zdbsp/nodebuild.cpp
Randy Heit 24d4f0b45c Initial commit of zdbsp.
SVN r12 (trunk)
2006-02-24 05:17:19 +00:00

1108 lines
28 KiB
C++

/*
Most of the logic for the node builder.
Copyright (C) 2002,2003 Randy Heit
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <assert.h>
#include <malloc.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "zdbsp.h"
#include "nodebuild.h"
#include "templates.h"
// Points within this distance of a line will be considered on the line.
// Units are in fixed_ts.
const double SIDE_EPSILON = 6.5536;
// Vertices within this distance of each other vertically and horizontally
// will be considered as the same vertex.
const fixed_t VERTEX_EPSILON = 6;
#define Printf printf
#define STACK_ARGS
#if 0
#define D(x) x
#else
#define D(x) do{}while(0)
#endif
FNodeBuilder::FNodeBuilder (FLevel &level,
TArray<FPolyStart> &polyspots, TArray<FPolyStart> &anchors,
const char *name, bool makeGLnodes)
: Level (level), SegsStuffed (0), MapName (name)
{
GLNodes = makeGLnodes;
FindUsedVertices (Level.Vertices, Level.NumVertices);
MakeSegsFromSides ();
FindPolyContainers (polyspots, anchors);
GroupSegPlanes ();
BuildTree ();
}
void FNodeBuilder::BuildTree ()
{
fixed_t bbox[4];
fprintf (stderr, " BSP: 0.0%%\r");
HackSeg = DWORD_MAX;
CreateNode (0, bbox);
CreateSubsectorsForReal ();
fprintf (stderr, " BSP: 100.0%%\n");
}
DWORD FNodeBuilder::CreateNode (DWORD set, fixed_t bbox[4])
{
node_t node;
int skip, count, selstat;
DWORD splitseg;
count = CountSegs (set);
skip = count / MaxSegs;
if ((selstat = SelectSplitter (set, node, splitseg, skip, true)) > 0 ||
(skip > 0 && (selstat = SelectSplitter (set, node, splitseg, 1, true)) > 0) ||
(selstat < 0 && (SelectSplitter (set, node, splitseg, skip, false) > 0) ||
(skip > 0 && SelectSplitter (set, node, splitseg, 1, false))) ||
CheckSubsector (set, node, splitseg, count))
{
// Create a normal node
DWORD set1, set2;
SplitSegs (set, node, splitseg, set1, set2);
D(PrintSet (1, set1));
D(Printf ("(%d,%d) delta (%d,%d) from seg %d\n", node.x>>16, node.y>>16, node.dx>>16, node.dy>>16, splitseg));
D(PrintSet (2, set2));
node.intchildren[0] = CreateNode (set1, node.bbox[0]);
node.intchildren[1] = CreateNode (set2, node.bbox[1]);
bbox[BOXTOP] = MAX (node.bbox[0][BOXTOP], node.bbox[1][BOXTOP]);
bbox[BOXBOTTOM] = MIN (node.bbox[0][BOXBOTTOM], node.bbox[1][BOXBOTTOM]);
bbox[BOXLEFT] = MIN (node.bbox[0][BOXLEFT], node.bbox[1][BOXLEFT]);
bbox[BOXRIGHT] = MAX (node.bbox[0][BOXRIGHT], node.bbox[1][BOXRIGHT]);
return (int)Nodes.Push (node);
}
else
{
return NFX_SUBSECTOR | CreateSubsector (set, bbox);
}
}
DWORD FNodeBuilder::CreateSubsector (DWORD set, fixed_t bbox[4])
{
int ssnum, count;
bbox[BOXTOP] = bbox[BOXRIGHT] = INT_MIN;
bbox[BOXBOTTOM] = bbox[BOXLEFT] = INT_MAX;
