raze/libraries/libtess/Source/tess.c
2021-12-30 09:53:07 +01:00

1114 lines
28 KiB
C

/*
** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
** Copyright (C) [dates of first publication] Silicon Graphics, Inc.
** All Rights Reserved.
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
** of the Software, and to permit persons to whom the Software is furnished to do so,
** subject to the following conditions:
**
** The above copyright notice including the dates of first publication and either this
** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
** OR OTHER DEALINGS IN THE SOFTWARE.
**
** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
** be used in advertising or otherwise to promote the sale, use or other dealings in
** this Software without prior written authorization from Silicon Graphics, Inc.
*/
/*
** Author: Eric Veach, July 1994.
*/
#include <stddef.h>
#include <assert.h>
#include <setjmp.h>
#include "bucketalloc.h"
#include "tess.h"
#include "mesh.h"
#include "sweep.h"
#include "geom.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define TRUE 1
#define FALSE 0
#define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
static void Normalize( TESSreal v[3] )
{
TESSreal len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
assert( len > 0 );
len = sqrtf( len );
v[0] /= len;
v[1] /= len;
v[2] /= len;
}
#endif
#define ABS(x) ((x) < 0 ? -(x) : (x))
static int LongAxis( TESSreal v[3] )
{
int i = 0;
if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
return i;
}
static int ShortAxis( TESSreal v[3] )
{
int i = 0;
if( ABS(v[1]) < ABS(v[0]) ) { i = 1; }
if( ABS(v[2]) < ABS(v[i]) ) { i = 2; }
return i;
}
static void ComputeNormal( TESStesselator *tess, TESSreal norm[3] )
{
TESSvertex *v, *v1, *v2;
TESSreal c, tLen2, maxLen2;
TESSreal maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
TESSvertex *maxVert[3], *minVert[3];
TESSvertex *vHead = &tess->mesh->vHead;
int i;
v = vHead->next;
for( i = 0; i < 3; ++i ) {
c = v->coords[i];
minVal[i] = c;
minVert[i] = v;
maxVal[i] = c;
maxVert[i] = v;
}
for( v = vHead->next; v != vHead; v = v->next ) {
for( i = 0; i < 3; ++i ) {
c = v->coords[i];
if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
}
}
/* Find two vertices separated by at least 1/sqrt(3) of the maximum
* distance between any two vertices
*/
i = 0;
if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
if( minVal[i] >= maxVal[i] ) {
/* All vertices are the same -- normal doesn't matter */
norm[0] = 0; norm[1] = 0; norm[2] = 1;
return;
}
/* Look for a third vertex which forms the triangle with maximum area
* (Length of normal == twice the triangle area)
*/
maxLen2 = 0;
v1 = minVert[i];
v2 = maxVert[i];
d1[0] = v1->coords[0] - v2->coords[0];
d1[1] = v1->coords[1] - v2->coords[1];
d1[2] = v1->coords[2] - v2->coords[2];
for( v = vHead->next; v != vHead; v = v->next ) {
d2[0] = v->coords[0] - v2->coords[0];
d2[1] = v->coords[1] - v2->coords[1];
d2[2] = v->coords[2] - v2->coords[2];
tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
if( tLen2 > maxLen2 ) {
maxLen2 = tLen2;
norm[0] = tNorm[0];
norm[1] = tNorm[1];
norm[2] = tNorm[2];
}
}
if( maxLen2 <= 0 ) {
/* All points lie on a single line -- any decent normal will do */
norm[0] = norm[1] = norm[2] = 0;
norm[ShortAxis(d1)] = 1;
}
}
static void CheckOrientation( TESStesselator *tess )
{
TESSreal area;
TESSface *f, *fHead = &tess->mesh->fHead;
TESSvertex *v, *vHead = &tess->mesh->vHead;
TESShalfEdge *e;
/* When we compute the normal automatically, we choose the orientation
* so that the the sum of the signed areas of all contours is non-negative.
