zdbsp/Unused/visflow.cpp

1346 lines
29 KiB
C++

// An adaptation of the Quake vis utility.
#include <string.h>
#include <stdio.h>
#include "zdbsp.h"
#include "nodebuild.h"
#include "rejectbuilder.h"
#include "templates.h"
enum { SIDE_FRONT, SIDE_BACK, SIDE_ON };
/*
each portal will have a list of all possible to see from first portal
if (!thread->portalmightsee[portalnum])
portal mightsee
for p2 = all other portals in leaf
get sperating planes
for all portals that might be seen by p2
mark as unseen if not present in seperating plane
flood fill a new mightsee
save as passagemightsee
void CalcMightSee (leaf_t *leaf,
*/
int FRejectBuilder::CountBits (BYTE *bits, int numbits)
{
int i;
int c;
c = 0;
for (i=0 ; i<numbits ; i++)
if (bits[i>>3] & (1<<(i&7)) )
c++;
return c;
}
int c_fullskip;
int c_portalskip, c_leafskip;
int c_vistest, c_mighttest;
int c_chop, c_nochop;
int active;
void FRejectBuilder::CheckStack (FLeaf *leaf, FThreadData *thread)
{
PStack *p, *p2;
for (p = thread->pstack_head.next; p != NULL; p = p->next)
{
// _printf ("=");
if (p->leaf == leaf)
throw exception("CheckStack: leaf recursion");
for (p2 = thread->pstack_head.next; p2 != p; p2 = p2->next)
if (p2->leaf == p->leaf)
throw exception("CheckStack: late leaf recursion");
}
// _printf ("\n");
}
FRejectBuilder::FWinding *FRejectBuilder::AllocStackWinding (PStack *stack) const
{
for (int i = 0; i < 3; i++)
{
if (stack->freewindings[i])
{
stack->freewindings[i] = false;
return &stack->windings[i];
}
}
throw exception("AllocStackWinding: failed");
}
void FRejectBuilder::FreeStackWinding (FWinding *w, PStack *stack) const
{
int i;
i = w - stack->windings;
if (i < 0 || i > 2)
return; // not from local
if (stack->freewindings[i])
throw exception("FreeStackWinding: already free");
stack->freewindings[i] = true;
}
/*
==============
VisChopWinding
==============
*/
FRejectBuilder::FWinding *FRejectBuilder::VisChopWinding (FWinding *in, PStack *stack, FLine *split)
{
int side1, side2;
FPoint mid;
FWinding *neww;
// determine sides for each point
side1 = PointOnSide (in->points[0], *split);
side2 = PointOnSide (in->points[1], *split);
if (side1 <= 0 && side2 <= 0)
{ // completely on front side
return in;
}
if (side1 >= 0 && side2 >= 0)
{ // completely on back side
FreeStackWinding (in, stack);
return NULL;
}
neww = AllocStackWinding (stack);
// generate a split point
double v2x = (double)in->points[0].x;
double v2y = (double)in->points[0].y;
double v2dx = (double)in->points[1].x - v2x;
double v2dy = (double)in->points[1].y - v2y;
double v1dx = (double)split->dx;
double v1dy = (double)split->dy;
double den = v1dy*v2dx - v1dx*v2dy;
if (den == 0.0)
{ // parallel
return in;
}
double v1x = (double)split->x;
double v1y = (double)split->y;
double num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx;
double frac = num / den;
mid.x = in->points[0].x + fixed_t(v2dx * frac);
mid.y = in->points[0].y + fixed_t(v2dy * frac);
if (side1 <= 0)
{
neww->points[0] = in->points[0];
neww->points[1] = mid;
}
else
{
neww->points[0] = mid;
neww->points[1] = in->points[1];
}
// free the original winding
FreeStackWinding (in, stack);
return neww;
}
/*
==============
ClipToSeperators
Source, pass, and target are an ordering of portals.
Generates seperating planes canidates by taking two points from source and one
point from pass, and clips target by them.
If target is totally clipped away, that portal can not be seen through.
Normal clip keeps target on the same side as pass, which is correct if the
order goes source, pass, target. If the order goes pass, source, target then
flipclip should be set.