D(Printf ("Subsector from set %d\n", set));
assert (set != DWORD_MAX);
#if defined(_DEBUG) || 1
// Check for segs with duplicate start/end vertices
DWORD s1, s2;
for (s1 = set; s1 != DWORD_MAX; s1 = Segs[s1].next)
{
for (s2 = Segs[s1].next; s2 != DWORD_MAX; s2 = Segs[s2].next)
{
if (Segs[s1].v1 == Segs[s2].v1)
printf ("Segs %d%c and %d%c have duplicate start vertex %d (%d, %d)\n",
s1, Segs[s1].linedef == -1 ? '*' : ' ',
s2, Segs[s2].linedef == -1 ? '*' : ' ',
Segs[s1].v1,
Vertices[Segs[s1].v1].x >> 16, Vertices[Segs[s1].v1].y >> 16);
if (Segs[s1].v2 == Segs[s2].v2)
printf ("Segs %d%c and %d%c have duplicate end vertex %d (%d, %d)\n",
s1, Segs[s1].linedef == -1 ? '*' : ' ',
s2, Segs[s2].linedef == -1 ? '*' : ' ',
Segs[s1].v2,
Vertices[Segs[s1].v2].x >> 16, Vertices[Segs[s1].v2].y >> 16);
}
}
#endif
// We cannot actually create the subsector now because the node building
// process might split a seg in this subsector (because all partner segs
// must use the same pair of vertices), adding a new seg that hasn't been
// created yet. After all the nodes are built, then we can create the
// actual subsectors using the CreateSubsectorsForReal function below.
ssnum = (int)SubsectorSets.Push (set);
count = 0;
while (set != DWORD_MAX)
{
AddSegToBBox (bbox, &Segs[set]);
set = Segs[set].next;
count++;
}
SegsStuffed += count;
if ((SegsStuffed & ~63) != ((SegsStuffed - count) & ~63))
{
int percent = (int)(SegsStuffed * 1000.0 / Segs.Size());
fprintf (stderr, " BSP: %3d.%d%%\r", percent/10, percent%10);
}
D(Printf ("bbox (%d,%d)-(%d,%d)\n", bbox[BOXLEFT]>>16, bbox[BOXBOTTOM]>>16, bbox[BOXRIGHT]>>16, bbox[BOXTOP]>>16));
return ssnum;
}
void FNodeBuilder::CreateSubsectorsForReal ()
{
size_t i;
for (i = 0; i < SubsectorSets.Size(); ++i)
{
subsector_t sub;
DWORD set = SubsectorSets[i];
sub.firstline = (DWORD)SegList.Size();
while (set != DWORD_MAX)
{
USegPtr ptr;
ptr.SegPtr = &Segs[set];
SegList.Push (ptr);
set = ptr.SegPtr->next;
}
sub.numlines = (DWORD)(SegList.Size() - sub.firstline);
// Sort segs by linedef for special effects
qsort (&SegList[sub.firstline], sub.numlines, sizeof(int), SortSegs);
// Convert seg pointers into indices
for (size_t i = sub.firstline; i < SegList.Size(); ++i)
{
SegList[i].SegNum = SegList[i].SegPtr - &Segs[0];
}
Subsectors.Push (sub);
}
}
int STACK_ARGS FNodeBuilder::SortSegs (const void *a, const void *b)
{
const FPrivSeg *x = ((const USegPtr *)a)->SegPtr;
const FPrivSeg *y = ((const USegPtr *)b)->SegPtr;
// Segs are grouped into three categories in this order:
//
// 1. Segs with different front and back sectors (or no back at all).
// 2. Segs with the same front and back sectors.
// 3. Minisegs.
//
// Within the first two sets, segs are also sorted by linedef.
