zdbsp/nodebuild_utility.cpp

557 lines
14 KiB
C++

/*
Various utility functions.
Copyright (C) 2002-2006 Randy Heit
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <malloc.h>
#include <string.h>
#include <stdio.h>
#include "zdbsp.h"
#include "nodebuild.h"
#include "templates.h"
static const int PO_LINE_START = 1;
static const int PO_LINE_EXPLICIT = 5;
#if 0
#define D(x) x
#else
#define D(x) do{}while(0)
#endif
#if 0
#define P(x) x
#define Printf printf
#else
#define P(x) do{}while(0)
#endif
void FNodeBuilder::FindUsedVertices (WideVertex *oldverts, int max)
{
int *map = new int[max];
int i;
FPrivVert newvert;
memset (&map[0], -1, sizeof(int)*max);
for (i = 0; i < Level.NumLines(); ++i)
{
int v1 = Level.Lines[i].v1;
int v2 = Level.Lines[i].v2;
if (map[v1] == -1)
{
newvert.x = oldverts[v1].x;
newvert.y = oldverts[v1].y;
newvert.index = oldverts[v1].index;
map[v1] = VertexMap->SelectVertexExact (newvert);
}
if (map[v2] == -1)
{
newvert.x = oldverts[v2].x;
newvert.y = oldverts[v2].y;
newvert.index = oldverts[v2].index;
map[v2] = VertexMap->SelectVertexExact (newvert);
}
Level.Lines[i].v1 = map[v1];
Level.Lines[i].v2 = map[v2];
}
InitialVertices = Vertices.Size ();
Level.NumOrgVerts = (int)InitialVertices;
delete[] map;
}
// For every sidedef in the map, create a corresponding seg.
void FNodeBuilder::MakeSegsFromSides ()
{
int i, j;
for (i = 0; i < Level.NumLines(); ++i)
{
if (Level.Lines[i].sidenum[0] != NO_INDEX)
{
CreateSeg (i, 0);
}
else
{
printf ("Linedef %d does not have a front side.\n", i);
}
if (Level.Lines[i].sidenum[1] != NO_INDEX)
{
j = CreateSeg (i, 1);
if (Level.Lines[i].sidenum[0] != NO_INDEX)
{
Segs[j-1].partner = j;
Segs[j].partner = j-1;
}
}
}
}
int FNodeBuilder::CreateSeg (int linenum, int sidenum)
{
FPrivSeg seg;
DWORD backside;
int segnum;
seg.next = DWORD_MAX;
seg.loopnum = 0;
seg.offset = 0;
seg.partner = DWORD_MAX;
seg.hashnext = NULL;
seg.planefront = false;
seg.planenum = DWORD_MAX;
seg.storedseg = DWORD_MAX;
if (sidenum == 0)
{ // front
seg.v1 = Level.Lines[linenum].v1;
seg.v2 = Level.Lines[linenum].v2;
}
else
{ // back
seg.v2 = Level.Lines[linenum].v1;
seg.v1 = Level.Lines[linenum].v2;
}
seg.linedef = linenum;
seg.sidedef = Level.Lines[linenum].sidenum[sidenum];
backside = Level.Lines[linenum].sidenum[!sidenum];
seg.frontsector = Level.Sides[seg.sidedef].sector;
seg.backsector = backside != NO_INDEX ? Level.Sides[backside].sector : -1;
seg.nextforvert = Vertices[seg.v1].segs;
seg.nextforvert2 = Vertices[seg.v2].segs2;
seg.angle = PointToAngle (Vertices[seg.v2].x-Vertices[seg.v1].x,
Vertices[seg.v2].y-Vertices[seg.v1].y);
segnum = (int)Segs.Push (seg);
Vertices[seg.v1].segs = segnum;
Vertices[seg.v2].segs2 = segnum;
D(printf("Seg %4d: From line %d, side %s (%5d,%5d)-(%5d,%5d)\n", segnum, linenum, sidenum ? "back " : "front",
Vertices[seg.v1].x>>16, Vertices[seg.v1].y>>16, Vertices[seg.v2].x>>16, Vertices[seg.v2].y>>16));
return segnum;
}
// Group colinear segs together so that only one seg per line needs to be checked
// by SelectSplitter().
