raze/source/build/src/engine.cpp
Christoph Oelckers 82194bbf6b Merge branch 'master' into newrenderer
# Conflicts:
#	source/games/exhumed/src/2d.cpp
2021-04-17 13:22:30 +02:00

1744 lines
48 KiB
C++

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
// by the EDuke32 team (development@voidpoint.com)
#define engine_c_
#include "gl_load.h"
#include "build.h"
#include "automap.h"
#include "imagehelpers.h"
#include "compat.h"
#include "engine_priv.h"
#include "palette.h"
#include "scriptfile.h"
#include "gamecvars.h"
#include "c_console.h"
#include "v_2ddrawer.h"
#include "v_draw.h"
#include "stats.h"
#include "razemenu.h"
#include "version.h"
#include "earcut.hpp"
#include "gamestate.h"
#include "inputstate.h"
#include "printf.h"
#include "gamecontrol.h"
#include "render.h"
#include "gamefuncs.h"
#include "hw_voxels.h"
#ifdef USE_OPENGL
# include "mdsprite.h"
# include "polymost.h"
#include "v_video.h"
#include "../../glbackend/glbackend.h"
#include "gl_renderer.h"
#endif
int32_t r_rortexture = 0;
int32_t r_rortexturerange = 0;
int32_t r_rorphase = 0;
int32_t mdtims, omdtims;
float fcosglobalang, fsinglobalang;
float fydimen, fviewingrange;
uint8_t globalr = 255, globalg = 255, globalb = 255;
int16_t pskybits_override = -1;
static int32_t beforedrawrooms = 1;
static int8_t tempbuf[MAXWALLS];
static int32_t no_radarang2 = 0;
static int16_t radarang[1280];
const char *engineerrstr = "No error";
int32_t showfirstwall=0;
int32_t showheightindicators=1;
int32_t circlewall=-1;
fixed_t global100horiz; // (-100..300)-scale horiz (the one passed to drawrooms)
static FString printcoords(void)
{
FString str;
str.Format(
"pos.x: %d\n"
"pos.y: %d\n"
"pos.z: %d\n"
"ang : %d\n"
"horiz: %d\n",
globalposx, globalposy,
globalposz, globalang,
FixedToInt(global100horiz)
);
return str;
}
CCMD(printcoords)
{
Printf("%s", printcoords().GetChars());
}
ADD_STAT(printcoords)
{
return printcoords();
}
// adapted from build.c
static void getclosestpointonwall_internal(vec2_t const p, int32_t const dawall, vec2_t *const closest)
{
vec2_t const w = wall[dawall].pos;
vec2_t const w2 = wall[wall[dawall].point2].pos;
vec2_t const d = { w2.x - w.x, w2.y - w.y };
int64_t i = d.x * ((int64_t)p.x - w.x) + d.y * ((int64_t)p.y - w.y);
if (i <= 0)
{
*closest = w;
return;
}
int64_t const j = (int64_t)d.x * d.x + (int64_t)d.y * d.y;
if (i >= j)
{
*closest = w2;
return;
}
i = ((i << 15) / j) << 15;
*closest = { (int32_t)(w.x + ((d.x * i) >> 30)), (int32_t)(w.y + ((d.y * i) >> 30)) };
}
int32_t xdimen = -1, xdimenscale, xdimscale;
float fxdimen = -1.f;
int32_t ydimen;
int32_t globalposx, globalposy, globalposz;
fixed_t qglobalhoriz;
float fglobalposx, fglobalposy, fglobalposz;
int16_t globalang, globalcursectnum;
fixed_t qglobalang;
int32_t globalpal, globalfloorpal, cosglobalang, singlobalang;
int32_t cosviewingrangeglobalang, sinviewingrangeglobalang;
int32_t viewingrangerecip;
static int32_t globalxpanning, globalypanning;
int32_t globalshade, globalorientation;
int16_t globalpicnum;
static int32_t globaly1, globalx2;
int16_t pointhighlight=-1, linehighlight=-1, highlightcnt=0;
static int16_t numhits;
char inpreparemirror = 0;
//
// Internal Engine Functions
//
//
// animateoffs (internal)
//
int32_t (*animateoffs_replace)(int const tilenum, int fakevar) = NULL;
int32_t animateoffs(int const tilenum, int fakevar)
{
if (animateoffs_replace)
{
return animateoffs_replace(tilenum, fakevar);
}
int const animnum = picanm[tilenum].num;
