raze/source/common/rendering/polyrenderer/drawers/screen_shader.cpp
Mitch Richters 9894729fc2 - Replace MAX() from templates.h with version provided in STL.
# Conflicts:
#	source/common/textures/hw_ihwtexture.cpp
#	source/common/utility/templates.h
2021-10-30 10:36:02 +02:00

638 lines
20 KiB
C++

/*
** Polygon Doom software renderer
** Copyright (c) 2016 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include <stddef.h>
#include "templates.h"
#include "poly_thread.h"
#include "screen_scanline_setup.h"
#include <cmath>
static uint32_t SampleTexture(uint32_t u, uint32_t v, const void* texPixels, int texWidth, int texHeight, bool texBgra)
{
int texelX = (u * texWidth) >> 16;
int texelY = (v * texHeight) >> 16;
int texelOffset = texelX + texelY * texWidth;
if (texBgra)
{
return static_cast<const uint32_t*>(texPixels)[texelOffset];
}
else
{
uint32_t c = static_cast<const uint8_t*>(texPixels)[texelOffset];
return (c << 16) | 0xff000000;
}
}
static void EffectFogBoundary(int x0, int x1, PolyTriangleThreadData* thread)
{
float uFogDensity = thread->PushConstants->uFogDensity;
uint32_t fogcolor = MAKEARGB(
0,
static_cast<int>(clamp(thread->mainVertexShader.Data.uFogColor.r, 0.0f, 1.0f) * 255.0f),
static_cast<int>(clamp(thread->mainVertexShader.Data.uFogColor.g, 0.0f, 1.0f) * 255.0f),
static_cast<int>(clamp(thread->mainVertexShader.Data.uFogColor.b, 0.0f, 1.0f) * 255.0f));
uint32_t* fragcolor = thread->scanline.FragColor;
for (int x = x0; x < x1; x++)
{
float fogdist = thread->scanline.W[x];
float fogfactor = std::exp2(uFogDensity * fogdist);
// FragColor = vec4(uFogColor.rgb, 1.0 - fogfactor):
uint32_t alpha = static_cast<int>(clamp(1.0f - (1.0f / 255.0f), 0.0f, 1.0f) * 255.0f);
fragcolor[x] = fogcolor | alpha;
}
}
static void EffectBurn(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
int tex2Width = thread->textures[1].width;
int tex2Height = thread->textures[1].height;
const void* tex2Pixels = thread->textures[1].pixels;
bool tex2Bgra = thread->textures[1].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t frag_r = thread->scanline.vColorR[x];
uint32_t frag_g = thread->scanline.vColorG[x];
uint32_t frag_b = thread->scanline.vColorB[x];
uint32_t frag_a = thread->scanline.vColorA[x];
frag_r += frag_r >> 7; // 255 -> 256
frag_g += frag_g >> 7; // 255 -> 256
frag_b += frag_b >> 7; // 255 -> 256
frag_a += frag_a >> 7; // 255 -> 256
uint32_t t1 = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
uint32_t t2 = SampleTexture(u[x], 0xffff - v[x], tex2Pixels, tex2Width, tex2Height, tex2Bgra);
uint32_t r = (frag_r * RPART(t1)) >> 8;
uint32_t g = (frag_g * GPART(t1)) >> 8;
uint32_t b = (frag_b * BPART(t1)) >> 8;
uint32_t a = (frag_a * APART(t2)) >> 8;
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
static void EffectStencil(int x0, int x1, PolyTriangleThreadData* thread)
{
/*for (int x = x0; x < x1; x++)
{
fragcolor[x] = 0x00ffffff;
}*/
}
static void FuncPaletted(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
const uint32_t* lut = (const uint32_t*)thread->textures[1].pixels;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
fragcolor[x] = lut[RPART(SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra))] | 0xff000000;
}
}
static void FuncNoTexture(int x0, int x1, PolyTriangleThreadData* thread)
{
auto& streamdata = thread->mainVertexShader.Data;