==============
*/
FRejectBuilder::FWinding *FRejectBuilder::ClipToSeperators
(FWinding *source, FWinding *pass, FWinding *target, bool flipclip, PStack *stack)
{
int i, j;
FLine line;
int d;
bool fliptest;
// check all combinations
for (i = 0; i < 2; i++)
{
// find a vertex of pass that makes a line that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for (j = 0; j < 2; j++)
{
line.x = source->points[i].x;
line.y = source->points[i].y;
line.dx = pass->points[j].x - line.x;
line.dy = pass->points[j].y - line.y;
//
// find out which side of the generated seperating line has the
// source portal
//
fliptest = false;
d = PointOnSide (source->points[!i], line);
if (d > 0)
{ // source is on the back side, so we want all
// pass and target on the front side
fliptest = false;
}
else if (d < 0)
{ // source in on the front side, so we want all
// pass and target on the back side
fliptest = true;
}
else
{ // colinear with source portal
continue;
}
//
// flip the line if the source portal is backwards
//
if (fliptest)
{
line.Flip ();
}
//
// if all of the pass portal points are now on the front side,
// this is the seperating line
//
d = PointOnSide (pass->points[!j], line);
if (d >= 0)
{ // == 0: colinear with seperating plane
// > 0: points on back side; not a seperating plane
continue;
}
//
// flip the line if we want the back side
//
if (flipclip)
{
line.Flip ();
}
#ifdef SEPERATORCACHE
stack->seperators[flipclip][stack->numseperators[flipclip]] = line;
if (++stack->numseperators[flipclip] >= MAX_SEPERATORS)
throw exception("MAX_SEPERATORS");
#endif
//
// clip target by the seperating plane
//
target = VisChopWinding (target, stack, &line);
if (!target)
{ // target is not visible
return NULL;
}
break; // optimization by Antony Suter
}
}
return target;
}
/*
==================
RecursiveLeafFlow
Flood fill through the leafs
If src_portal is NULL, this is the originating leaf
==================
*/
void FRejectBuilder::RecursiveLeafFlow (int leafnum, FThreadData *thread, PStack *prevstack)
{
PStack stack;
VPortal *p;
FLine backline;
FLeaf *leaf;
int i, j;
long *test, *might, *prevmight, *vis, more;
int pnum;
thread->c_chains++;
leaf = &leafs[leafnum];
// CheckStack (leaf, thread);
prevstack->next = &stack;
stack.next = NULL;
stack.leaf = leaf;
stack.portal = NULL;
stack.depth = prevstack->depth + 1;
#ifdef SEPERATORCACHE
stack.numseperators[0] = 0;
stack.numseperators[1] = 0;
#endif
might = (long *)stack.mightsee;
vis = (long *)thread->base->portalvis;
// check all portals for flowing into other leafs
for (i = 0; i < leaf->numportals; i++)
{
p = leaf->portals[i];
if (p->removed)
continue;
pnum = p - portals;
/* MrE: portal trace debug code
{
int portaltrace[] = {13, 16, 17, 37};
pstack_t *s;
s = &thread->pstack_head;
for (j = 0; s->next && j < sizeof(portaltrace)/sizeof(int) - 1; j++, s = s->next)
{
if (s->portal->num != portaltrace[j])
break;
}
if (j >= sizeof(portaltrace)/sizeof(int) - 1)
{
if (p->num == portaltrace[j])
n = 0; //traced through all the portals
}
}
*/
if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )
{
continue; // can't possibly see it
}
// if the portal can't see anything we haven't already seen, skip it
if (p->status == STAT_Done)
{
test = (long *)p->portalvis;
}
else
{
test = (long *)p->portalflood;
}
more = 0;
prevmight = (long *)prevstack->mightsee;
for (j = 0; j < portallongs; j++)
{
might[j] = prevmight[j] & test[j];
more |= (might[j] & ~vis[j]);
}
if (!more &&
(thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )
{ // can't see anything new
continue;
}
// get line of portal and point into the neighbor leaf
backline = stack.portalline = p->line;
backline.Flip ();
// c_portalcheck++;
stack.portal = p;
stack.next = NULL;