*/
area = 0;
for( f = fHead->next; f != fHead; f = f->next ) {
e = f->anEdge;
if( e->winding <= 0 ) continue;
do {
area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
e = e->Lnext;
} while( e != f->anEdge );
}
if( area < 0 ) {
/* Reverse the orientation by flipping all the t-coordinates */
for( v = vHead->next; v != vHead; v = v->next ) {
v->t = - v->t;
}
tess->tUnit[0] = - tess->tUnit[0];
tess->tUnit[1] = - tess->tUnit[1];
tess->tUnit[2] = - tess->tUnit[2];
}
}
#ifdef FOR_TRITE_TEST_PROGRAM
#include <stdlib.h>
extern int RandomSweep;
#define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
#define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
#else
#if defined(SLANTED_SWEEP)
/* The "feature merging" is not intended to be complete. There are
* special cases where edges are nearly parallel to the sweep line
* which are not implemented. The algorithm should still behave
* robustly (ie. produce a reasonable tesselation) in the presence
* of such edges, however it may miss features which could have been
* merged. We could minimize this effect by choosing the sweep line
* direction to be something unusual (ie. not parallel to one of the
* coordinate axes).
*/
#define S_UNIT_X (TESSreal)0.50941539564955385 /* Pre-normalized */
#define S_UNIT_Y (TESSreal)0.86052074622010633
#else
#define S_UNIT_X (TESSreal)1.0
#define S_UNIT_Y (TESSreal)0.0
#endif
#endif
/* Determine the polygon normal and project vertices onto the plane
* of the polygon.
*/
void tessProjectPolygon( TESStesselator *tess )
{
TESSvertex *v, *vHead = &tess->mesh->vHead;
TESSreal norm[3];
TESSreal *sUnit, *tUnit;
int i, first, computedNormal = FALSE;
norm[0] = tess->normal[0];
norm[1] = tess->normal[1];
norm[2] = tess->normal[2];
if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
ComputeNormal( tess, norm );
computedNormal = TRUE;
}
sUnit = tess->sUnit;
tUnit = tess->tUnit;
i = LongAxis( norm );
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
/* Choose the initial sUnit vector to be approximately perpendicular
* to the normal.
*/
Normalize( norm );
sUnit[i] = 0;
sUnit[(i+1)%3] = S_UNIT_X;
sUnit[(i+2)%3] = S_UNIT_Y;
/* Now make it exactly perpendicular */
w = Dot( sUnit, norm );
sUnit[0] -= w * norm[0];
sUnit[1] -= w * norm[1];
sUnit[2] -= w * norm[2];
Normalize( sUnit );
/* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
Normalize( tUnit );
#else
/* Project perpendicular to a coordinate axis -- better numerically */
sUnit[i] = 0;
sUnit[(i+1)%3] = S_UNIT_X;
sUnit[(i+2)%3] = S_UNIT_Y;
tUnit[i] = 0;
tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
#endif
/* Project the vertices onto the sweep plane */
for( v = vHead->next; v != vHead; v = v->next )
{
v->s = Dot( v->coords, sUnit );
v->t = Dot( v->coords, tUnit );
}
if( computedNormal ) {
CheckOrientation( tess );
}
/* Compute ST bounds. */
first = 1;
for( v = vHead->next; v != vHead; v = v->next )
{
if (first)
{
tess->bmin[0] = tess->bmax[0] = v->s;
tess->bmin[1] = tess->bmax[1] = v->t;
first = 0;
}
else
{
if (v->s < tess->bmin[0]) tess->bmin[0] = v->s;
if (v->s > tess->bmax[0]) tess->bmax[0] = v->s;
if (v->t < tess->bmin[1]) tess->bmin[1] = v->t;
if (v->t > tess->bmax[1]) tess->bmax[1] = v->t;
}
}
}
#define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
eDst->Sym->winding += eSrc->Sym->winding)
/* tessMeshTessellateMonoRegion( face ) tessellates a monotone region
* (what else would it do??) The region must consist of a single
* loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
* case means that any vertical line intersects the interior of the
* region in a single interval.
*
* Tessellation consists of adding interior edges (actually pairs of
* half-edges), to split the region into non-overlapping triangles.
*
* The basic idea is explained in Preparata and Shamos (which I don''t
* have handy right now), although their implementation is more
* complicated than this one. The are two edge chains, an upper chain
* and a lower chain. We process all vertices from both chains in order,
* from right to left.
