mirror of
https://github.com/ZDoom/zdbsp.git
synced 2024-11-10 06:31:35 +00:00
9c389f90c8
SVN r2630 (trunk)
187 lines
4.4 KiB
C++
187 lines
4.4 KiB
C++
/*
|
|
Determine what side of a splitter a seg lies on. (SSE2 version)
|
|
Copyright (C) 2002-2006 Randy Heit
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
#ifndef DISABLE_SSE
|
|
|
|
#include "zdbsp.h"
|
|
#include "nodebuild.h"
|
|
#include <emmintrin.h>
|
|
|
|
#define FAR_ENOUGH 17179869184.f // 4<<32
|
|
|
|
// You may notice that this function is identical to ClassifyLine2.
|
|
// The reason it is SSE2 is because this file is explicitly compiled
|
|
// with SSE2 math enabled, but the other files are not.
|
|
|
|
extern "C" int ClassifyLineSSE2 (node_t &node, const FSimpleVert *v1, const FSimpleVert *v2, int sidev[2])
|
|
{
|
|
__m128d xy, dxy, xyv1, xyv2;
|
|
|
|
// Why does this intrinsic go through an MMX register, when it can just go through memory?
|
|
// That would let it work with x64, too. (This only applies to VC++. GCC
|
|
// is smarter and can load directly from memory without touching the MMX registers.)
|
|
xy = _mm_cvtpi32_pd(*(__m64*)&node.x); // d_y1 d_x1
|
|
dxy = _mm_cvtpi32_pd(*(__m64*)&node.dx); // d_dy d_dx
|
|
xyv1 = _mm_cvtpi32_pd(*(__m64*)&v1->x); // d_yv1 d_xv1
|
|
xyv2 = _mm_cvtpi32_pd(*(__m64*)&v2->x); // d_yv2 d_xv2
|
|
|
|
__m128d num1, num2, dyx;
|
|
|
|
dyx = _mm_shuffle_pd(dxy, dxy, _MM_SHUFFLE2(0,1));
|
|
num1 = _mm_mul_pd(_mm_sub_pd(xy, xyv1), dyx);
|
|
num2 = _mm_mul_pd(_mm_sub_pd(xy, xyv2), dyx);
|
|
|
|
__m128d pnuma, pnumb, num;
|
|
|
|
pnuma = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(1,1));
|
|
pnumb = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(0,0));
|
|
num = _mm_sub_pd(pnuma, pnumb);
|
|
// s_num1 is at num[0]; s_num2 is at num[1]
|
|
|
|
__m128d neg_enough, pos_enough;
|
|
__m128d neg_check, pos_check;
|
|
|
|
neg_enough = _mm_set1_pd(-FAR_ENOUGH);
|
|
pos_enough = _mm_set1_pd( FAR_ENOUGH);
|
|
|
|
// Why do the comparison instructions return __m128d and not __m128i?
|
|
neg_check = _mm_cmple_pd(num, neg_enough);
|
|
pos_check = _mm_cmpge_pd(num, pos_enough);
|
|
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
double n[2], p[2];
|
|
};
|
|
struct
|
|
{
|
|
int ni[4], pi[4];
|
|
};
|
|
} _;
|
|
|
|
_mm_storeu_pd(_.n, neg_check);
|
|
_mm_storeu_pd(_.p, pos_check);
|
|
|
|
int nears = 0;
|
|
|
|
if (_.ni[0])
|
|
{
|
|
if (_.ni[2])
|
|
{
|
|
sidev[0] = sidev[1] = 1;
|
|
return 1;
|
|
}
|
|
if (_.pi[2])
|
|
{
|
|
sidev[0] = 1;
|
|
sidev[1] = -1;
|
|
return -1;
|
|
}
|
|
nears = 1;
|
|
}
|
|
else if (_.pi[0])
|
|
{
|
|
if (_.pi[2])
|
|
{
|
|
sidev[0] = sidev[1] = -1;
|
|
return 0;
|
|
}
|
|
if (_.ni[2])
|
|
{
|
|
sidev[0] = -1;
|
|
sidev[1] = 1;
|
|
return -1;
|
|
}
|
|
nears = 1;
|
|
}
|
|
else
|
|
{
|
|
nears = 2 | (((_.ni[2] | _.pi[2]) & 1) ^ 1);
|
|
}
|
|
|
|
__m128d zero = _mm_setzero_pd();
|
|
__m128d posi = _mm_cmpgt_pd(num, zero);
|
|
_mm_storeu_pd(_.p, posi);
|
|
|
|
int sv1 = _.pi[0] ? _.pi[0] : 1;
|
|
int sv2 = _.pi[2] ? _.pi[2] : 1;
|
|
if (nears)
|
|
{
|
|
__m128d sqnum = _mm_mul_pd(num, num);
|
|
__m128d sqdyx = _mm_mul_pd(dyx, dyx);
|
|
__m128d sqdxy = _mm_mul_pd(dxy, dxy);
|
|
__m128d l = _mm_add_pd(sqdyx, sqdxy);
|
|
__m128d dist = _mm_div_pd(sqnum, l);
|
|
__m128d epsilon = _mm_set1_pd(SIDE_EPSILON);
|
|
__m128d close = _mm_cmplt_pd(dist, epsilon);
|
|
_mm_storeu_pd(_.n, close);
|
|
if (nears & _.ni[0] & 2)
|
|
{
|
|
sv1 = 0;
|
|
}
|
|
if (nears & _.ni[2] & 1)
|
|
{
|
|
sv2 = 0;
|
|
}
|
|
}
|
|
sidev[0] = sv1;
|
|
sidev[1] = sv2;
|
|
|
|
if ((sv1 | sv2) == 0)
|
|
{ // seg is coplanar with the splitter, so use its orientation to determine
|
|
// which child it ends up in. If it faces the same direction as the splitter,
|
|
// it goes in front. Otherwise, it goes in back.
|
|
|
|
if (node.dx != 0)
|
|
{
|
|
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
else if (sv1 <= 0 && sv2 <= 0)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (sv1 >= 0 && sv2 >= 0)
|
|
{
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#endif
|