void FNodeBuilder::GroupSegPlanes ()
{
const int bucketbits = 12;
FPrivSeg *buckets[1<<bucketbits] = { 0 };
int i, planenum;
for (i = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
seg->next = i+1;
seg->hashnext = NULL;
}
Segs[Segs.Size()-1].next = DWORD_MAX;
for (i = planenum = 0; i < (int)Segs.Size(); ++i)
{
FPrivSeg *seg = &Segs[i];
fixed_t x1 = Vertices[seg->v1].x;
fixed_t y1 = Vertices[seg->v1].y;
fixed_t x2 = Vertices[seg->v2].x;
fixed_t y2 = Vertices[seg->v2].y;
angle_t ang = PointToAngle (x2 - x1, y2 - y1);
if (ang >= 1u<<31)
ang += 1u<<31;
FPrivSeg *check = buckets[ang >>= 31-bucketbits];
while (check != NULL)
{
fixed_t cx1 = Vertices[check->v1].x;
fixed_t cy1 = Vertices[check->v1].y;
fixed_t cdx = Vertices[check->v2].x - cx1;
fixed_t cdy = Vertices[check->v2].y - cy1;
if (PointOnSide (x1, y1, cx1, cy1, cdx, cdy) == 0 &&
PointOnSide (x2, y2, cx1, cy1, cdx, cdy) == 0)
{
break;
}
check = check->hashnext;
}
if (check != NULL)
{
seg->planenum = check->planenum;
const FSimpleLine *line = &Planes[seg->planenum];
if (line->dx != 0)
{
if ((line->dx > 0 && x2 > x1) || (line->dx < 0 && x2 < x1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
else
{
if ((line->dy > 0 && y2 > y1) || (line->dy < 0 && y2 < y1))
{
seg->planefront = true;
}
else
{
seg->planefront = false;
}
}
}
else
{
seg->hashnext = buckets[ang];
buckets[ang] = seg;
seg->planenum = planenum++;
seg->planefront = true;
FSimpleLine pline = { Vertices[seg->v1].x,
Vertices[seg->v1].y,
Vertices[seg->v2].x - Vertices[seg->v1].x,
Vertices[seg->v2].y - Vertices[seg->v1].y };
Planes.Push (pline);
}
}
D(printf ("%d planes from %d segs\n", planenum, Segs.Size()));
PlaneChecked.Reserve ((planenum + 7) / 8);
}
// Find "loops" of segs surrounding polyobject's origin. Note that a polyobject's origin
// is not solely defined by the polyobject's anchor, but also by the polyobject itself.
// For the split avoidance to work properly, you must have a convex, complete loop of
// segs surrounding the polyobject origin. All the maps in hexen.wad have complete loops of
// segs around their polyobjects, but they are not all convex: The doors at the start of MAP01
// and some of the pillars in MAP02 that surround the entrance to MAP06 are not convex.
// Heuristic() uses some special weighting to make these cases work properly.
void FNodeBuilder::FindPolyContainers (TArray<FPolyStart> &spots, TArray<FPolyStart> &anchors)
{
int loop = 1;
for (unsigned int i = 0; i < spots.Size(); ++i)
{
FPolyStart *spot = &spots[i];
fixed_t bbox[4];
if (GetPolyExtents (spot->polynum, bbox))
{
FPolyStart *anchor;
unsigned int j;
for (j = 0; j < anchors.Size(); ++j)
{
anchor = &anchors[j];
if (anchor->polynum == spot->polynum)
{
break;
}
}
if (j < anchors.Size())
{
vertex_t mid;
vertex_t center;
mid.x = bbox[BOXLEFT] + (bbox[BOXRIGHT]-bbox[BOXLEFT])/2;
mid.y = bbox[BOXBOTTOM] + (bbox[BOXTOP]-bbox[BOXBOTTOM])/2;
center.x = mid.x - anchor->x + spot->x;
center.y = mid.y - anchor->y + spot->y;
// Scan right for the seg closest to the polyobject's center after it
// gets moved to its start spot.