*
* The algorithm ensures that the following invariant holds after each
* vertex is processed: the untessellated region consists of two
* chains, where one chain (say the upper) is a single edge, and
* the other chain is concave. The left vertex of the single edge
* is always to the left of all vertices in the concave chain.
*
* Each step consists of adding the rightmost unprocessed vertex to one
* of the two chains, and forming a fan of triangles from the rightmost
* of two chain endpoints. Determining whether we can add each triangle
* to the fan is a simple orientation test. By making the fan as large
* as possible, we restore the invariant (check it yourself).
*/
int tessMeshTessellateMonoRegion( TESSmesh *mesh, TESSface *face )
{
TESShalfEdge *up, *lo;
/* All edges are oriented CCW around the boundary of the region.
* First, find the half-edge whose origin vertex is rightmost.
* Since the sweep goes from left to right, face->anEdge should
* be close to the edge we want.
*/
up = face->anEdge;
assert( up->Lnext != up && up->Lnext->Lnext != up );
for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
;
for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
;
lo = up->Lprev;
while( up->Lnext != lo ) {
if( VertLeq( up->Dst, lo->Org )) {
/* up->Dst is on the left. It is safe to form triangles from lo->Org.
* The EdgeGoesLeft test guarantees progress even when some triangles
* are CW, given that the upper and lower chains are truly monotone.
*/
while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
|| EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
lo = lo->Lprev;
} else {
/* lo->Org is on the left. We can make CCW triangles from up->Dst. */
while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
|| EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, up, up->Lprev );
if (tempHalfEdge == NULL) return 0;
up = tempHalfEdge->Sym;
}
up = up->Lnext;
}
}
/* Now lo->Org == up->Dst == the leftmost vertex. The remaining region
* can be tessellated in a fan from this leftmost vertex.
*/
assert( lo->Lnext != up );
while( lo->Lnext->Lnext != up ) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
return 1;
}
/* tessMeshTessellateInterior( mesh ) tessellates each region of
* the mesh which is marked "inside" the polygon. Each such region
* must be monotone.
*/
int tessMeshTessellateInterior( TESSmesh *mesh )
{
TESSface *f, *next;
/*LINTED*/
for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
/* Make sure we don''t try to tessellate the new triangles. */
next = f->next;
if( f->inside ) {
if ( !tessMeshTessellateMonoRegion( mesh, f ) ) return 0;
}
}
return 1;
}
typedef struct EdgeStackNode EdgeStackNode;
typedef struct EdgeStack EdgeStack;
struct EdgeStackNode {
TESShalfEdge *edge;
EdgeStackNode *next;
};
struct EdgeStack {
EdgeStackNode *top;
struct BucketAlloc *nodeBucket;
};
int stackInit( EdgeStack *stack, TESSalloc *alloc )
{
stack->top = NULL;
stack->nodeBucket = createBucketAlloc( alloc, "CDT nodes", sizeof(EdgeStackNode), 512 );
return stack->nodeBucket != NULL;
}
void stackDelete( EdgeStack *stack )
{
deleteBucketAlloc( stack->nodeBucket );
}
int stackEmpty( EdgeStack *stack )
{
return stack->top == NULL;
}
void stackPush( EdgeStack *stack, TESShalfEdge *e )
{
EdgeStackNode *node = (EdgeStackNode *)bucketAlloc( stack->nodeBucket );
if ( ! node ) return;
node->edge = e;
node->next = stack->top;
stack->top = node;
}
TESShalfEdge *stackPop( EdgeStack *stack )
{
TESShalfEdge *e = NULL;
EdgeStackNode *node = stack->top;
if (node) {
stack->top = node->next;
e = node->edge;
bucketFree( stack->nodeBucket, node );
}
return e;
}
// Starting with a valid triangulation, uses the Edge Flip algorithm to
// refine the triangulation into a Constrained Delaunay Triangulation.
void tessMeshRefineDelaunay( TESSmesh *mesh, TESSalloc *alloc )
{
// At this point, we have a valid, but not optimal, triangulation.