uint32_t a = (int)(streamdata.uObjectColor.a * 255.0f);
uint32_t r = (int)(streamdata.uObjectColor.r * 255.0f);
uint32_t g = (int)(streamdata.uObjectColor.g * 255.0f);
uint32_t b = (int)(streamdata.uObjectColor.b * 255.0f);
uint32_t texel = MAKEARGB(a, r, g, b);
if (streamdata.uDesaturationFactor > 0.0f)
{
uint32_t t = (int)(streamdata.uDesaturationFactor * 256.0f);
uint32_t inv_t = 256 - t;
uint32_t gray = (RPART(texel) * 77 + GPART(texel) * 143 + BPART(texel) * 37) >> 8;
texel = MAKEARGB(
APART(texel),
(RPART(texel) * inv_t + gray * t + 127) >> 8,
(GPART(texel) * inv_t + gray * t + 127) >> 8,
(BPART(texel) * inv_t + gray * t + 127) >> 8);
}
uint32_t* fragcolor = thread->scanline.FragColor;
for (int x = x0; x < x1; x++)
{
fragcolor[x] = texel;
}
}
static void FuncNormal(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
fragcolor[x] = texel;
}
}
static void FuncNormal_Stencil(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
fragcolor[x] = texel | 0x00ffffff;
}
}
static void FuncNormal_Opaque(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
fragcolor[x] = texel | 0xff000000;
}
}
static void FuncNormal_Inverse(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
fragcolor[x] = MAKEARGB(APART(texel), 0xff - RPART(texel), 0xff - BPART(texel), 0xff - GPART(texel));
}
}
static void FuncNormal_AlphaTexture(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
uint32_t gray = (RPART(texel) * 77 + GPART(texel) * 143 + BPART(texel) * 37) >> 8;
uint32_t alpha = APART(texel);
alpha += alpha >> 7;
alpha = (alpha * gray + 127) >> 8;
texel = (alpha << 24) | 0x00ffffff;
fragcolor[x] = texel;
}
}
static void FuncNormal_ClampY(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
fragcolor[x] = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
if (v[x] < 0.0 || v[x] > 1.0)
fragcolor[x] &= 0x00ffffff;
}
}
static void FuncNormal_InvertOpaque(int x0, int x1, PolyTriangleThreadData* thread)
{
int texWidth = thread->textures[0].width;
int texHeight = thread->textures[0].height;
const void* texPixels = thread->textures[0].pixels;
bool texBgra = thread->textures[0].bgra;
uint32_t* fragcolor = thread->scanline.FragColor;
uint16_t* u = thread->scanline.U;
uint16_t* v = thread->scanline.V;
for (int x = x0; x < x1; x++)
{
uint32_t texel = SampleTexture(u[x], v[x], texPixels, texWidth, texHeight, texBgra);
fragcolor[x] = MAKEARGB(0xff, 0xff - RPART(texel), 0xff - BPART(texel), 0xff - GPART(texel));
}
}
static void FuncNormal_AddColor(int x0, int x1, PolyTriangleThreadData* thread)
{
auto& streamdata = thread->mainVertexShader.Data;
uint32_t r = (int)(streamdata.uAddColor.r * 255.0f);
uint32_t g = (int)(streamdata.uAddColor.g * 255.0f);
uint32_t b = (int)(streamdata.uAddColor.b * 255.0f);
uint32_t* fragcolor = thread->scanline.FragColor;
for (int x = x0; x < x1; x++)
{
uint32_t texel = fragcolor[x];
fragcolor[x] = MAKEARGB(
APART(texel),
MIN(r + RPART(texel), (uint32_t)255),
MIN(g + GPART(texel), (uint32_t)255),
MIN(b + BPART(texel), (uint32_t)255));
}
}
static void FuncNormal_AddObjectColor(int x0, int x1, PolyTriangleThreadData* thread)
{
auto& streamdata = thread->mainVertexShader.Data;
uint32_t r = (int)(streamdata.uObjectColor.r * 256.0f);
uint32_t g = (int)(streamdata.uObjectColor.g * 256.0f);
uint32_t b = (int)(streamdata.uObjectColor.b * 256.0f);
uint32_t* fragcolor = thread->scanline.FragColor;
for (int x = x0; x < x1; x++)