fixed_t closestdist = FIXED_MAX;
DWORD closestseg = 0;
P(Printf ("start %d,%d -- center %d, %d\n", spot->x>>16, spot->y>>16, center.x>>16, center.y>>16));
for (unsigned int j = 0; j < Segs.Size(); ++j)
{
FPrivSeg *seg = &Segs[j];
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
fixed_t dy = v2->y - v1->y;
if (dy == 0)
{ // Horizontal, so skip it
continue;
}
if ((v1->y < center.y && v2->y < center.y) || (v1->y > center.y && v2->y > center.y))
{ // Not crossed
continue;
}
fixed_t dx = v2->x - v1->x;
if (PointOnSide (center.x, center.y, v1->x, v1->y, dx, dy) <= 0)
{
fixed_t t = DivScale30 (center.y - v1->y, dy);
fixed_t sx = v1->x + MulScale30 (dx, t);
fixed_t dist = sx - spot->x;
if (dist < closestdist && dist >= 0)
{
closestdist = dist;
closestseg = (long)j;
}
}
}
if (closestseg >= 0)
{
loop = MarkLoop (closestseg, loop);
P(Printf ("Found polyobj in sector %d (loop %d)\n", Segs[closestseg].frontsector,
Segs[closestseg].loopnum));
}
}
}
}
}
int FNodeBuilder::MarkLoop (DWORD firstseg, int loopnum)
{
int seg;
int sec = Segs[firstseg].frontsector;
if (Segs[firstseg].loopnum != 0)
{ // already marked
return loopnum;
}
seg = firstseg;
do
{
FPrivSeg *s1 = &Segs[seg];
s1->loopnum = loopnum;
P(Printf ("Mark seg %d (%d,%d)-(%d,%d)\n", seg,
Vertices[s1->v1].x>>16, Vertices[s1->v1].y>>16,
Vertices[s1->v2].x>>16, Vertices[s1->v2].y>>16));
DWORD bestseg = DWORD_MAX;
DWORD tryseg = Vertices[s1->v2].segs;
angle_t bestang = ANGLE_MAX;
angle_t ang1 = s1->angle;
while (tryseg != DWORD_MAX)
{
FPrivSeg *s2 = &Segs[tryseg];
if (s2->frontsector == sec)
{
angle_t ang2 = s2->angle + ANGLE_180;
angle_t angdiff = ang2 - ang1;
if (angdiff < bestang && angdiff > 0)
{
bestang = angdiff;
bestseg = tryseg;
}
}
tryseg = s2->nextforvert;
}
seg = bestseg;
} while (seg != (int)DWORD_MAX && Segs[seg].loopnum == 0);
return loopnum + 1;
}
// Find the bounding box for a specific polyobject.
bool FNodeBuilder::GetPolyExtents (int polynum, fixed_t bbox[4])
{
unsigned int i;
bbox[BOXLEFT] = bbox[BOXBOTTOM] = FIXED_MAX;
bbox[BOXRIGHT] = bbox[BOXTOP] = FIXED_MIN;
// Try to find a polyobj marked with a start line
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_START &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
break;
}
}
if (i < Segs.Size())
{
vertex_t start;
unsigned int vert;
unsigned int count = Segs.Size(); // to prevent endless loops. Stop when this reaches the number of segs.