// We refine the triangulation using the Edge Flip algorithm
//
// 1) Find all internal edges
// 2) Mark all dual edges
// 3) insert all dual edges into a queue
TESSface *f;
EdgeStack stack;
TESShalfEdge *e;
int maxFaces = 0, maxIter = 0, iter = 0;
stackInit(&stack, alloc);
for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
if ( f->inside) {
e = f->anEdge;
do {
e->mark = EdgeIsInternal(e); // Mark internal edges
if (e->mark && !e->Sym->mark) stackPush(&stack, e); // Insert into queue
e = e->Lnext;
} while (e != f->anEdge);
maxFaces++;
}
}
// The algorithm should converge on O(n^2), since the predicate is not robust,
// we'll save guard against infinite loop.
maxIter = maxFaces * maxFaces;
// Pop stack until we find a reversed edge
// Flip the reversed edge, and insert any of the four opposite edges
// which are internal and not already in the stack (!marked)
while (!stackEmpty(&stack) && iter < maxIter) {
e = stackPop(&stack);
e->mark = e->Sym->mark = 0;
if (!tesedgeIsLocallyDelaunay(e)) {
TESShalfEdge *edges[4];
int i;
tessMeshFlipEdge(mesh, e);
// for each opposite edge
edges[0] = e->Lnext;
edges[1] = e->Lprev;
edges[2] = e->Sym->Lnext;
edges[3] = e->Sym->Lprev;
for (i = 0; i < 4; i++) {
if (!edges[i]->mark && EdgeIsInternal(edges[i])) {
edges[i]->mark = edges[i]->Sym->mark = 1;
stackPush(&stack, edges[i]);
}
}
}
iter++;
}
stackDelete(&stack);
}
/* tessMeshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces
* which are not marked "inside" the polygon. Since further mesh operations
* on NULL faces are not allowed, the main purpose is to clean up the
* mesh so that exterior loops are not represented in the data structure.
*/
void tessMeshDiscardExterior( TESSmesh *mesh )
{
TESSface *f, *next;
/*LINTED*/
for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
/* Since f will be destroyed, save its next pointer. */
next = f->next;
if( ! f->inside ) {
tessMeshZapFace( mesh, f );
}
}
}
/* tessMeshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the
* winding numbers on all edges so that regions marked "inside" the
* polygon have a winding number of "value", and regions outside
* have a winding number of 0.
*
* If keepOnlyBoundary is TRUE, it also deletes all edges which do not
* separate an interior region from an exterior one.
*/
int tessMeshSetWindingNumber( TESSmesh *mesh, int value,
int keepOnlyBoundary )
{
TESShalfEdge *e, *eNext;
for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
eNext = e->next;
if( e->Rface->inside != e->Lface->inside ) {
/* This is a boundary edge (one side is interior, one is exterior). */
e->winding = (e->Lface->inside) ? value : -value;
} else {
/* Both regions are interior, or both are exterior. */
if( ! keepOnlyBoundary ) {
e->winding = 0;
} else {
if ( !tessMeshDelete( mesh, e ) ) return 0;
}
}
}
return 1;
}
void* heapAlloc( void* userData, unsigned int size )
{
TESS_NOTUSED( userData );
return malloc( size );
}
void* heapRealloc( void *userData, void* ptr, unsigned int size )
{
TESS_NOTUSED( userData );
return realloc( ptr, size );
}
void heapFree( void* userData, void* ptr )
{
TESS_NOTUSED( userData );
free( ptr );
}
static TESSalloc defaulAlloc =
{
heapAlloc,
heapRealloc,
heapFree,
0,
0,
0,
0,
0,
0,
0,
};
TESStesselator* tessNewTess( TESSalloc* alloc )
{
TESStesselator* tess;
if (alloc == NULL)
alloc = &defaulAlloc;
/* Only initialize fields which can be changed by the api. Other fields
* are initialized where they are used.