{
uint32_t texel = fragcolor[x];
fragcolor[x] = MAKEARGB(
APART(texel),
MIN((r * RPART(texel)) >> 8, (uint32_t)255),
MIN((g * GPART(texel)) >> 8, (uint32_t)255),
MIN((b * BPART(texel)) >> 8, (uint32_t)255));
}
}
static void FuncNormal_AddObjectColor2(int x0, int x1, PolyTriangleThreadData* thread)
{
auto& streamdata = thread->mainVertexShader.Data;
float* gradientdistZ = thread->scanline.GradientdistZ;
uint32_t* fragcolor = thread->scanline.FragColor;
for (int x = x0; x < x1; x++)
{
float t = gradientdistZ[x];
float inv_t = 1.0f - t;
uint32_t r = (int)((streamdata.uObjectColor.r * inv_t + streamdata.uObjectColor2.r * t) * 256.0f);
uint32_t g = (int)((streamdata.uObjectColor.g * inv_t + streamdata.uObjectColor2.g * t) * 256.0f);
uint32_t b = (int)((streamdata.uObjectColor.b * inv_t + streamdata.uObjectColor2.b * t) * 256.0f);
uint32_t texel = fragcolor[x];
fragcolor[x] = MAKEARGB(
APART(texel),
MIN((r * RPART(texel)) >> 8, (uint32_t)255),
MIN((g * GPART(texel)) >> 8, (uint32_t)255),
MIN((b * BPART(texel)) >> 8, (uint32_t)255));
}
}
static void FuncNormal_DesaturationFactor(int x0, int x1, PolyTriangleThreadData* thread)
{
auto& streamdata = thread->mainVertexShader.Data;
uint32_t* fragcolor = thread->scanline.FragColor;
uint32_t t = (int)(streamdata.uDesaturationFactor * 256.0f);
uint32_t inv_t = 256 - t;
for (int x = x0; x < x1; x++)
{
uint32_t texel = fragcolor[x];
uint32_t gray = (RPART(texel) * 77 + GPART(texel) * 143 + BPART(texel) * 37) >> 8;
fragcolor[x] = MAKEARGB(
APART(texel),
(RPART(texel) * inv_t + gray * t + 127) >> 8,
(GPART(texel) * inv_t + gray * t + 127) >> 8,
(BPART(texel) * inv_t + gray * t + 127) >> 8);
}
}
static void RunAlphaTest(int x0, int x1, PolyTriangleThreadData* thread)
{
uint32_t alphaThreshold = thread->AlphaThreshold;
uint32_t* fragcolor = thread->scanline.FragColor;
uint8_t* discard = thread->scanline.discard;
for (int x = x0; x < x1; x++)
{
discard[x] = fragcolor[x] <= alphaThreshold;
}
}
static void ProcessMaterial(int x0, int x1, PolyTriangleThreadData* thread)
{
if (thread->EffectState == SHADER_Paletted) // func_paletted
{
FuncPaletted(x0, x1, thread);
}
else if (thread->EffectState == SHADER_NoTexture) // func_notexture
{
FuncNoTexture(x0, x1, thread);
}
else // func_normal
{
auto constants = thread->PushConstants;
switch (constants->uTextureMode)
{
default:
case TM_NORMAL:
case TM_FOGLAYER: FuncNormal(x0, x1, thread); break;
case TM_STENCIL: FuncNormal_Stencil(x0, x1, thread); break;
case TM_OPAQUE: FuncNormal_Opaque(x0, x1, thread); break;
case TM_INVERSE: FuncNormal_Inverse(x0, x1, thread); break;
case TM_ALPHATEXTURE: FuncNormal_AlphaTexture(x0, x1, thread); break;
case TM_CLAMPY: FuncNormal_ClampY(x0, x1, thread); break;
case TM_INVERTOPAQUE: FuncNormal_InvertOpaque(x0, x1, thread); break;
}
if (constants->uTextureMode != TM_FOGLAYER)
{
auto& streamdata = thread->mainVertexShader.Data;
if (streamdata.uAddColor.r != 0.0f || streamdata.uAddColor.g != 0.0f || streamdata.uAddColor.b != 0.0f)
{
FuncNormal_AddColor(x0, x1, thread);
}
if (streamdata.uObjectColor2.a == 0.0f)
{
if (streamdata.uObjectColor.r != 1.0f || streamdata.uObjectColor.g != 1.0f || streamdata.uObjectColor.b != 1.0f)
{
FuncNormal_AddObjectColor(x0, x1, thread);
}
}
else
{
FuncNormal_AddObjectColor2(x0, x1, thread);
}
if (streamdata.uDesaturationFactor > 0.0f)
{
