mirror of
https://github.com/ZDoom/zdbsp.git
synced 2024-11-22 11:51:19 +00:00
c51e49f02f
- Fixed the OrgSectorMap generation in FLevel::RemoveExtraSectors(). - Added a version of ClassifyLine compiled with SSE (but not SSE2) optimization for people with Pentium 3/Athlon XPs to use. - Added ClassifyLine backpatching for the GCC Windows build. The first time a function calls ClassifyLine, it has to check which version to use and jump to the appropriate one. After that, it calls the desired one straight away. SVN r227 (trunk)
167 lines
3.5 KiB
C++
167 lines
3.5 KiB
C++
/*
|
|
Determine what side of a splitter a seg lies on. (SSE2 version)
|
|
Copyright (C) 2002-2006 Randy Heit
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
#ifndef DISABLE_SSE
|
|
|
|
#include "zdbsp.h"
|
|
#include "nodebuild.h"
|
|
|
|
#define FAR_ENOUGH 17179869184.f // 4<<32
|
|
|
|
// You may notice that this function is identical to ClassifyLine2.
|
|
// The reason it is SSE2 is because this file is explicitly compiled
|
|
// with SSE2 math enabled, but the other files are not.
|
|
|
|
int FNodeBuilder::ClassifyLineSSE2 (node_t &node, const FPrivSeg *seg, int &sidev1, int &sidev2)
|
|
{
|
|
const FPrivVert *v1 = &Vertices[seg->v1];
|
|
const FPrivVert *v2 = &Vertices[seg->v2];
|
|
|
|
double d_x1 = double(node.x);
|
|
double d_y1 = double(node.y);
|
|
double d_dx = double(node.dx);
|
|
double d_dy = double(node.dy);
|
|
double d_xv1 = double(v1->x);
|
|
double d_xv2 = double(v2->x);
|
|
double d_yv1 = double(v1->y);
|
|
double d_yv2 = double(v2->y);
|
|
|
|
double s_num1 = (d_y1 - d_yv1) * d_dx - (d_x1 - d_xv1) * d_dy;
|
|
double s_num2 = (d_y1 - d_yv2) * d_dx - (d_x1 - d_xv2) * d_dy;
|
|
|
|
int nears = 0;
|
|
|
|
if (s_num1 <= -FAR_ENOUGH)
|
|
{
|
|
if (s_num2 <= -FAR_ENOUGH)
|
|
{
|
|
sidev1 = sidev2 = 1;
|
|
return 1;
|
|
}
|
|
if (s_num2 >= FAR_ENOUGH)
|
|
{
|
|
sidev1 = 1;
|
|
sidev2 = -1;
|
|
return -1;
|
|
}
|
|
nears = 1;
|
|
}
|
|
else if (s_num1 >= FAR_ENOUGH)
|
|
{
|
|
if (s_num2 >= FAR_ENOUGH)
|
|
{
|
|
sidev1 = sidev2 = -1;
|
|
return 0;
|
|
}
|
|
if (s_num2 <= -FAR_ENOUGH)
|
|
{
|
|
sidev1 = -1;
|
|
sidev2 = 1;
|
|
return -1;
|
|
}
|
|
nears = 1;
|
|
}
|
|
else
|
|
{
|
|
nears = 2 | int(fabs(s_num2) < FAR_ENOUGH);
|
|
}
|
|
|
|
if (nears)
|
|
{
|
|
double l = 1.f / (d_dx*d_dx + d_dy*d_dy);
|
|
if (nears & 2)
|
|
{
|
|
double dist = s_num1 * s_num1 * l;
|
|
if (dist < SIDE_EPSILON*SIDE_EPSILON)
|
|
{
|
|
sidev1 = 0;
|
|
}
|
|
else
|
|
{
|
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
|
}
|
|
if (nears & 1)
|
|
{
|
|
double dist = s_num2 * s_num2 * l;
|
|
if (dist < SIDE_EPSILON*SIDE_EPSILON)
|
|
{
|
|
sidev2 = 0;
|
|
}
|
|
else
|
|
{
|
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sidev1 = s_num1 > 0.0 ? -1 : 1;
|
|
sidev2 = s_num2 > 0.0 ? -1 : 1;
|
|
}
|
|
|
|
if ((sidev1 | sidev2) == 0)
|
|
{ // seg is coplanar with the splitter, so use its orientation to determine
|
|
// which child it ends up in. If it faces the same direction as the splitter,
|
|
// it goes in front. Otherwise, it goes in back.
|
|
|
|
if (node.dx != 0)
|
|
{
|
|
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
else if (sidev1 <= 0 && sidev2 <= 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (sidev1 >= 0 && sidev2 >= 0)
|
|
{
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#endif
|