*/
tess = (TESStesselator *)alloc->memalloc( alloc->userData, sizeof( TESStesselator ));
if ( tess == NULL ) {
return 0; /* out of memory */
}
tess->alloc = *alloc;
/* Check and set defaults. */
if (tess->alloc.meshEdgeBucketSize == 0)
tess->alloc.meshEdgeBucketSize = 512;
if (tess->alloc.meshVertexBucketSize == 0)
tess->alloc.meshVertexBucketSize = 512;
if (tess->alloc.meshFaceBucketSize == 0)
tess->alloc.meshFaceBucketSize = 256;
if (tess->alloc.dictNodeBucketSize == 0)
tess->alloc.dictNodeBucketSize = 512;
if (tess->alloc.regionBucketSize == 0)
tess->alloc.regionBucketSize = 256;
tess->normal[0] = 0;
tess->normal[1] = 0;
tess->normal[2] = 0;
tess->bmin[0] = 0;
tess->bmin[1] = 0;
tess->bmax[0] = 0;
tess->bmax[1] = 0;
tess->reverseContours = 0;
tess->windingRule = TESS_WINDING_ODD;
tess->processCDT = 0;
if (tess->alloc.regionBucketSize < 16)
tess->alloc.regionBucketSize = 16;
if (tess->alloc.regionBucketSize > 4096)
tess->alloc.regionBucketSize = 4096;
tess->regionPool = createBucketAlloc( &tess->alloc, "Regions",
sizeof(ActiveRegion), tess->alloc.regionBucketSize );
// Initialize to begin polygon.
tess->mesh = NULL;
tess->outOfMemory = 0;
tess->vertexIndexCounter = 0;
tess->vertices = 0;
tess->vertexIndices = 0;
tess->vertexCount = 0;
tess->elements = 0;
tess->elementCount = 0;
return tess;
}
void tessDeleteTess( TESStesselator *tess )
{
struct TESSalloc alloc = tess->alloc;
deleteBucketAlloc( tess->regionPool );
if( tess->mesh != NULL ) {
tessMeshDeleteMesh( &alloc, tess->mesh );
tess->mesh = NULL;
}
if (tess->vertices != NULL) {
alloc.memfree( alloc.userData, tess->vertices );
tess->vertices = 0;
}
if (tess->vertexIndices != NULL) {
alloc.memfree( alloc.userData, tess->vertexIndices );
tess->vertexIndices = 0;
}
if (tess->elements != NULL) {
alloc.memfree( alloc.userData, tess->elements );
tess->elements = 0;
}
alloc.memfree( alloc.userData, tess );
}
static TESSindex GetNeighbourFace(TESShalfEdge* edge)
{
if (!edge->Rface)
return TESS_UNDEF;
if (!edge->Rface->inside)
return TESS_UNDEF;
return edge->Rface->n;
}
void OutputPolymesh( TESStesselator *tess, TESSmesh *mesh, int elementType, int polySize, int vertexSize )
{
TESSvertex* v = 0;
TESSface* f = 0;
TESShalfEdge* edge = 0;
int maxFaceCount = 0;
int maxVertexCount = 0;
int faceVerts, i;
TESSindex *elements = 0;
TESSreal *vert;
// Assume that the input data is triangles now.
// Try to merge as many polygons as possible
if (polySize > 3)
{
if (!tessMeshMergeConvexFaces( mesh, polySize ))
{
tess->outOfMemory = 1;
return;
}
}
// Mark unused
for ( v = mesh->vHead.next; v != &mesh->vHead; v = v->next )
v->n = TESS_UNDEF;
// Create unique IDs for all vertices and faces.
for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next )
{
f->n = TESS_UNDEF;
if( !f->inside ) continue;
edge = f->anEdge;
faceVerts = 0;
do
{
v = edge->Org;
if ( v->n == TESS_UNDEF )
{
v->n = maxVertexCount;
maxVertexCount++;
}
faceVerts++;
edge = edge->Lnext;
}
while (edge != f->anEdge);
assert( faceVerts <= polySize );
f->n = maxFaceCount;
++maxFaceCount;
}
tess->elementCount = maxFaceCount;
if (elementType == TESS_CONNECTED_POLYGONS)
maxFaceCount *= 2;
tess->elements = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSindex) * maxFaceCount * polySize );
if (!tess->elements)
{
tess->outOfMemory = 1;
return;
}
tess->vertexCount = maxVertexCount;
tess->vertices = (TESSreal*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSreal) * tess->vertexCount * vertexSize );
if (!tess->vertices)
{
tess->outOfMemory = 1;
return;
}
tess->vertexIndices = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSindex) * tess->vertexCount );
if (!tess->vertexIndices)
{
tess->outOfMemory = 1;
return;
}
// Output vertices.