FuncNormal_DesaturationFactor(x0, x1, thread);
}
}
}
}
static void GetLightColor(int x0, int x1, PolyTriangleThreadData* thread)
{
uint32_t* fragcolor = thread->scanline.FragColor;
uint32_t* lightarray = thread->scanline.lightarray;
if (thread->PushConstants->uFogEnabled >= 0)
{
for (int x = x0; x < x1; x++)
{
uint32_t fg = fragcolor[x];
uint32_t lightshade = lightarray[x];
uint32_t mulA = APART(lightshade);
uint32_t mulR = RPART(lightshade);
uint32_t mulG = GPART(lightshade);
uint32_t mulB = BPART(lightshade);
mulA += mulA >> 7;
mulR += mulR >> 7;
mulG += mulG >> 7;
mulB += mulB >> 7;
uint32_t a = (APART(fg) * mulA + 127) >> 8;
uint32_t r = (RPART(fg) * mulR + 127) >> 8;
uint32_t g = (GPART(fg) * mulG + 127) >> 8;
uint32_t b = (BPART(fg) * mulB + 127) >> 8;
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
else
{
uint32_t fogR = (int)((thread->mainVertexShader.Data.uFogColor.r) * 255.0f);
uint32_t fogG = (int)((thread->mainVertexShader.Data.uFogColor.g) * 255.0f);
uint32_t fogB = (int)((thread->mainVertexShader.Data.uFogColor.b) * 255.0f);
float uFogDensity = thread->PushConstants->uFogDensity;
float* w = thread->scanline.W;
for (int x = x0; x < x1; x++)
{
uint32_t fg = fragcolor[x];
uint32_t lightshade = lightarray[x];
uint32_t mulA = APART(lightshade);
uint32_t mulR = RPART(lightshade);
uint32_t mulG = GPART(lightshade);
uint32_t mulB = BPART(lightshade);
mulA += mulA >> 7;
mulR += mulR >> 7;
mulG += mulG >> 7;
mulB += mulB >> 7;
float fogdist = max(16.0f, w[x]);
float fogfactor = std::exp2(uFogDensity * fogdist);
uint32_t a = (APART(fg) * mulA + 127) >> 8;
uint32_t r = (RPART(fg) * mulR + 127) >> 8;
uint32_t g = (GPART(fg) * mulG + 127) >> 8;
uint32_t b = (BPART(fg) * mulB + 127) >> 8;
uint32_t t = (int)(fogfactor * 256.0f);
uint32_t inv_t = 256 - t;
r = (fogR * inv_t + r * t + 127) >> 8;
g = (fogG * inv_t + g * t + 127) >> 8;
b = (fogB * inv_t + b * t + 127) >> 8;
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
}
static void MainFP(int x0, int x1, PolyTriangleThreadData* thread)
{
ProcessMaterial(x0, x1, thread);
if (thread->AlphaTest)
RunAlphaTest(x0, x1, thread);
auto constants = thread->PushConstants;
if (constants->uFogEnabled != -3)
{
if (constants->uTextureMode != TM_FOGLAYER)
{
GetLightColor(x0, x1, thread);
}
else
{
/*float fogdist = 0.0f;
float fogfactor = 0.0f;
if (constants->uFogEnabled != 0)
{
fogdist = max(16.0f, w[x]);
fogfactor = std::exp2(constants->uFogDensity * fogdist);
}
frag = vec4(uFogColor.rgb, (1.0 - fogfactor) * frag.a * 0.75 * vColor.a);*/
}
}
else // simple 2D (uses the fog color to add a color overlay)
{
uint32_t fogR = (int)((thread->mainVertexShader.Data.uFogColor.r) * 255.0f);
uint32_t fogG = (int)((thread->mainVertexShader.Data.uFogColor.g) * 255.0f);
uint32_t fogB = (int)((thread->mainVertexShader.Data.uFogColor.b) * 255.0f);
auto vColorR = thread->scanline.vColorR;
auto vColorG = thread->scanline.vColorG;
auto vColorB = thread->scanline.vColorB;
auto vColorA = thread->scanline.vColorA;
uint32_t* fragcolor = thread->scanline.FragColor;
if (constants->uTextureMode == TM_FIXEDCOLORMAP)
{
// float gray = grayscale(frag);
// vec4 cm = (uObjectColor + gray * (uAddColor - uObjectColor)) * 2;
// frag = vec4(clamp(cm.rgb, 0.0, 1.0), frag.a);
// frag = frag * vColor;
// frag.rgb = frag.rgb + uFogColor.rgb;
// [GEC] I leave the default floating values.