//
// Note that when GL subsectors are written, the segs will be reordered
// so that they are in clockwise order, and extra minisegs will be added
// as needed to close the subsector. But the first seg used will still be
// the first seg chosen here.
int xtype, ytype;
if (x->linedef == -1)
{
xtype = 2;
}
else if (x->frontsector == x->backsector)
{
xtype = 1;
}
else
{
xtype = 0;
}
if (y->linedef == -1)
{
ytype = 2;
}
else if (y->frontsector == y->backsector)
{
ytype = 1;
}
else
{
ytype = 0;
}
if (xtype != ytype)
{
return xtype - ytype;
}
else if (xtype < 2)
{
return x->linedef - y->linedef;
}
else
{
return 0;
}
}
int FNodeBuilder::CountSegs (DWORD set) const
{
int count = 0;
while (set != DWORD_MAX)
{
count++;
set = Segs[set].next;
}
return count;
}
// Given a set of segs, checks to make sure they all belong to a single
// sector. If so, false is returned, and they become a subsector. If not,
// a splitter is synthesized, and true is returned to continue processing
// down this branch of the tree.
bool FNodeBuilder::CheckSubsector (DWORD set, node_t &node, DWORD &splitseg, int setsize)
{
int sec;
DWORD seg;
sec = -1;
seg = set;
do
{
D(Printf (" - seg %d(%d,%d)-(%d,%d) line %d front %d back %d\n", seg,
Vertices[Segs[seg].v1].x>>16, Vertices[Segs[seg].v1].y>>16,
Vertices[Segs[seg].v2].x>>16, Vertices[Segs[seg].v2].y>>16,
Segs[seg].linedef, Segs[seg].frontsector, Segs[seg].backsector));
if (Segs[seg].linedef != -1 &&
Segs[seg].frontsector != sec
// Segs with the same front and back sectors are allowed to reside
// in a subsector with segs from a different sector, because the
// only effect they can have on the display is to place masked
// mid textures in the scene. Since minisegs only mark subsector
// boundaries, their sector information is unimportant.
//
// Update: Lines with the same front and back sectors *can* affect
// the display if their subsector does not match their front sector.
/*&& Segs[seg].frontsector != Segs[seg].backsector*/)
{
if (sec == -1)
{
sec = Segs[seg].frontsector;
}
else
{
break;
}
}
seg = Segs[seg].next;
} while (seg != DWORD_MAX);
if (seg == DWORD_MAX)
{ // It's a valid subsector
return false;
}
D(Printf("Need to synthesize a splitter for set %d on seg %d\n", set, seg));
splitseg = DWORD_MAX;
// This is a very simple and cheap "fix" for subsectors with segs
// from multiple sectors, and it seems ZenNode does something
// similar. It is the only technique I could find that makes the
// "transparent water" in nb_bmtrk.wad work properly.
//
// The seg is marked to indicate that it should be forced to the
// back of the splitter. Because these segs already form a convex
// set, all the other segs will be in front of the splitter. Since
// the splitter is formed from this seg, the back of the splitter
// will have a one-dimensional subsector. SplitSegs() will add two
// new minisegs to close it: one seg replaces this one on the front
// of the splitter, and the other is its partner on the back.
//
// Old code that will actually create valid two-dimensional sectors
// is included below for reference but is not likely to be used again.
