raze/source/common/rendering/hwrenderer/data/hw_lightbuffer.cpp
Christoph Oelckers 9071949a46 - backend upate from GZDoom
* Vulkan SDK and dependencies updated.
* better interface for buffers in the render backend.
2021-10-30 09:34:38 +02:00

149 lines
4.4 KiB
C++

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2014-2016 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
** gl_lightbuffer.cpp
** Buffer data maintenance for dynamic lights
**
**/
#include "hw_lightbuffer.h"
#include "hw_dynlightdata.h"
#include "shaderuniforms.h"
static const int ELEMENTS_PER_LIGHT = 4; // each light needs 4 vec4's.
static const int ELEMENT_SIZE = (4*sizeof(float));
FLightBuffer::FLightBuffer(int pipelineNbr):
mPipelineNbr(pipelineNbr)
{
int maxNumberOfLights = 80000;
mBufferSize = maxNumberOfLights * ELEMENTS_PER_LIGHT;
mByteSize = mBufferSize * ELEMENT_SIZE;
// Hack alert: On Intel's GL driver SSBO's perform quite worse than UBOs.
// We only want to disable using SSBOs for lights but not disable the feature entirely.
// Note that using an uniform buffer here will limit the number of lights per surface so it isn't done for NVidia and AMD.
if (screen->IsVulkan() || screen->IsPoly() || ((screen->hwcaps & RFL_SHADER_STORAGE_BUFFER) && screen->allowSSBO() && !strstr(screen->vendorstring, "Intel")))
{
mBufferType = true;
mBlockAlign = 0;
mBlockSize = mBufferSize;
mMaxUploadSize = mBlockSize;
}
else
{
mBufferType = false;
mBlockSize = screen->maxuniformblock / ELEMENT_SIZE;
mBlockAlign = screen->uniformblockalignment / ELEMENT_SIZE;
mMaxUploadSize = (mBlockSize - mBlockAlign);
//mByteSize += screen->maxuniformblock; // to avoid mapping beyond the end of the buffer. REMOVED this...This can try to allocate 100's of MB..
}
for (int n = 0; n < mPipelineNbr; n++)
{
mBufferPipeline[n] = screen->CreateDataBuffer(LIGHTBUF_BINDINGPOINT, mBufferType, false);
mBufferPipeline[n]->SetData(mByteSize, nullptr, BufferUsageType::Persistent);
}
Clear();
}
FLightBuffer::~FLightBuffer()
{
delete mBuffer;
}
void FLightBuffer::Clear()
{
mIndex = 0;
mPipelinePos++;
mPipelinePos %= mPipelineNbr;
mBuffer = mBufferPipeline[mPipelinePos];
}
int FLightBuffer::UploadLights(FDynLightData &data)
{
// All meaasurements here are in vec4's.
int size0 = data.arrays[0].Size()/4;
int size1 = data.arrays[1].Size()/4;
int size2 = data.arrays[2].Size()/4;
int totalsize = size0 + size1 + size2 + 1;
if (totalsize > (int)mMaxUploadSize)
{
int diff = totalsize - (int)mMaxUploadSize;
size2 -= diff;
if (size2 < 0)
{
size1 += size2;
size2 = 0;
}
if (size1 < 0)
{
size0 += size1;
size1 = 0;
}
totalsize = size0 + size1 + size2 + 1;
}
float *mBufferPointer = (float*)mBuffer->Memory();
assert(mBufferPointer != nullptr);
if (mBufferPointer == nullptr) return -1;
if (totalsize <= 1) return -1; // there are no lights
unsigned thisindex = mIndex.fetch_add(totalsize);
float parmcnt[] = { 0, float(size0), float(size0 + size1), float(size0 + size1 + size2) };
if (thisindex + totalsize <= mBufferSize)
{
float *copyptr = mBufferPointer + thisindex*4;
memcpy(&copyptr[0], parmcnt, ELEMENT_SIZE);
memcpy(&copyptr[4], &data.arrays[0][0], size0 * ELEMENT_SIZE);
memcpy(&copyptr[4 + 4*size0], &data.arrays[1][0], size1 * ELEMENT_SIZE);
memcpy(&copyptr[4 + 4*(size0 + size1)], &data.arrays[2][0], size2 * ELEMENT_SIZE);
return thisindex;
}
else
{
return -1; // Buffer is full. Since it is being used live at the point of the upload we cannot do much here but to abort.
}
}
int FLightBuffer::GetBinding(unsigned int index, size_t* pOffset, size_t* pSize)
{
// this function will only get called if a uniform buffer is used. For a shader storage buffer we only need to bind the buffer once at the start.
unsigned int offset = (index / mBlockAlign) * mBlockAlign;
*pOffset = offset * ELEMENT_SIZE;
*pSize = mBlockSize * ELEMENT_SIZE;
return (index - offset);
}