if (animnum <= 0)
return 0;
int const i = (int) I_GetBuildTime() >> (picanm[tilenum].sf & PICANM_ANIMSPEED_MASK);
int offs = 0;
switch (picanm[tilenum].sf & PICANM_ANIMTYPE_MASK)
{
case PICANM_ANIMTYPE_OSC:
{
int k = (i % (animnum << 1));
offs = (k < animnum) ? k : (animnum << 1) - k;
}
break;
case PICANM_ANIMTYPE_FWD: offs = i % (animnum + 1); break;
case PICANM_ANIMTYPE_BACK: offs = -(i % (animnum + 1)); break;
}
return offs;
}
static int32_t engineLoadTables(void)
{
static char tablesloaded = 0;
if (tablesloaded == 0)
{
int32_t i;
for (i=0; i<=512; i++)
sintable[i] = bsinf(i);
for (i=513; i<1024; i++)
sintable[i] = sintable[1024-i];
for (i=1024; i<2048; i++)
sintable[i] = -sintable[i-1024];
for (i=0; i<640; i++)
radarang[i] = atan((639.5 - i) / 160.) * (-64. / BAngRadian);
for (i=0; i<640; i++)
radarang[1279-i] = -radarang[i];
tablesloaded = 1;
}
return 0;
}
////////// SPRITE LIST MANIPULATION FUNCTIONS //////////
///// sector lists of sprites /////
// insert sprite at the head of sector list, change .sectnum
static void do_insertsprite_at_headofsect(int16_t spritenum, int16_t sectnum)
{
int16_t const ohead = headspritesect[sectnum];
prevspritesect[spritenum] = -1;
nextspritesect[spritenum] = ohead;
if (ohead >= 0)
prevspritesect[ohead] = spritenum;
headspritesect[sectnum] = spritenum;
sprite[spritenum].sectnum = sectnum;
}
// remove sprite 'deleteme' from its sector list
static void do_deletespritesect(int16_t deleteme)
{
int32_t const sectnum = sprite[deleteme].sectnum;
int32_t const prev = prevspritesect[deleteme];
int32_t const next = nextspritesect[deleteme];
if (headspritesect[sectnum] == deleteme)
headspritesect[sectnum] = next;
if (prev >= 0)
nextspritesect[prev] = next;
if (next >= 0)
prevspritesect[next] = prev;
}
///// now, status lists /////
// insert sprite at head of status list, change .statnum
static void do_insertsprite_at_headofstat(int16_t spritenum, int16_t statnum)
{
int16_t const ohead = headspritestat[statnum];
prevspritestat[spritenum] = -1;
nextspritestat[spritenum] = ohead;
if (ohead >= 0)
prevspritestat[ohead] = spritenum;
headspritestat[statnum] = spritenum;
sprite[spritenum].statnum = statnum;
}
// insertspritestat (internal)
static int32_t insertspritestat(int16_t statnum)
{
if ((statnum >= MAXSTATUS) || (headspritestat[MAXSTATUS] == -1))
return -1; //list full
// remove one sprite from the statnum-freelist
int16_t const blanktouse = headspritestat[MAXSTATUS];
headspritestat[MAXSTATUS] = nextspritestat[blanktouse];
// make back-link of the new freelist head point to nil
if (headspritestat[MAXSTATUS] >= 0)
prevspritestat[headspritestat[MAXSTATUS]] = -1;
else if (enginecompatibility_mode == ENGINECOMPATIBILITY_NONE)
tailspritefree = -1;
do_insertsprite_at_headofstat(blanktouse, statnum);
return blanktouse;
}
// remove sprite 'deleteme' from its status list
static void do_deletespritestat(int16_t deleteme)
{
int32_t const sectnum = sprite[deleteme].statnum;
int32_t const prev = prevspritestat[deleteme];
int32_t const next = nextspritestat[deleteme];
if (headspritestat[sectnum] == deleteme)
headspritestat[sectnum] = next;
if (prev >= 0)
nextspritestat[prev] = next;
if (next >= 0)
prevspritestat[next] = prev;
}
//
// insertsprite
//
int32_t(*insertsprite_replace)(int16_t sectnum, int16_t statnum) = NULL;
int32_t insertsprite(int16_t sectnum, int16_t statnum)
{
if (insertsprite_replace)
return insertsprite_replace(sectnum, statnum);
// TODO: guard against bad sectnum?