SetNodeFromSeg (node, &Segs[seg]);
HackSeg = seg;
if (!Segs[seg].planefront)
{
node.x += node.dx;
node.y += node.dy;
node.dx = -node.dx;
node.dy = -node.dy;
}
return Heuristic (node, set, false) != 0;
#if 0
// If there are only two segs in the set, and they form two sides
// of a triangle, the splitter should pass through their shared
// point and the (imaginary) third side of the triangle
if (setsize == 2)
{
FPrivVert *v1, *v2, *v3;
if (Vertices[Segs[set].v2] == Vertices[Segs[seg].v1])
{
v1 = &Vertices[Segs[set].v1];
v2 = &Vertices[Segs[seg].v2];
v3 = &Vertices[Segs[set].v2];
}
else if (Vertices[Segs[set].v1] == Vertices[Segs[seg].v2])
{
v1 = &Vertices[Segs[seg].v1];
v2 = &Vertices[Segs[set].v2];
v3 = &Vertices[Segs[seg].v2];
}
else
{
v1 = v2 = v3 = NULL;
}
if (v1 != NULL)
{
node.x = v3->x;
node.y = v3->y;
node.dx = v1->x + (v2->x-v1->x)/2 - node.x;
node.dy = v1->y + (v2->y-v1->y)/2 - node.y;
return Heuristic (node, set, false) != 0;
}
}
bool nosplit = true;
int firsthit = seg;
do
{
seg = firsthit;
do
{
if (Segs[seg].linedef != -1 &&
Segs[seg].frontsector != sec &&
Segs[seg].frontsector == Segs[seg].backsector)
{
node.x = Vertices[Segs[set].v1].x;
node.y = Vertices[Segs[set].v1].y;
node.dx = Vertices[Segs[seg].v2].x - node.x;
node.dy = Vertices[Segs[seg].v2].y - node.y;
if (Heuristic (node, set, nosplit) != 0)
{
return true;
}
node.dx = Vertices[Segs[seg].v1].x - node.x;
node.dy = Vertices[Segs[seg].v1].y - node.y;
if (Heuristic (node, set, nosplit) != 0)
{
return true;
}
}
seg = Segs[seg].next;
} while (seg != DWORD_MAX);
} while ((nosplit ^= 1) == 0);
// Give up.
return false;
#endif
}
// Splitters are chosen to coincide with segs in the given set. To reduce the
// number of segs that need to be considered as splitters, segs are grouped into
// according to the planes that they lie on. Because one seg on the plane is just
// as good as any other seg on the plane at defining a split, only one seg from
// each unique plane needs to be considered as a splitter. A result of 0 means
// this set is a convex region. A result of -1 means that there were possible
// splitters, but they all split segs we want to keep intact.
int FNodeBuilder::SelectSplitter (DWORD set, node_t &node, DWORD &splitseg, int step, bool nosplit)
{
int stepleft;
int bestvalue;
DWORD bestseg;
DWORD seg;
bool nosplitters = false;
bestvalue = 0;
bestseg = DWORD_MAX;
seg = set;
stepleft = 0;
memset (&PlaneChecked[0], 0, PlaneChecked.Size());
while (seg != DWORD_MAX)
{
FPrivSeg *pseg = &Segs[seg];
if (--stepleft <= 0)
{
int l = pseg->planenum >> 3;
int r = 1 << (pseg->planenum & 7);
if (l < 0 || (PlaneChecked[l] & r) == 0)
{
if (l >= 0)
{
PlaneChecked[l] |= r;
}
stepleft = step;
SetNodeFromSeg (node, pseg);
int value = Heuristic (node, set, nosplit);
D(Printf ("Seg %5d (%5d,%5d)-(%5d,%5d) scores %d\n", seg, node.x>>16, node.y>>16,
(node.x+node.dx)>>16, (node.y+node.dy)>>16, value));
if (value > bestvalue)
{
bestvalue = value;
bestseg = seg;
}
else if (value < 0)
{
nosplitters = true;
}
}
else
{
pseg = pseg;
}
}
seg = pseg->next;
}
if (bestseg == DWORD_MAX)
{ // No lines split any others into two sets, so this is a convex region.
D(Printf ("set %d, step %d, nosplit %d has no good splitter (%d)\n", set, step, nosplit, nosplitters));
return nosplitters ? -1 : 0;
}
D(Printf ("split seg %lu in set %d, score %d, step %d, nosplit %d\n", bestseg, set, bestvalue, step, nosplit));
splitseg = bestseg;
SetNodeFromSeg (node, &Segs[bestseg]);
return 1;
}
// Given a splitter (node), returns a score based on how "good" the resulting
// split in a set of segs is. Higher scores are better. -1 means this splitter
// splits something it shouldn't and will only be returned if honorNoSplit is
// true. A score of 0 means that the splitter does not split any of the segs
// in the set.