stack.freewindings[0] = true;
stack.freewindings[1] = true;
stack.freewindings[2] = true;
stack.pass = VisChopWinding (&p->winding, &stack, &thread->pstack_head.portalline);
if (!stack.pass)
{
continue;
}
stack.source = VisChopWinding (prevstack->source, &stack, &backline);
if (!stack.source)
{
continue;
}
if (!prevstack->pass)
{ // the second leaf can only be blocked if coplanar
// mark the portal as visible
thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
RecursiveLeafFlow (p->leaf, thread, &stack);
continue;
}
#ifdef SEPERATORCACHE
if (stack.numseperators[0])
{
for (n = 0; n < stack.numseperators[0]; n++)
{
stack.pass = VisChopWinding (stack.pass, &stack, &stack.seperators[0][n]);
if (!stack.pass)
break; // target is not visible
}
if (n < stack.numseperators[0])
continue;
}
else
{
stack.pass = ClipToSeperators (prevstack->source, prevstack->pass, stack.pass, false, &stack);
}
#else
stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack);
#endif
if (!stack.pass)
continue;
#ifdef SEPERATORCACHE
if (stack.numseperators[1])
{
for (n = 0; n < stack.numseperators[1]; n++)
{
stack.pass = VisChopWinding (stack.pass, &stack, &stack.seperators[1][n]);
if (!stack.pass)
break; // target is not visible
}
}
else
{
stack.pass = ClipToSeperators (prevstack->pass, prevstack->source, stack.pass, true, &stack);
}
#else
stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack);
#endif
if (!stack.pass)
continue;
// mark the portal as visible
thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
// flow through it for real
RecursiveLeafFlow (p->leaf, thread, &stack);
//
stack.next = NULL;
}
}
/*
===============
PortalFlow
generates the portalvis bit vector
===============
*/
void FRejectBuilder::PortalFlow (int portalnum)
{
FThreadData data;
int i;
VPortal *p;
int c_might, c_can;
#ifdef MREDEBUG
printf("\r%6d", portalnum);
#endif
p = sorted_portals[portalnum];
if (p->removed)
{
p->status = STAT_Done;
return;
}
if (p->nummightsee == 0)
{
p->status = STAT_Done;
return;
}
p->status = STAT_Working;
c_might = p->nummightsee;//CountBits (p->portalflood, numportals);
memset (&data, 0, sizeof(data));
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = &p->winding;
data.pstack_head.portalline = p->line;
data.pstack_head.depth = 0;
for (i = 0; i < portallongs; i++)
{
((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
}
RecursiveLeafFlow (p->leaf, &data, &data.pstack_head);
p->status = STAT_Done;
c_can = CountBits (p->portalvis, numportals);
//printf ("portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
// (int)(p - portals), c_might, c_can, data.c_chains);
}
/*
==================
RecursivePassageFlow
==================
*/
void FRejectBuilder::RecursivePassageFlow (VPortal *portal, FThreadData *thread, PStack *prevstack)
{
PStack stack;
VPortal *p;
FLeaf *leaf;
FPassage *passage, *nextpassage;
int i, j;
long *might, *vis, *prevmight, *cansee, *portalvis, more;
int pnum;
// thread->c_chains++;
leaf = &leafs[portal->leaf];
// CheckStack (leaf, thread);
prevstack->next = &stack;
stack.next = NULL;
// stack.leaf = leaf;
// stack.portal = NULL;
stack.depth = prevstack->depth + 1;
vis = (long *)thread->base->portalvis;
passage = portal->passages;
nextpassage = passage;
// check all portals for flowing into other leafs
for (i = 0; i < leaf->numportals; i++, passage = nextpassage)
{
p = leaf->portals[i];
if (p->removed)
continue;
nextpassage = passage->next;
pnum = p - portals;
if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )
continue; // can't possibly see it
prevmight = (long *)prevstack->mightsee;
cansee = (long *)passage->cansee;
might = (long *)stack.mightsee;
memcpy(might, prevmight, portalbytes);
portalvis = (p->status == STAT_Done) ? (long *)p->portalvis : (long *)p->portalflood;