int32_t const newspritenum = insertspritestat(statnum);
if (newspritenum >= 0)
{
assert((unsigned)sectnum < MAXSECTORS);
do_insertsprite_at_headofsect(newspritenum, sectnum);
Numsprites++;
}
sprite[newspritenum].time = leveltimer++;
return newspritenum;
}
//
// deletesprite
//
int32_t (*deletesprite_replace)(int16_t spritenum) = NULL;
int32_t deletesprite(int16_t spritenum)
{
Polymost::polymost_deletesprite(spritenum);
if (deletesprite_replace)
return deletesprite_replace(spritenum);
assert((sprite[spritenum].statnum == MAXSTATUS)
== (sprite[spritenum].sectnum == MAXSECTORS));
if (sprite[spritenum].statnum == MAXSTATUS)
return -1; // already not in the world
do_deletespritestat(spritenum);
do_deletespritesect(spritenum);
// (dummy) insert at tail of sector freelist, compat
// for code that checks .sectnum==MAXSECTOR
sprite[spritenum].sectnum = MAXSECTORS;
// insert at tail of status freelist
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
do_insertsprite_at_headofstat(spritenum, MAXSTATUS);
else
{
prevspritestat[spritenum] = tailspritefree;
nextspritestat[spritenum] = -1;
if (tailspritefree >= 0)
nextspritestat[tailspritefree] = spritenum;
else
headspritestat[MAXSTATUS] = spritenum;
sprite[spritenum].statnum = MAXSTATUS;
tailspritefree = spritenum;
}
Numsprites--;
return 0;
}
//
// changespritesect
//
int32_t (*changespritesect_replace)(int16_t spritenum, int16_t newsectnum) = NULL;
int32_t changespritesect(int16_t spritenum, int16_t newsectnum)
{
if (changespritesect_replace)
return changespritesect_replace(spritenum, newsectnum);
// XXX: NOTE: MAXSECTORS is allowed
if ((newsectnum < 0 || newsectnum > MAXSECTORS) || (sprite[spritenum].sectnum == MAXSECTORS))
return -1;
if (sprite[spritenum].sectnum == newsectnum)
return 0;
do_deletespritesect(spritenum);
do_insertsprite_at_headofsect(spritenum, newsectnum);
return 0;
}
//
// changespritestat
//
int32_t (*changespritestat_replace)(int16_t spritenum, int16_t newstatnum) = NULL;
int32_t changespritestat(int16_t spritenum, int16_t newstatnum)
{
if (changespritestat_replace)
return changespritestat_replace(spritenum, newstatnum);
// XXX: NOTE: MAXSTATUS is allowed
if ((newstatnum < 0 || newstatnum > MAXSTATUS) || (sprite[spritenum].statnum == MAXSTATUS))
return -1; // can't set the statnum of a sprite not in the world
if (sprite[spritenum].statnum == newstatnum)
return 0; // sprite already has desired statnum
do_deletespritestat(spritenum);
do_insertsprite_at_headofstat(spritenum, newstatnum);
return 0;
}
//
// lintersect (internal)
//
int32_t lintersect(const int32_t originX, const int32_t originY, const int32_t originZ,
const int32_t destX, const int32_t destY, const int32_t destZ,
const int32_t lineStartX, const int32_t lineStartY, const int32_t lineEndX, const int32_t lineEndY,
int32_t *intersectionX, int32_t *intersectionY, int32_t *intersectionZ)
{
const vec2_t ray = { destX-originX,
destY-originY };
const vec2_t lineVec = { lineEndX-lineStartX,
lineEndY-lineStartY };
const vec2_t originDiff = { lineStartX-originX,
lineStartY-originY };
const int32_t rayCrossLineVec = ray.x*lineVec.y - ray.y*lineVec.x;
const int32_t originDiffCrossRay = originDiff.x*ray.y - originDiff.y*ray.x;
if (rayCrossLineVec == 0)
{
if (originDiffCrossRay != 0 || enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
// line segments are parallel
return 0;
}
// line segments are collinear
const int32_t rayLengthSquared = ray.x*ray.x + ray.y*ray.y;
const int32_t rayDotOriginDiff = ray.x*originDiff.x + ray.y*originDiff.y;
const int32_t rayDotLineEndDiff = rayDotOriginDiff + ray.x*lineVec.x + ray.y*lineVec.y;
int64_t t = min(rayDotOriginDiff, rayDotLineEndDiff);
if (rayDotOriginDiff < 0)
{
if (rayDotLineEndDiff < 0)
return 0;
t = 0;
}
else if (rayDotOriginDiff > rayLengthSquared)
{
if (rayDotLineEndDiff > rayLengthSquared)
return 0;
t = rayDotLineEndDiff;
}
t = (t << 24) / rayLengthSquared;
*intersectionX = originX + MulScale(ray.x, t, 24);
*intersectionY = originY + MulScale(ray.y, t, 24);
*intersectionZ = originZ + MulScale(destZ-originZ, t, 24);
return 1;
}
const int32_t originDiffCrossLineVec = originDiff.x*lineVec.y - originDiff.y*lineVec.x;
static const int32_t signBit = 1u<<31u;
// Any point on either line can be expressed as p+t*r and q+u*s
// The two line segments intersect when we can find a t & u such that p+t*r = q+u*s
// If the point is outside of the bounds of the line segment, we know we don't have an intersection.