int FNodeBuilder::Heuristic (node_t &node, DWORD set, bool honorNoSplit)
{
int score = 0;
int segsInSet = 0;
int counts[2] = { 0, 0 };
int realSegs[2] = { 0, 0 };
int specialSegs[2] = { 0, 0 };
DWORD i = set;
int sidev1, sidev2;
int side;
bool splitter = false;
size_t max, m2, p, q;
Touched.Clear ();
Colinear.Clear ();
while (i != DWORD_MAX)
{
const FPrivSeg *test = &Segs[i];
if (HackSeg == i)
{
side = 1;
}
else
{
side = ClassifyLine (node, test, sidev1, sidev2);
}
switch (side)
{
case 0: // Seg is on only one side of the partition
case 1:
// If we don't split this line, but it abuts the splitter, also reject it.
// The "right" thing to do in this case is to only reject it if there is
// another nosplit seg from the same sector at this vertex. Note that a line
// that lies exactly on top of the splitter is okay.
if (test->loopnum && honorNoSplit && (sidev1 == 0 || sidev2 == 0))
{
if ((sidev1 | sidev2) != 0)
{
max = Touched.Size();
for (p = 0; p < max; ++p)
{
if (Touched[p] == test->loopnum)
{
break;
}
}
if (p == max)
{
Touched.Push (test->loopnum);
}
}
else
{
max = Colinear.Size();
for (p = 0; p < max; ++p)
{
if (Colinear[p] == test->loopnum)
{
break;
}
}
if (p == max)
{
Colinear.Push (test->loopnum);
}
}
}
counts[side]++;
if (test->linedef != -1)
{
realSegs[side]++;
if (test->frontsector == test->backsector)
{
specialSegs[side]++;
}
// Add some weight to the score for unsplit lines
score += SplitCost;
}
else
{
// Minisegs don't count quite as much for nosplitting
score += SplitCost / 4;
}
break;
default: // Seg is cut by the partition
// If we are not allowed to split this seg, reject this splitter
if (test->loopnum)
{
if (honorNoSplit)
{
D(Printf ("Splits seg %d\n", i));
return -1;
}
else
{
splitter = true;
}
}
counts[0]++;
counts[1]++;
if (test->linedef != -1)
{
realSegs[0]++;
realSegs[1]++;
if (test->frontsector == test->backsector)
{
specialSegs[0]++;
specialSegs[1]++;
}
}
break;
}
segsInSet++;
i = test->next;
}
// If this line is outside all the others, return a special score
if (counts[0] == 0 || counts[1] == 0)
{
return 0;
}
// A splitter must have at least one real seg on each side.
// Otherwise, a subsector could be left without any way to easily
// determine which sector it lies inside.
if (realSegs[0] == 0 || realSegs[1] == 0)
{
D(Printf ("Leaves a side with only mini segs\n"));
return -1;
}
// Try to avoid splits that leave only "special" segs, so that the generated
// subsectors have a better chance of choosing the correct sector. This situation
// is not neccesarily bad, just undesirable.
if (honorNoSplit && (specialSegs[0] == realSegs[0] || specialSegs[1] == realSegs[1]))
{
D(Printf ("Leaves a side with only special segs\n"));
return -1;
}
// If this splitter intersects any vertices of segs that should not be split,
// check if it is also colinear with another seg from the same sector. If it
// is, the splitter is okay. If not, it should be rejected. Why? Assuming that
// polyobject containers are convex (which they should be), a splitter that
// is colinear with one of the sector's segs and crosses the vertex of another
// seg of that sector must be crossing the container's corner and does not
// actually split the container.
max = Touched.Size ();
m2 = Colinear.Size ();
// If honorNoSplit is false, then both these lists will be empty.