for ( v = mesh->vHead.next; v != &mesh->vHead; v = v->next )
{
if ( v->n != TESS_UNDEF )
{
// Store coordinate
vert = &tess->vertices[v->n*vertexSize];
vert[0] = v->coords[0];
vert[1] = v->coords[1];
if ( vertexSize > 2 )
vert[2] = v->coords[2];
// Store vertex index.
tess->vertexIndices[v->n] = v->idx;
}
}
// Output indices.
elements = tess->elements;
for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next )
{
if ( !f->inside ) continue;
// Store polygon
edge = f->anEdge;
faceVerts = 0;
do
{
v = edge->Org;
*elements++ = v->n;
faceVerts++;
edge = edge->Lnext;
}
while (edge != f->anEdge);
// Fill unused.
for (i = faceVerts; i < polySize; ++i)
*elements++ = TESS_UNDEF;
// Store polygon connectivity
if ( elementType == TESS_CONNECTED_POLYGONS )
{
edge = f->anEdge;
do
{
*elements++ = GetNeighbourFace( edge );
edge = edge->Lnext;
}
while (edge != f->anEdge);
// Fill unused.
for (i = faceVerts; i < polySize; ++i)
*elements++ = TESS_UNDEF;
}
}
}
void OutputContours( TESStesselator *tess, TESSmesh *mesh, int vertexSize )
{
TESSface *f = 0;
TESShalfEdge *edge = 0;
TESShalfEdge *start = 0;
TESSreal *verts = 0;
TESSindex *elements = 0;
TESSindex *vertInds = 0;
int startVert = 0;
int vertCount = 0;
tess->vertexCount = 0;
tess->elementCount = 0;
for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next )
{
if ( !f->inside ) continue;
start = edge = f->anEdge;
do
{
++tess->vertexCount;
edge = edge->Lnext;
}
while ( edge != start );
++tess->elementCount;
}
tess->elements = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSindex) * tess->elementCount * 2 );
if (!tess->elements)
{
tess->outOfMemory = 1;
return;
}
tess->vertices = (TESSreal*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSreal) * tess->vertexCount * vertexSize );
if (!tess->vertices)
{
tess->outOfMemory = 1;
return;
}
tess->vertexIndices = (TESSindex*)tess->alloc.memalloc( tess->alloc.userData,
sizeof(TESSindex) * tess->vertexCount );
if (!tess->vertexIndices)
{
tess->outOfMemory = 1;
return;
}
verts = tess->vertices;
elements = tess->elements;
vertInds = tess->vertexIndices;
startVert = 0;
for ( f = mesh->fHead.next; f != &mesh->fHead; f = f->next )
{
if ( !f->inside ) continue;
vertCount = 0;
start = edge = f->anEdge;
do
{
*verts++ = edge->Org->coords[0];
*verts++ = edge->Org->coords[1];
if ( vertexSize > 2 )
*verts++ = edge->Org->coords[2];
*vertInds++ = edge->Org->idx;
++vertCount;
edge = edge->Lnext;
}
while ( edge != start );
elements[0] = startVert;
elements[1] = vertCount;
elements += 2;
startVert += vertCount;
}
}
void tessAddContour( TESStesselator *tess, int size, const void* vertices,
int stride, int numVertices )
{
const unsigned char *src = (const unsigned char*)vertices;
TESShalfEdge *e;
int i;
if ( tess->mesh == NULL )
tess->mesh = tessMeshNewMesh( &tess->alloc );
if ( tess->mesh == NULL ) {
tess->outOfMemory = 1;
return;
}
if ( size < 2 )
size = 2;
if ( size > 3 )
size = 3;
e = NULL;
for( i = 0; i < numVertices; ++i )
{
const TESSreal* coords = (const TESSreal*)src;
src += stride;
if( e == NULL ) {
/* Make a self-loop (one vertex, one edge). */
e = tessMeshMakeEdge( tess->mesh );
if ( e == NULL ) {
tess->outOfMemory = 1;
return;
}
if ( !tessMeshSplice( tess->mesh, e, e->Sym ) ) {
tess->outOfMemory = 1;
return;
}
} else {
/* Create a new vertex and edge which immediately follow e
* in the ordering around the left face.