// t is < 0 if (originDiffCrossLineVec^rayCrossLineVec) & signBit)
// u is < 0 if (originDiffCrossRay^rayCrossLineVec) & signBit
// t is > 1 if abs(originDiffCrossLineVec) > abs(rayCrossLineVec)
// u is > 1 if abs(originDiffCrossRay) > abs(rayCrossLineVec)
// where int32_t u = tabledivide64(((int64_t) originDiffCrossRay) << 24L, rayCrossLineVec);
if (((originDiffCrossLineVec^rayCrossLineVec) & signBit) ||
((originDiffCrossRay^rayCrossLineVec) & signBit) ||
abs(originDiffCrossLineVec) > abs(rayCrossLineVec) ||
abs(originDiffCrossRay) > abs(rayCrossLineVec))
{
// line segments do not overlap
return 0;
}
int64_t t = (int64_t(originDiffCrossLineVec) << 24) / rayCrossLineVec;
// For sake of completeness/readability, alternative to the above approach for an early out & avoidance of an extra division:
*intersectionX = originX + MulScale(ray.x, t, 24);
*intersectionY = originY + MulScale(ray.y, t, 24);
*intersectionZ = originZ + MulScale(destZ-originZ, t, 24);
return 1;
}
//
// rintersect (internal)
//
// returns: -1 if didn't intersect, coefficient IntToFixed(x3--x4 fraction) else
int32_t rintersect_old(int32_t x1, int32_t y1, int32_t z1,
int32_t vx, int32_t vy, int32_t vz,
int32_t x3, int32_t y3, int32_t x4, int32_t y4,
int32_t *intx, int32_t *inty, int32_t *intz)
{
//p1 towards p2 is a ray
int32_t const x34=x3-x4, y34=y3-y4;
int32_t const x31=x3-x1, y31=y3-y1;
int32_t const bot = vx*y34 - vy*x34;
int32_t const topt = x31*y34 - y31*x34;
if (bot == 0)
return -1;
int32_t const topu = vx*y31 - vy*x31;
if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot))
return -1;
else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot))
return -1;
int32_t t = DivScale(topt, bot, 16);
*intx = x1 + MulScale(vx, t, 16);
*inty = y1 + MulScale(vy, t, 16);
*intz = z1 + MulScale(vz, t, 16);
t = DivScale(topu, bot, 16);
return t;
}
int32_t rintersect(int32_t x1, int32_t y1, int32_t z1,
int32_t vx, int32_t vy, int32_t vz,
int32_t x3, int32_t y3, int32_t x4, int32_t y4,
int32_t *intx, int32_t *inty, int32_t *intz)
{
//p1 towards p2 is a ray
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
return rintersect_old(x1,y1,z1,vx,vy,vz,x3,y3,x4,y4,intx,inty,intz);
int64_t const x34=x3-x4, y34=y3-y4;
int64_t const x31=x3-x1, y31=y3-y1;
int64_t const bot = vx*y34 - vy*x34;
int64_t const topt = x31*y34 - y31*x34;
if (bot == 0)
return -1;
int64_t const topu = vx*y31 - vy*x31;
if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot))
return -1;
else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot))
return -1;
int64_t t = (topt << 16) / bot;
*intx = x1 + ((vx*t) >> 16);
*inty = y1 + ((vy*t) >> 16);
*intz = z1 + ((vz*t) >> 16);
t = (topu << 16) / bot;
assert((unsigned)t < 65536);
return t;
}
int32_t rayintersect(int32_t x1, int32_t y1, int32_t z1, int32_t vx, int32_t vy, int32_t vz, int32_t x3,
int32_t y3, int32_t x4, int32_t y4, int32_t *intx, int32_t *inty, int32_t *intz)
{
return (rintersect(x1, y1, z1, vx, vy, vz, x3, y3, x4, y4, intx, inty, intz) != -1);
}
//
// multi-pskies
//
psky_t * tileSetupSky(int32_t const tilenum)
{
for (auto& sky : multipskies)
if (tilenum == sky.tilenum)
{
return &sky;
}
multipskies.Reserve(1);
multipskies.Last() = {};
multipskies.Last().tilenum = tilenum;
multipskies.Last().yscale = 65536;
return &multipskies.Last();
}
psky_t * defineSky(int32_t const tilenum, int horiz, int lognumtiles, const uint16_t *tileofs, int yoff)
{
auto sky = tileSetupSky(tilenum);
sky->horizfrac = horiz;
sky->lognumtiles = lognumtiles;
sky->yoffs = yoff;
memcpy(sky->tileofs, tileofs, 2 << lognumtiles);
return sky;
}
// Get properties of parallaxed sky to draw.