// If the splitter touches some vertices without being colinear to any, we
// can skip further checks and reject this right away.
if (m2 == 0 && max > 0)
{
return -1;
}
for (p = 0; p < max; ++p)
{
int look = Touched[p];
for (q = 0; q < m2; ++q)
{
if (look == Colinear[q])
{
break;
}
}
if (q == m2)
{ // Not a good one
return -1;
}
}
// Doom maps are primarily axis-aligned lines, so it's usually a good
// idea to prefer axis-aligned splitters over diagonal ones. Doom originally
// had special-casing for orthogonal lines, so they performed better. ZDoom
// does not care about the line's direction, so this is merely a choice to
// try and improve the final tree.
if ((node.dx == 0) || (node.dy == 0))
{
// If we have to split a seg we would prefer to keep unsplit, give
// extra precedence to orthogonal lines so that the polyobjects
// outside the entrance to MAP06 in Hexen MAP02 display properly.
if (splitter)
{
score += segsInSet*8;
}
else
{
score += segsInSet/AAPreference;
}
}
score += (counts[0] + counts[1]) - abs(counts[0] - counts[1]);
return score;
}
int FNodeBuilder::ClassifyLine (node_t &node, const FPrivSeg *seg, int &sidev1, int &sidev2)
{
const FPrivVert *v1 = &Vertices[seg->v1];
const FPrivVert *v2 = &Vertices[seg->v2];
sidev1 = PointOnSide (v1->x, v1->y, node.x, node.y, node.dx, node.dy);
sidev2 = PointOnSide (v2->x, v2->y, node.x, node.y, node.dx, node.dy);
if ((sidev1 | sidev2) == 0)
{ // seg is coplanar with the splitter, so use its orientation to determine
// which child it ends up in. If it faces the same direction as the splitter,
// it goes in front. Otherwise, it goes in back.
if (node.dx != 0)
{
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
{
return 0;
}
else
{
return 1;
}
}
else
{
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
{
return 0;
}
else
{
return 1;
}
}
}
else if (sidev1 <= 0 && sidev2 <= 0)
{
return 0;
}
else if (sidev1 >= 0 && sidev2 >= 0)
{
return 1;
}
return -1;
}
void FNodeBuilder::SplitSegs (DWORD set, node_t &node, DWORD splitseg, DWORD &outset0, DWORD &outset1)
{
outset0 = DWORD_MAX;
outset1 = DWORD_MAX;
Events.DeleteAll ();
SplitSharers.Clear ();
while (set != DWORD_MAX)
{
bool hack;
FPrivSeg *seg = &Segs[set];
int next = seg->next;
int sidev1, sidev2, side;
if (HackSeg == set)
{
HackSeg = DWORD_MAX;
side = 1;
sidev1 = sidev2 = 0;
hack = true;
}
else
{
side = ClassifyLine (node, seg, sidev1, sidev2);
hack = false;
}
switch (side)
{
case 0: // seg is entirely in front
seg->next = outset0;
//Printf ("%lu in front\n", set);
outset0 = set;
break;
case 1: // seg is entirely in back
seg->next = outset1;
//Printf ("%lu in back\n", set);
outset1 = set;
break;
default: // seg needs to be split
double frac;
FPrivVert newvert;
size_t vertnum;
int seg2;
size_t i;
//Printf ("%lu is cut\n", set);
if (seg->loopnum)
{
Printf (" Split seg %lu (%ld,%ld)-(%ld,%ld) of sector %d on line %d\n",
set,
Vertices[seg->v1].x>>16, Vertices[seg->v1].y>>16,
Vertices[seg->v2].x>>16, Vertices[seg->v2].y>>16,
seg->frontsector, seg->linedef);
}
frac = InterceptVector (node, *seg);
newvert.x = Vertices[seg->v1].x;
newvert.y = Vertices[seg->v1].y;
newvert.x += fixed_t(frac * double(Vertices[seg->v2].x - newvert.x));
newvert.y += fixed_t(frac * double(Vertices[seg->v2].y - newvert.y));
for (i = 0; i < Vertices.Size(); ++i)
{
if (abs(Vertices[i].x - newvert.x) < VERTEX_EPSILON &&
abs(Vertices[i].y - newvert.y) < VERTEX_EPSILON)
{
break;
}
}
if (i < Vertices.Size())
{
vertnum = i;
}
else
{
newvert.segs = DWORD_MAX;
newvert.segs2 = DWORD_MAX;
vertnum = (int)Vertices.Push (newvert);
}
seg2 = SplitSeg (set, vertnum, sidev1);
Segs[seg2].next = outset0;
outset0 = seg2;
Segs[set].next = outset1;
outset1 = set;
// Also split the seg on the back side
if (Segs[set].partner != DWORD_MAX)
{
int partner1 = Segs[set].partner;
int partner2 = SplitSeg (partner1, vertnum, sidev2);
// The newly created seg stays in the same set as the
// back seg because it has not been considered for splitting
// yet. If it had been, then the front seg would have already
// been split, and we would not be in this default case.