*/
if ( tessMeshSplitEdge( tess->mesh, e ) == NULL ) {
tess->outOfMemory = 1;
return;
}
e = e->Lnext;
}
/* The new vertex is now e->Org. */
e->Org->coords[0] = coords[0];
e->Org->coords[1] = coords[1];
if ( size > 2 )
e->Org->coords[2] = coords[2];
else
e->Org->coords[2] = 0;
/* Store the insertion number so that the vertex can be later recognized. */
e->Org->idx = tess->vertexIndexCounter++;
/* The winding of an edge says how the winding number changes as we
* cross from the edge''s right face to its left face. We add the
* vertices in such an order that a CCW contour will add +1 to
* the winding number of the region inside the contour.
*/
e->winding = tess->reverseContours ? -1 : 1;
e->Sym->winding = tess->reverseContours ? 1 : -1;
}
}
void tessSetOption( TESStesselator *tess, int option, int value )
{
switch(option)
{
case TESS_CONSTRAINED_DELAUNAY_TRIANGULATION:
tess->processCDT = value > 0 ? 1 : 0;
break;
case TESS_REVERSE_CONTOURS:
tess->reverseContours = value > 0 ? 1 : 0;
break;
}
}
int tessTesselate( TESStesselator *tess, int windingRule, int elementType,
int polySize, int vertexSize, const TESSreal* normal )
{
TESSmesh *mesh;
int rc = 1;
if (tess->vertices != NULL) {
tess->alloc.memfree( tess->alloc.userData, tess->vertices );
tess->vertices = 0;
}
if (tess->elements != NULL) {
tess->alloc.memfree( tess->alloc.userData, tess->elements );
tess->elements = 0;
}
if (tess->vertexIndices != NULL) {
tess->alloc.memfree( tess->alloc.userData, tess->vertexIndices );
tess->vertexIndices = 0;
}
tess->vertexIndexCounter = 0;
if (normal)
{
tess->normal[0] = normal[0];
tess->normal[1] = normal[1];
tess->normal[2] = normal[2];
}
tess->windingRule = windingRule;
if (vertexSize < 2)
vertexSize = 2;
if (vertexSize > 3)
vertexSize = 3;
if (setjmp(tess->env) != 0) {
/* come back here if out of memory */
return 0;
}
if (!tess->mesh)
{
return 0;
}
/* Determine the polygon normal and project vertices onto the plane
* of the polygon.
*/
tessProjectPolygon( tess );
/* tessComputeInterior( tess ) computes the planar arrangement specified
* by the given contours, and further subdivides this arrangement
* into regions. Each region is marked "inside" if it belongs
* to the polygon, according to the rule given by tess->windingRule.
* Each interior region is guaranteed be monotone.
*/
if ( !tessComputeInterior( tess ) ) {
longjmp(tess->env,1); /* could've used a label */
}
mesh = tess->mesh;
/* If the user wants only the boundary contours, we throw away all edges
* except those which separate the interior from the exterior.
* Otherwise we tessellate all the regions marked "inside".
*/
if (elementType == TESS_BOUNDARY_CONTOURS) {
rc = tessMeshSetWindingNumber( mesh, 1, TRUE );
} else {
rc = tessMeshTessellateInterior( mesh );
if (rc != 0 && tess->processCDT != 0)
tessMeshRefineDelaunay( mesh, &tess->alloc );
}
if (rc == 0) longjmp(tess->env,1); /* could've used a label */
tessMeshCheckMesh( mesh );
if (elementType == TESS_BOUNDARY_CONTOURS) {
OutputContours( tess, mesh, vertexSize ); /* output contours */
}
else
{
OutputPolymesh( tess, mesh, elementType, polySize, vertexSize ); /* output polygons */
}
tessMeshDeleteMesh( &tess->alloc, mesh );
tess->mesh = NULL;
if (tess->outOfMemory)
return 0;
return 1;
}
int tessGetVertexCount( TESStesselator *tess )
{
return tess->vertexCount;
}
const TESSreal* tessGetVertices( TESStesselator *tess )
{
return tess->vertices;
}
const TESSindex* tessGetVertexIndices( TESStesselator *tess )
{
return tess->vertexIndices;
}
int tessGetElementCount( TESStesselator *tess )
{
return tess->elementCount;
}
const int* tessGetElements( TESStesselator *tess )
{
return tess->elements;
}