more = 0;
for (j = 0; j < portallongs; j++)
{
if (*might)
{
*might &= *cansee++ & *portalvis++;
more |= (*might & ~vis[j]);
}
else
{
cansee++;
portalvis++;
}
might++;
}
if (!more &&
(thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )
{ // can't see anything new
continue;
}
// stack.portal = p;
// mark the portal as visible
thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
// flow through it for real
RecursivePassageFlow(p, thread, &stack);
//
stack.next = NULL;
}
}
/*
===============
PassageFlow
===============
*/
void FRejectBuilder::PassageFlow (int portalnum)
{
FThreadData data;
int i;
VPortal *p;
// int c_might, c_can;
#ifdef MREDEBUG
printf("\r%6d", portalnum);
#endif
p = sorted_portals[portalnum];
if (p->removed)
{
p->status = STAT_Done;
return;
}
p->status = STAT_Working;
// c_might = CountBits (p->portalflood, numportals);
memset (&data, 0, sizeof(data));
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = &p->winding;
data.pstack_head.portalline = p->line;
data.pstack_head.depth = 0;
for (i = 0; i < portallongs; i++)
{
((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
}
RecursivePassageFlow (p, &data, &data.pstack_head);
p->status = STAT_Done;
/*
c_can = CountBits (p->portalvis, numportals);
qprintf ("portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
(int)(p - portals), c_might, c_can, data.c_chains);
*/
}
/*
==================
RecursivePassagePortalFlow
==================
*/
void FRejectBuilder::RecursivePassagePortalFlow (VPortal *portal, FThreadData *thread, PStack *prevstack)
{
PStack stack;
VPortal *p;
FLeaf *leaf;
FLine backline;
FPassage *passage, *nextpassage;
int i, j;
long *might, *vis, *prevmight, *cansee, *portalvis, more;
int pnum;
// thread->c_chains++;
leaf = &leafs[portal->leaf];
// CheckStack (leaf, thread);
prevstack->next = &stack;
stack.next = NULL;
stack.leaf = leaf;
stack.portal = NULL;
stack.depth = prevstack->depth + 1;
#ifdef SEPERATORCACHE
stack.numseperators[0] = 0;
stack.numseperators[1] = 0;
#endif
vis = (long *)thread->base->portalvis;
passage = portal->passages;
nextpassage = passage;
// check all portals for flowing into other leafs
for (i = 0; i < leaf->numportals; i++, passage = nextpassage)
{
p = leaf->portals[i];
if (p->removed)
continue;
nextpassage = passage->next;
pnum = p - portals;
if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) )
continue; // can't possibly see it
prevmight = (long *)prevstack->mightsee;
cansee = (long *)passage->cansee;
might = (long *)stack.mightsee;
memcpy(might, prevmight, portalbytes);
portalvis = (p->status == STAT_Done) ? (long *) p->portalvis : (long *) p->portalflood;
more = 0;
for (j = 0; j < portallongs; j++)
{
if (*might)
{
*might &= *cansee++ & *portalvis++;
more |= (*might & ~vis[j]);
}
else
{
cansee++;
portalvis++;
}
might++;
}
if (!more &&
(thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) )
{ // can't see anything new
continue;
}
// get line of portal, point front into the neighbor leaf
backline = stack.portalline = p->line;
backline.Flip ();
// c_portalcheck++;
stack.portal = p;
stack.next = NULL;
stack.freewindings[0] = true;
stack.freewindings[1] = true;
stack.freewindings[2] = true;
stack.pass = VisChopWinding (&p->winding, &stack, &thread->pstack_head.portalline);
if (!stack.pass)
continue;
stack.source = VisChopWinding (prevstack->source, &stack, &backline);
if (!stack.source)
continue;
if (!prevstack->pass)
{ // the second leaf can only be blocked if colinear
// mark the portal as visible
thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
RecursivePassagePortalFlow (p, thread, &stack);
continue;
}
#ifdef SEPERATORCACHE
if (stack.numseperators[0])
{
for (n = 0; n < stack.numseperators[0]; n++)