// Moreover, the back seg may not even be in the set being
// split, so we must not move its pieces into the out sets.
Segs[partner1].next = partner2;
Segs[partner2].partner = seg2;
Segs[seg2].partner = partner2;
assert (Segs[partner2].v1 == Segs[seg2].v2);
assert (Segs[partner2].v2 == Segs[seg2].v1);
assert (Segs[partner1].v1 == Segs[set].v2);
assert (Segs[partner1].v2 == Segs[set].v1);
}
if (GLNodes)
{
AddIntersection (node, vertnum);
}
break;
}
if (side >= 0 && GLNodes)
{
if (sidev1 == 0)
{
double dist1 = AddIntersection (node, seg->v1);
if (sidev2 == 0)
{
double dist2 = AddIntersection (node, seg->v2);
FSplitSharer share = { dist1, set, dist2 > dist1 };
SplitSharers.Push (share);
}
}
else if (sidev2 == 0)
{
AddIntersection (node, seg->v2);
}
}
if (hack && GLNodes)
{
DWORD newback, newfront;
newback = AddMiniseg (seg->v2, seg->v1, DWORD_MAX, set, splitseg);
newfront = AddMiniseg (Segs[set].v1, Segs[set].v2, newback, set, splitseg);
Segs[newback].frontsector = Segs[newback].backsector =
Segs[newfront].frontsector = Segs[newfront].backsector =
Segs[set].frontsector;
Segs[newback].next = outset1;
outset1 = newback;
Segs[newfront].next = outset0;
outset0 = newfront;
}
set = next;
}
FixSplitSharers ();
if (GLNodes)
{
AddMinisegs (node, splitseg, outset0, outset1);
}
}
void FNodeBuilder::SetNodeFromSeg (node_t &node, const FPrivSeg *pseg) const
{
if (pseg->planenum >= 0)
{
FSimpleLine *pline = &Planes[pseg->planenum];
node.x = pline->x;
node.y = pline->y;
node.dx = pline->dx;
node.dy = pline->dy;
}
else
{
node.x = Vertices[pseg->v1].x;
node.y = Vertices[pseg->v1].y;
node.dx = Vertices[pseg->v2].x - node.x;
node.dy = Vertices[pseg->v2].y - node.y;
}
}
DWORD FNodeBuilder::SplitSeg (DWORD segnum, int splitvert, int v1InFront)
{
double dx, dy;
FPrivSeg newseg;
int newnum = (int)Segs.Size();
newseg = Segs[segnum];
dx = double(Vertices[splitvert].x - Vertices[newseg.v1].x);
dy = double(Vertices[splitvert].y - Vertices[newseg.v1].y);
newseg.offset += fixed_t (sqrt (dx*dx + dy*dy));
if (v1InFront > 0)
{
newseg.v1 = splitvert;
Segs[segnum].v2 = splitvert;
RemoveSegFromVert2 (segnum, newseg.v2);
newseg.nextforvert = Vertices[splitvert].segs;
Vertices[splitvert].segs = newnum;
newseg.nextforvert2 = Vertices[newseg.v2].segs2;
Vertices[newseg.v2].segs2 = newnum;
Segs[segnum].nextforvert2 = Vertices[splitvert].segs2;
Vertices[splitvert].segs2 = segnum;
}
else
{
Segs[segnum].v1 = splitvert;
newseg.v2 = splitvert;
RemoveSegFromVert1 (segnum, newseg.v1);
newseg.nextforvert = Vertices[newseg.v1].segs;
Vertices[newseg.v1].segs = newnum;
newseg.nextforvert2 = Vertices[splitvert].segs2;