vert = Segs[i].v1;
start.x = Vertices[vert].x;
start.y = Vertices[vert].y;
do
{
AddSegToBBox (bbox, &Segs[i]);
vert = Segs[i].v2;
i = Vertices[vert].segs;
} while (--count && i != DWORD_MAX && (Vertices[vert].x != start.x || Vertices[vert].y != start.y));
return true;
}
// Try to find a polyobj marked with explicit lines
bool found = false;
for (i = 0; i < Segs.Size(); ++i)
{
if (Level.Lines[Segs[i].linedef].special == PO_LINE_EXPLICIT &&
Level.Lines[Segs[i].linedef].args[0] == polynum)
{
AddSegToBBox (bbox, &Segs[i]);
found = true;
}
}
return found;
}
void FNodeBuilder::AddSegToBBox (fixed_t bbox[4], const FPrivSeg *seg)
{
FPrivVert *v1 = &Vertices[seg->v1];
FPrivVert *v2 = &Vertices[seg->v2];
if (v1->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v1->x;
if (v1->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v1->x;
if (v1->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v1->y;
if (v1->y > bbox[BOXTOP]) bbox[BOXTOP] = v1->y;
if (v2->x < bbox[BOXLEFT]) bbox[BOXLEFT] = v2->x;
if (v2->x > bbox[BOXRIGHT]) bbox[BOXRIGHT] = v2->x;
if (v2->y < bbox[BOXBOTTOM]) bbox[BOXBOTTOM] = v2->y;
if (v2->y > bbox[BOXTOP]) bbox[BOXTOP] = v2->y;
}
FNodeBuilder::FVertexMap::FVertexMap (FNodeBuilder &builder,
fixed_t minx, fixed_t miny, fixed_t maxx, fixed_t maxy)
: MyBuilder(builder)
{
MinX = minx;
MinY = miny;
BlocksWide = int(((double(maxx) - minx + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
BlocksTall = int(((double(maxy) - miny + 1) + (BLOCK_SIZE - 1)) / BLOCK_SIZE);
MaxX = MinX + BlocksWide * BLOCK_SIZE - 1;
MaxY = MinY + BlocksTall * BLOCK_SIZE - 1;
VertexGrid = new TArray<int>[BlocksWide * BlocksTall];
}
FNodeBuilder::FVertexMap::~FVertexMap ()
{
delete[] VertexGrid;
}
int FNodeBuilder::FVertexMap::SelectVertexExact (FNodeBuilder::FPrivVert &vert)
{
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
FPrivVert *vertices = &MyBuilder.Vertices[0];
unsigned int i;
for (i = 0; i < block.Size(); ++i)
{
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
{
return block[i];
}
}
// Not present: add it!
return InsertVertex (vert);
}
int FNodeBuilder::FVertexMap::SelectVertexClose (FNodeBuilder::FPrivVert &vert)
{
TArray<int> &block = VertexGrid[GetBlock (vert.x, vert.y)];
FPrivVert *vertices = &MyBuilder.Vertices[0];
unsigned int i;
for (i = 0; i < block.Size(); ++i)
{
#if VERTEX_EPSILON <= 1
if (vertices[block[i]].x == vert.x && vertices[block[i]].y == vert.y)
#else
if (abs(vertices[block[i]].x - vert.x) < VERTEX_EPSILON &&
abs(vertices[block[i]].y - vert.y) < VERTEX_EPSILON)
#endif
{
return block[i];
}
}
// Not present: add it!
return InsertVertex (vert);
}
int FNodeBuilder::FVertexMap::InsertVertex (FNodeBuilder::FPrivVert &vert)
{
int vertnum;
vert.segs = DWORD_MAX;
vert.segs2 = DWORD_MAX;
vertnum = (int)MyBuilder.Vertices.Push (vert);
// If a vertex is near a block boundary, then it will be inserted on
// both sides of the boundary so that SelectVertexClose can find
// it by checking in only one block.
fixed_t minx = MAX (MinX, vert.x - VERTEX_EPSILON);
fixed_t maxx = MIN (MaxX, vert.x + VERTEX_EPSILON);
fixed_t miny = MAX (MinY, vert.y - VERTEX_EPSILON);
fixed_t maxy = MIN (MaxY, vert.y + VERTEX_EPSILON);
int blk[4] =
{
GetBlock (minx, miny),
GetBlock (maxx, miny),
GetBlock (minx, maxy),
GetBlock (maxx, maxy)
};
unsigned int blkcount[4] =
{
VertexGrid[blk[0]].Size(),
VertexGrid[blk[1]].Size(),
VertexGrid[blk[2]].Size(),
VertexGrid[blk[3]].Size()
};
for (int i = 0; i < 4; ++i)
{
if (VertexGrid[blk[i]].Size() == blkcount[i])
{
VertexGrid[blk[i]].Push (vertnum);
}
}
return vertnum;
}