{
stack.pass = VisChopWinding (stack.pass, &stack, &stack.seperators[0][n]);
if (!stack.pass)
break; // target is not visible
}
if (n < stack.numseperators[0])
continue;
}
else
{
stack.pass = ClipToSeperators (prevstack->source, prevstack->pass, stack.pass, false, &stack);
}
#else
stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack);
#endif
if (!stack.pass)
continue;
#ifdef SEPERATORCACHE
if (stack.numseperators[1])
{
for (n = 0; n < stack.numseperators[1]; n++)
{
stack.pass = VisChopWinding (stack.pass, &stack, &stack.seperators[1][n]);
if (!stack.pass)
break; // target is not visible
}
}
else
{
stack.pass = ClipToSeperators (prevstack->pass, prevstack->source, stack.pass, true, &stack);
}
#else
stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack);
#endif
if (!stack.pass)
continue;
// mark the portal as visible
thread->base->portalvis[pnum>>3] |= (1<<(pnum&7));
// flow through it for real
RecursivePassagePortalFlow(p, thread, &stack);
//
stack.next = NULL;
}
}
/*
===============
PassagePortalFlow
===============
*/
void FRejectBuilder::PassagePortalFlow (int portalnum)
{
FThreadData data;
int i;
VPortal *p;
// int c_might, c_can;
#ifdef MREDEBUG
printf("\r%6d", portalnum);
#endif
p = sorted_portals[portalnum];
if (p->removed)
{
p->status = STAT_Done;
return;
}
p->status = STAT_Working;
// c_might = CountBits (p->portalflood, numportals);
memset (&data, 0, sizeof(data));
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = &p->winding;
data.pstack_head.portalline = p->line;
data.pstack_head.depth = 0;
for (i = 0; i < portallongs; i++)
{
((long *)data.pstack_head.mightsee)[i] = ((long *)p->portalflood)[i];
}
RecursivePassagePortalFlow (p, &data, &data.pstack_head);
p->status = STAT_Done;
/*
c_can = CountBits (p->portalvis, numportals);
qprintf ("portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
(int)(p - portals), c_might, c_can, data.c_chains);
*/
}
FRejectBuilder::FWinding *FRejectBuilder::PassageChopWinding (FWinding *in, FWinding *out, FLine *split)
{
int side1, side2;
FPoint mid;
FWinding *neww;
// determine sides for each point
side1 = PointOnSide (in->points[0], *split);
side2 = PointOnSide (in->points[1], *split);
if (side1 <= 0 && side2 <= 0)
{ // completely on front side
return in;
}
if (side1 >= 0 && side2 >= 0)
{ // completely on back side
return NULL;
}
neww = out;
// generate a split point
double v2x = (double)in->points[0].x;
double v2y = (double)in->points[0].y;
double v2dx = (double)in->points[1].x - v2x;
double v2dy = (double)in->points[1].y - v2y;
double v1dx = (double)split->dx;
double v1dy = (double)split->dy;
double den = v1dy*v2dx - v1dx*v2dy;
if (den == 0.0)
{ // parallel
return in;
}
double v1x = (double)split->x;
double v1y = (double)split->y;
double num = (v1x - v2x)*v1dy + (v2y - v1y)*v1dx;
double frac = num / den;
mid.x = in->points[0].x + fixed_t(v2dx * frac);
mid.y = in->points[0].y + fixed_t(v2dy * frac);
if (side1 <= 0)
{
neww->points[0] = in->points[0];
neww->points[1] = mid;
}
else
{
neww->points[0] = mid;
neww->points[1] = in->points[1];
}
return neww;
}
/*
===============
AddSeperators
===============
*/
int FRejectBuilder::AddSeperators (FWinding *source, FWinding *pass, bool flipclip,
FLine *seperators, int maxseperators)
{
int i, j;
FLine line;
int d;
int numseperators;
bool fliptest;
numseperators = 0;
// check all combinations
for (i = 0; i < 2; i++)
{
// find a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for (j = 0; j < 2; j++)
{
line.x = source->points[i].x;
line.y = source->points[i].y;
line.dx = pass->points[j].x - line.x;
line.dy = pass->points[j].y - line.y;
//
// find out which side of the generated seperating plane has the
// source portal
//
fliptest = false;
