_ROBUST_STATISTICS_H_
#include <algorithm> // std::sort, std::find_if
#include <limits>
#include <utility> // std::pair
#include <vector>
#include "hwy/base.h"
namespace hwy {
namespace robust_statistics {
// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
// than std::sort for input distributions with very few unique values.
template <class T>
void CountingSort(T* values, size_t num_values) {
// Unique values and their frequency (similar to flat_map).
using Unique = std::pair<T, int>;
std::vector<Unique> unique;
for (size_t i = 0; i < num_values; ++i) {
const T value = values[i];
const auto pos =
std::find_if(unique.begin(), unique.end(),
[value](const Unique u) { return u.first == value; });
if (pos == unique.end()) {
unique.push_back(std::make_pair(value, 1));
} else {
++pos->second;
}
}
// Sort in ascending order of value (pair.first).
std::sort(unique.begin(), unique.end());
// Write that many copies of each unique value to the array.
T* HWY_RESTRICT p = values;
for (const auto& value_count : unique) {
std::fill(p, p + value_count.second, value_count.first);
p += value_count.second;
}
HWY_ASSERT(p == values + num_values);
}
// @return i in [idx_begin, idx_begin + half_count) that minimizes
// sorted[i + half_count] - sorted[i].
template <typename T>
size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin,
const size_t half_count) {
T min_range = std::numeric_limits<T>::max();
size_t min_idx = 0;
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
HWY_ASSERT(sorted[idx] <= sorted[idx + half_count]);
const T range = sorted[idx + half_count] - sorted[idx];
if (range < min_range) {
min_range = range;
min_idx = idx;
}
}
return min_idx;
}
// Returns an estimate of the mode by calling MinRange on successively
// halved intervals. "sorted" must be in ascending order. This is the
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
// estimator of the mode", with complexity O(N log N). The mode is less
// affected by outliers in highly-skewed distributions than the median.
// The averaging operation below assumes "T" is an unsigned integer type.
template <typename T>
T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) {
size_t idx_begin = 0;
size_t half_count = num_values / 2;
while (half_count > 1) {
idx_begin = MinRange(sorted, idx_begin, half_count);
half_count >>= 1;
}
const T x = sorted[idx_begin + 0];
if (half_count == 0) {
return x;
}
HWY_ASSERT(half_count == 1);
const T average = (x + sorted[idx_begin + 1] + 1) / 2;
return average;
}
// Returns the mode. Side effect: sorts "values".
template <typename T>
T Mode(T* values, const size_t num_values) {
CountingSort(values, num_values);
return ModeOfSorted(values, num_values);
}
template <typename T, size_t N>
T Mode(T (&values)[N]) {
return Mode(&values[0], N);
}
// Returns the median value. Side effect: sorts "values".
template <typename T>
T Median(T* values, const size_t num_values) {
HWY_ASSERT(num_values != 0);
std::sort(values, values + num_values);
const size_t half = num_values / 2;
// Odd count: return middle
if (num_values % 2) {
return values[half];
}
// Even count: return average of middle two.
return (values[half] + values[half - 1] + 1) / 2;
}
// Returns a robust measure of variability.
template <typename T>
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
const T median) {
HWY_ASSERT(num_values != 0);
std::vector<T> abs_deviations;
abs_deviations.reserve(num_values);
for (size_t i = 0; i < num_values; ++i) {
const int64_t abs = std::abs(static_cast<int64_t>(values[i]) -
static_cast<int64_t>(median));
abs_deviations.push_back(static_cast<T>(abs));
}
return Median(abs_deviations.data(), num_values);
}
} // namespace robust_statistics
} // namespace hwy
#endif // HIGHWAY_HWY_ROBUST_STATISTICS_H_