Vertices[splitvert].segs2 = newnum;
Segs[segnum].nextforvert = Vertices[splitvert].segs;
Vertices[splitvert].segs = segnum;
}
Segs.Push (newseg);
D(Printf("Split seg %d to get seg %d\n", segnum, newnum));
return newnum;
}
void FNodeBuilder::RemoveSegFromVert1 (DWORD segnum, int vertnum)
{
FPrivVert *v = &Vertices[vertnum];
if (v->segs == segnum)
{
v->segs = Segs[segnum].nextforvert;
}
else
{
DWORD prev, curr;
prev = 0;
curr = v->segs;
while (curr != DWORD_MAX && curr != segnum)
{
prev = curr;
curr = Segs[curr].nextforvert;
}
if (curr == segnum)
{
Segs[prev].nextforvert = Segs[curr].nextforvert;
}
}
}
void FNodeBuilder::RemoveSegFromVert2 (DWORD segnum, int vertnum)
{
FPrivVert *v = &Vertices[vertnum];
if (v->segs2 == segnum)
{
v->segs2 = Segs[segnum].nextforvert2;
}
else
{
DWORD prev, curr;
prev = 0;
curr = v->segs2;
while (curr != DWORD_MAX && curr != segnum)
{
prev = curr;
curr = Segs[curr].nextforvert2;
}
if (curr == segnum)
{
Segs[prev].nextforvert2 = Segs[curr].nextforvert2;
}
}
}
double FNodeBuilder::InterceptVector (const node_t &splitter, const FPrivSeg &seg)
{
double v2x = (double)Vertices[seg.v1].x;
double v2y = (double)Vertices[seg.v1].y;
double v2dx = (double)Vertices[seg.v2].x - v2x;
double v2dy = (double)Vertices[seg.v2].y - v2y;
double v1dx = (double)splitter.dx;
double v1dy = (double)splitter.dy;
double den = v1dy*v2dx - v1dx*v2dy;
if (den == 0.0)
return 0; // parallel
double v1x = (double)splitter.x;
double v1y = (double)splitter.y;
double num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx;
double frac = num / den;
return frac;
}
int FNodeBuilder::PointOnSide (int x, int y, int x1, int y1, int dx, int dy)
{
// For most cases, a simple dot product is enough.
double d_dx = double(dx);
double d_dy = double(dy);
double d_x = double(x);
double d_y = double(y);
double d_x1 = double(x1);
double d_y1 = double(y1);
double s_num = (d_y1-d_y)*d_dx - (d_x1-d_x)*d_dy;
if (fabs(s_num) < 17179869184.0) // 4<<32
{
// Either the point is very near the line, or the segment defining
// the line is very short: Do a more expensive test to determine
// just how far from the line the point is.
double l = sqrt(d_dx*d_dx+d_dy*d_dy);
double dist = fabs(s_num)/l;
if (dist < SIDE_EPSILON)
{
return 0;
}
}
return s_num > 0.0 ? -1 : 1;
}
void FNodeBuilder::PrintSet (int l, DWORD set)
{
Printf ("set %d:\n", l);
for (; set != DWORD_MAX; set = Segs[set].next)
{
Printf ("\t%lu(%d):%d(%ld,%ld)-%d(%ld,%ld)\n", set, Segs[set].frontsector,
Segs[set].v1,
Vertices[Segs[set].v1].x>>16, Vertices[Segs[set].v1].y>>16,
Segs[set].v2,
Vertices[Segs[set].v2].x>>16, Vertices[Segs[set].v2].y>>16);
}
Printf ("*\n");
}