d = PointOnSide (source->points[!i], line);
if (d > 0)
{ // source is on the back side, so we want all
// pass and target on the front side
fliptest = false;
}
else if (d < 0)
{ // source in on the front side, so we want all
// pass and target on the back side
fliptest = true;
}
else
{ // colinear with source portal
continue;
}
//
// flip the line if the source portal is backwards
//
if (fliptest)
{
line.Flip ();
}
//
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
//
d = PointOnSide (pass->points[!j], line);
if (d >= 0)
{ // == 0: colinear with seperating plane
// > 0: points on back side; not a seperating plane
continue;
}
//
// flip the line if we want the back side
//
if (flipclip)
{
line.Flip ();
}
if (numseperators >= maxseperators)
throw exception("max seperators");
seperators[numseperators] = line;
numseperators++;
break;
}
}
return numseperators;
}
/*
===============
CreatePassages
MrE: create passages from one portal to all the portals in the leaf the portal leads to
every passage has a cansee bit string with all the portals that can be
seen through the passage
===============
*/
void FRejectBuilder::CreatePassages (int portalnum)
{
int i, j, k, numseperators, numsee;
VPortal *portal, *p, *target;
FLeaf *leaf;
FPassage *passage, *lastpassage;
FLine seperators[MAX_SEPERATORS*2];
FWinding in, out, *res;
#ifdef MREDEBUG
printf("\r%6d", portalnum);
#endif
portal = sorted_portals[portalnum];
if (portal->removed)
{
portal->status = STAT_Done;
return;
}
lastpassage = NULL;
leaf = &leafs[portal->leaf];
for (i = 0; i < leaf->numportals; i++)
{
target = leaf->portals[i];
if (target->removed)
continue;
passage = (FPassage *) malloc(sizeof(FPassage) + portalbytes);
memset(passage, 0, sizeof(FPassage) + portalbytes);
numseperators = AddSeperators(&portal->winding, &target->winding, false, seperators, MAX_SEPERATORS*2);
numseperators += AddSeperators(&target->winding, &portal->winding, true, &seperators[numseperators], MAX_SEPERATORS*2-numseperators);
passage->next = NULL;
if (lastpassage)
lastpassage->next = passage;
else
portal->passages = passage;
lastpassage = passage;
numsee = 0;
//create the passage->cansee
for (j = 0; j < numportals; j++)
{
p = &portals[j];
if (p->removed)
continue;
if ( ! (target->portalflood[j >> 3] & (1<<(j&7)) ) )
continue;
if ( ! (portal->portalflood[j >> 3] & (1<<(j&7)) ) )
continue;
for (k = 0; k < numseperators; k++)
{
//check if completely on the back of the seperator line
if (PointOnSide (p->line, seperators[k]) > 0)
{
FPoint pt2 = p->line;
pt2.x += p->line.dx;
pt2.y += p->line.dy;
if (PointOnSide (pt2, seperators[k]) > 0)
{
break;
}
}
}
if (k < numseperators)
{
continue;
}
memcpy(&in, &p->winding, sizeof(FWinding));
for (k = 0; k < numseperators; k++)
{
res = PassageChopWinding(&in, &out, &seperators[k]);
if (res == &out)
memcpy(&in, &out, sizeof(FWinding));
if (res == NULL)
break;
}
if (k < numseperators)
continue;
passage->cansee[j >> 3] |= (1<<(j&7));
numsee++;
}
}
}
void FRejectBuilder::PassageMemory ()
{
int i, j, totalmem, totalportals;
VPortal *portal, *target;
FLeaf *leaf;
totalmem = 0;
totalportals = 0;
for (i = 0; i < numportals; i++)
{
portal = sorted_portals[i];
if (portal->removed)
continue;
leaf = &leafs[portal->leaf];
for (j = 0; j < leaf->numportals; j++)
{
target = leaf->portals[j];
if (target->removed)
continue;
totalmem += sizeof(FPassage) + portalbytes;
totalportals++;
}
}
printf("\n%7i average number of passages per leaf\n", totalportals / numportals);
printf("%7i MB required passage memory\n", totalmem >> 10 >> 10);
}
/*
===============================================================================
This is a rough first-order aproximation that is used to trivially reject some
of the final calculations.
