zdbsp/nodebuild_classify_sse2_vect.cpp

188 lines
4.4 KiB
C++
Raw Normal View History

/*
Determine what side of a splitter a seg lies on. (SSE2 version)
Copyright (C) 2002-2006 Randy Heit
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef DISABLE_SSE
#include "zdbsp.h"
#include "nodebuild.h"
#include <emmintrin.h>
#define FAR_ENOUGH 17179869184.f // 4<<32
// You may notice that this function is identical to ClassifyLine2.
// The reason it is SSE2 is because this file is explicitly compiled
// with SSE2 math enabled, but the other files are not.
extern "C" int ClassifyLineSSE2 (node_t &node, const FSimpleVert *v1, const FSimpleVert *v2, int sidev[2])
{
__m128d xy, dxy, xyv1, xyv2;
// Why does this intrinsic go through an MMX register, when it can just go through memory?
// That would let it work with x64, too. (This only applies to VC++. GCC
// is smarter and can load directly from memory without touching the MMX registers.)
xy = _mm_cvtpi32_pd(*(__m64*)&node.x); // d_y1 d_x1
dxy = _mm_cvtpi32_pd(*(__m64*)&node.dx); // d_dy d_dx
xyv1 = _mm_cvtpi32_pd(*(__m64*)&v1->x); // d_yv1 d_xv1
xyv2 = _mm_cvtpi32_pd(*(__m64*)&v2->x); // d_yv2 d_xv2
__m128d num1, num2, dyx;
dyx = _mm_shuffle_pd(dxy, dxy, _MM_SHUFFLE2(0,1));
num1 = _mm_mul_pd(_mm_sub_pd(xy, xyv1), dyx);
num2 = _mm_mul_pd(_mm_sub_pd(xy, xyv2), dyx);
__m128d pnuma, pnumb, num;
pnuma = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(1,1));
pnumb = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(0,0));
num = _mm_sub_pd(pnuma, pnumb);
// s_num1 is at num[0]; s_num2 is at num[1]
__m128d neg_enough, pos_enough;
__m128d neg_check, pos_check;
neg_enough = _mm_set1_pd(-FAR_ENOUGH);
pos_enough = _mm_set1_pd( FAR_ENOUGH);
// Why do the comparison instructions return __m128d and not __m128i?
neg_check = _mm_cmple_pd(num, neg_enough);
pos_check = _mm_cmpge_pd(num, pos_enough);
union
{
struct
{
double n[2], p[2];
};
struct
{
int ni[4], pi[4];
};
} _;
_mm_storeu_pd(_.n, neg_check);
_mm_storeu_pd(_.p, pos_check);
int nears = 0;
if (_.ni[0])
{
if (_.ni[2])
{
sidev[0] = sidev[1] = 1;
return 1;
}
if (_.pi[2])
{
sidev[0] = 1;
sidev[1] = -1;
return -1;
}
nears = 1;
}
else if (_.pi[0])
{
if (_.pi[2])
{
sidev[0] = sidev[1] = -1;
return 0;
}
if (_.ni[2])
{
sidev[0] = -1;
sidev[1] = 1;
return -1;
}
nears = 1;
}
else
{
nears = 2 | (((_.ni[2] | _.pi[2]) & 1) ^ 1);
}
__m128d zero = _mm_setzero_pd();
__m128d posi = _mm_cmpgt_pd(num, zero);
_mm_storeu_pd(_.p, posi);
int sv1 = _.pi[0] ? _.pi[0] : 1;
int sv2 = _.pi[2] ? _.pi[2] : 1;
if (nears)
{
__m128d sqnum = _mm_mul_pd(num, num);
__m128d sqdyx = _mm_mul_pd(dyx, dyx);
__m128d sqdxy = _mm_mul_pd(dxy, dxy);
__m128d l = _mm_add_pd(sqdyx, sqdxy);
__m128d dist = _mm_div_pd(sqnum, l);
__m128d epsilon = _mm_set1_pd(SIDE_EPSILON);
__m128d close = _mm_cmplt_pd(dist, epsilon);
_mm_storeu_pd(_.n, close);
if (nears & _.ni[0] & 2)
{
sv1 = 0;
}
if (nears & _.ni[2] & 1)
{
sv2 = 0;
}
}
sidev[0] = sv1;
sidev[1] = sv2;
if ((sv1 | sv2) == 0)
{ // seg is coplanar with the splitter, so use its orientation to determine
// which child it ends up in. If it faces the same direction as the splitter,
// it goes in front. Otherwise, it goes in back.
if (node.dx != 0)
{
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
{
return 0;
}
else
{
return 1;
}
}
else
{
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
{
return 0;
}
else
{
return 1;
}
}
}
else if (sv1 <= 0 && sv2 <= 0)
{
return 0;
}
else if (sv1 >= 0 && sv2 >= 0)
{
return 1;
}
return -1;
}
#endif