float startR = thread->mainVertexShader.Data.uObjectColor.r;
float startG = thread->mainVertexShader.Data.uObjectColor.g;
float startB = thread->mainVertexShader.Data.uObjectColor.b;
float rangeR = thread->mainVertexShader.Data.uAddColor.r - startR;
float rangeG = thread->mainVertexShader.Data.uAddColor.g - startG;
float rangeB = thread->mainVertexShader.Data.uAddColor.b - startB;
for (int x = x0; x < x1; x++)
{
uint32_t a = APART(fragcolor[x]);
uint32_t r = RPART(fragcolor[x]);
uint32_t g = GPART(fragcolor[x]);
uint32_t b = BPART(fragcolor[x]);
uint32_t gray = (r * 77 + g * 143 + b * 37) >> 8;
gray += (gray >> 7); // gray*=256/255
// [GEC] I use the same method as in shaders using floating values.
// This avoids errors in the invulneravility colormap in Doom and Heretic.
float fgray = (float)(gray / 255.f);
float fr = (startR + (fgray * rangeR)) * 2;
float fg = (startG + (fgray * rangeG)) * 2;
float fb = (startB + (fgray * rangeB)) * 2;
fr = clamp<float>(fr, 0.0f, 1.0f);
fg = clamp<float>(fg, 0.0f, 1.0f);
fb = clamp<float>(fb, 0.0f, 1.0f);
r = (uint32_t)(fr * 255.f);
g = (uint32_t)(fg * 255.f);
b = (uint32_t)(fb * 255.f);
fragcolor[x] = MAKEARGB(a, (uint8_t)r, (uint8_t)g, (uint8_t)b);
}
}
else
{
for (int x = x0; x < x1; x++)
{
uint32_t a = vColorA[x];
uint32_t r = vColorR[x];
uint32_t g = vColorG[x];
uint32_t b = vColorB[x];
a += a >> 7;
r += r >> 7;
g += g >> 7;
b += b >> 7;
// frag = frag * vColor;
a = (APART(fragcolor[x]) * a + 127) >> 8;
r = (RPART(fragcolor[x]) * r + 127) >> 8;
g = (GPART(fragcolor[x]) * g + 127) >> 8;
b = (BPART(fragcolor[x]) * b + 127) >> 8;
// frag.rgb = frag.rgb + uFogColor.rgb;
r = MIN(r + fogR, (uint32_t)255);
g = MIN(g + fogG, (uint32_t)255);
b = MIN(b + fogB, (uint32_t)255);
fragcolor[x] = MAKEARGB(a, r, g, b);
}
}
}
}
void ColormapFP(int x0, int x1, PolyTriangleThreadData* thread)
{
// This is implemented in BlendColorColormap.
}
void SelectFragmentShader(PolyTriangleThreadData* thread)
{
void (*fragshader)(int x0, int x1, PolyTriangleThreadData * thread);
if (thread->ColormapShader)
{
fragshader = &ColormapFP;
}
else if (thread->SpecialEffect == EFF_FOGBOUNDARY) // fogboundary.fp
{
fragshader = &EffectFogBoundary;
}
else if (thread->SpecialEffect == EFF_BURN) // burn.fp
{
fragshader = &EffectBurn;
}
else if (thread->SpecialEffect == EFF_STENCIL) // stencil.fp
{
fragshader = &EffectStencil;
}
else
{
fragshader = &MainFP;
}
thread->FragmentShader = fragshader;
}