Calculates portalfront and portalflood bit vectors
thinking about:
typedef struct passage_s
{
struct passage_s *next;
struct portal_s *to;
struct sep_s *seperators;
byte *mightsee;
} passage_t;
typedef struct portal_s
{
struct passage_s *passages;
int leaf; // leaf portal faces into
} portal_s;
leaf = portal->leaf
clear
for all portals
calc portal visibility
clear bit vector
for all passages
passage visibility
for a portal to be visible to a passage, it must be on the front of
all seperating planes, and both portals must be behind the new portal
===============================================================================
*/
int c_flood, c_vis;
/*
==================
SimpleFlood
==================
*/
void FRejectBuilder::SimpleFlood (VPortal *srcportal, int leafnum)
{
int i;
FLeaf *leaf;
VPortal *p;
int pnum;
leaf = &leafs[leafnum];
for (i = 0; i < leaf->numportals; i++)
{
p = leaf->portals[i];
if (p->removed)
continue;
pnum = p - portals;
if ((srcportal->portalfront[pnum>>3] & (1<<(pnum&7))) &&
!(srcportal->portalflood[pnum>>3] & (1<<(pnum&7))) )
{
srcportal->portalflood[pnum>>3] |= (1<<(pnum&7));
SimpleFlood (srcportal, p->leaf);
}
}
}
/*
==============
BasePortalVis
==============
*/
void FRejectBuilder::BasePortalVis (int portalnum)
{
int j, p1, p2;
VPortal *tp, *p;
p = portals+portalnum;
if (p->removed)
return;
p->portalfront = new BYTE[portalbytes];
memset (p->portalfront, 0, portalbytes);
p->portalflood = new BYTE[portalbytes];
memset (p->portalflood, 0, portalbytes);
p->portalvis = new BYTE[portalbytes];
memset (p->portalvis, 0, portalbytes);
for (j = 0, tp = portals; j < numportals; j++, tp++)
{
if (j == portalnum)
continue;
if (tp->removed)
continue;
//p->portalfront[j>>3] |= (1<<(j&7));
//continue;
// The target portal must be in front of this one
if ((p1 = PointOnSide (tp->winding.points[0], p->line)) > 0 ||
(p2 = PointOnSide (tp->winding.points[1], p->line)) > 0)
{
continue;
}
// Portals must not be colinear
if ((p1 | p2) == 0)
{
continue;
}
// This portal must be behind the target portal
if (PointOnSide (p->winding.points[0], tp->line) < 0 ||
PointOnSide (p->winding.points[1], tp->line) < 0)
{
continue;
}
p->portalfront[j>>3] |= (1<<(j&7));
}
SimpleFlood (p, p->leaf);
p->nummightsee = CountBits (p->portalflood, numportals);
// _printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee);
c_flood += p->nummightsee;
}
/*
===============================================================================
This is a second order aproximation
Calculates portalvis bit vector
WAAAAAAY too slow.
===============================================================================
*/
/*
==================
RecursiveLeafBitFlow
==================
*/
void FRejectBuilder::RecursiveLeafBitFlow (int leafnum, BYTE *mightsee, BYTE *cansee)
{
VPortal *p;
FLeaf *leaf;
int i, j;
long more;
int pnum;
BYTE newmight[MAX_PORTALS/8];
leaf = &leafs[leafnum];
// check all portals for flowing into other leafs
for (i = 0; i < leaf->numportals; i++)
{
p = leaf->portals[i];
if (p->removed)
continue;
pnum = p - portals;
// if some previous portal can't see it, skip
if (! (mightsee[pnum>>3] & (1<<(pnum&7)) ) )
continue;
// if this portal can see some portals we mightsee, recurse
more = 0;
for (j = 0; j < portallongs; j++)
{
((long *)newmight)[j] = ((long *)mightsee)[j] & ((long *)p->portalflood)[j];
more |= ((long *)newmight)[j] & ~((long *)cansee)[j];
}
if (!more)
continue; // can't see anything new
cansee[pnum>>3] |= (1<<(pnum&7));
RecursiveLeafBitFlow (p->leaf, newmight, cansee);
}
}
/*
==============
BetterPortalVis
==============
*/
void FRejectBuilder::BetterPortalVis (int portalnum)
{
VPortal *p;
p = portals+portalnum;
if (p->removed)
return;
RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis);
// build leaf vis information
p->nummightsee = CountBits (p->portalvis, numportals);
c_vis += p->nummightsee;
}