mirror of
https://github.com/ZDoom/Raze.git
synced 2025-01-19 15:11:04 +00:00
2991bc752b
Also did a bit of reshuffling on gamefuncs.h to group content better.
177 lines
6.3 KiB
C++
177 lines
6.3 KiB
C++
#pragma once
|
|
|
|
/*
|
|
** geometry.h
|
|
** basic geometry math routines
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2005-2022 Christoph Oelckers
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "vectors.h"
|
|
|
|
inline DVector2 rotatepoint(const DVector2& pivot, const DVector2& point, DAngle angle)
|
|
{
|
|
return (point - pivot).Rotated(angle) + pivot;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
//
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay)
|
|
{
|
|
return (x - linex) * deltay - (y - liney) * deltax;
|
|
}
|
|
|
|
template<class T>
|
|
inline double PointOnLineSide(const TVector2<T>& pos, const TVector2<T>& linestart, const TVector2<T>& lineend)
|
|
{
|
|
return (pos.X - linestart.X) * (lineend.Y - linestart.Y) - (pos.Y - linestart.Y) * (lineend.X - linestart.X);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
//
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double SquareDist(double lx1, double ly1, double lx2, double ly2)
|
|
{
|
|
double dx = lx2 - lx1;
|
|
double dy = ly2 - ly1;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
// This is for cases where only the factor is needed, and pre-validation was performed.
|
|
inline double NearestPointOnLineFast(double px, double py, double lx1, double ly1, double lx2, double ly2)
|
|
{
|
|
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
|
|
assert(wall_length > 0);
|
|
return ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
|
|
}
|
|
|
|
|
|
inline DVector2 NearestPointOnLine(double px, double py, double lx1, double ly1, double lx2, double ly2, bool clamp = true)
|
|
{
|
|
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
|
|
|
|
if (wall_length == 0)
|
|
{
|
|
return { lx1, ly1 };
|
|
}
|
|
|
|
double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
|
|
if (clamp)
|
|
{
|
|
if (t <= 0) return { lx1, ly1 };
|
|
if (t >= 1) return { lx2, ly2 };
|
|
}
|
|
double xx = lx1 + t * (lx2 - lx1);
|
|
double yy = ly1 + t * (ly2 - ly1);
|
|
return { xx, yy };
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
//
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double SquareDistToLine(double px, double py, double lx1, double ly1, double lx2, double ly2)
|
|
{
|
|
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
|
|
|
|
if (wall_length == 0) return SquareDist(px, py, lx1, ly1);
|
|
|
|
double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
|
|
t = clamp(t, 0., 1.);
|
|
double xx = lx1 + t * (lx2 - lx1);
|
|
double yy = ly1 + t * (ly2 - ly1);
|
|
return SquareDist(px, py, xx, yy);
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// taken from GZDoom with the divline_t parameters removed
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double InterceptVector(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy)
|
|
{
|
|
double den = v1dy * v2dx - v1dx * v2dy;
|
|
|
|
if (den == 0)
|
|
return 0; // parallel
|
|
|
|
double num = (v1x - v2x) * v1dy + (v2y - v1y) * v1dx;
|
|
return num / den;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Essentially two InterceptVector calls. We can reduce the calculations
|
|
// because the denominators for both calculations only differ by their sign.
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double InterceptLineSegments(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy, double* pfactor1 = nullptr, bool forcansee = false)
|
|
{
|
|
double den = v1dy * v2dx - v1dx * v2dy;
|
|
|
|
if (den == 0 || (forcansee && den < 0)) // cansee does this added check here, aside from that its logic is virtually the same.
|
|
return 0; // parallel
|
|
|
|
// perform the division first for better parallelization.
|
|
den = 1 / den;
|
|
|
|
double factor1 = ((v2x - v1x) * v2dy + (v1y - v2y) * v2dx) * -den;
|
|
if (factor1 < 0 || factor1 > 1) return -FLT_MAX; // no intersection
|
|
if (pfactor1) *pfactor1 = factor1;
|
|
|
|
return ((v1x - v2x) * v1dy + (v2y - v1y) * v1dx) * den; // this one's for the line segment where we want to get the intercept factor for so it needs to be last.
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// calculates intersection between a plane and line in 3D
|
|
//
|
|
//==========================================================================
|
|
|
|
inline double LinePlaneIntersect(const DVector3& start, const DVector3& trace, const DVector3& ppoint, const DVector3& pvec1, const DVector3& pvec2)
|
|
{
|
|
auto normal = pvec1 ^ pvec2; // we do not need a unit vector here.
|
|
double dist = normal.dot(ppoint);
|
|
double dotStart = normal.dot(start);
|
|
double dotTrace = normal.dot(trace);
|
|
if (dotTrace == 0) return -FLT_MAX;
|
|
return (dist - dotStart) / dotTrace; // we are only interested in the factor
|
|
}
|
|
|