// Returns: pointer to tile offset array. Sets-by-pointer the other three.
const int16_t* getpsky(int32_t picnum, int32_t* dapyscale, int32_t* dapskybits, int32_t* dapyoffs, int32_t* daptileyscale)
{
psky_t const* const psky = getpskyidx(picnum);
if (dapskybits)
*dapskybits = (pskybits_override == -1 ? psky->lognumtiles : pskybits_override);
if (dapyscale)
*dapyscale = (parallaxyscale_override == 0 ? psky->horizfrac : parallaxyscale_override);
if (dapyoffs)
*dapyoffs = psky->yoffs + parallaxyoffs_override;
if (daptileyscale)
*daptileyscale = psky->yscale;
return psky->tileofs;
}
//
// preinitengine
//
static spriteext_t spriteext_s[MAXSPRITES+MAXUNIQHUDID];
static spritesmooth_t spritesmooth_s[MAXSPRITES+MAXUNIQHUDID];
static sectortype sector_s[MAXSECTORS];
static walltype wall_s[MAXWALLS];
spritetype sprite_s[MAXSPRITES];
int32_t enginePreInit(void)
{
sector = sector_s;
wall = wall_s;
sprite = sprite_s;
spriteext = spriteext_s;
spritesmooth = spritesmooth_s;
return 0;
}
//
// initengine
//
int32_t engineInit(void)
{
engineLoadTables();
g_visibility = 512;
if (!mdinited) mdinit();
return 0;
}
//
// initspritelists
//
void (*initspritelists_replace)(void) = NULL;
void initspritelists(void)
{
leveltimer = 0;
if (initspritelists_replace)
{
initspritelists_replace();
return;
}
int32_t i;
// initial list state for statnum lists:
//
// statnum 0: nil
// statnum 1: nil
// . . .
// statnum MAXSTATUS-1: nil
// "statnum MAXSTATUS": nil <- 0 <-> 1 <-> 2 <-> ... <-> MAXSPRITES-1 -> nil
//
// That is, the dummy MAXSTATUS statnum has all sprites.
for (i=0; i<MAXSECTORS; i++) //Init doubly-linked sprite sector lists
headspritesect[i] = -1;
headspritesect[MAXSECTORS] = 0;
for (i=0; i<MAXSPRITES; i++)
{
prevspritesect[i] = i-1;
nextspritesect[i] = i+1;
sprite[i].sectnum = MAXSECTORS;
}
prevspritesect[0] = -1;
nextspritesect[MAXSPRITES-1] = -1;
for (i=0; i<MAXSTATUS; i++) //Init doubly-linked sprite status lists
headspritestat[i] = -1;
headspritestat[MAXSTATUS] = 0;
for (i=0; i<MAXSPRITES; i++)
{
prevspritestat[i] = i-1;
nextspritestat[i] = i+1;
sprite[i].statnum = MAXSTATUS;
}
prevspritestat[0] = -1;
nextspritestat[MAXSPRITES-1] = -1;
tailspritefree = MAXSPRITES-1;
Numsprites = 0;
}
//
// inside
//
// See http://fabiensanglard.net/duke3d/build_engine_internals.php,
// "Inside details" for the idea behind the algorithm.
int32_t inside_ps(int32_t x, int32_t y, int16_t sectnum)
{
if (sectnum >= 0 && sectnum < numsectors)
{
int32_t cnt = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
if ((v1.y^v2.y) < 0)
cnt ^= (((v1.x^v2.x) < 0) ? (v1.x*v2.y<v2.x*v1.y)^(v1.y<v2.y) : (v1.x >= 0));
wal++;
}
while (--wallsleft);
return cnt;
}
return -1;
}
int32_t inside_old(int32_t x, int32_t y, int16_t sectnum)
{
if (sectnum >= 0 && sectnum < numsectors)
{
uint32_t cnt = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
// Get the x and y components of the [tested point]-->[wall
// point{1,2}] vectors.
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
// If their signs differ[*], ...
//
// [*] where '-' corresponds to <0 and '+' corresponds to >=0.
// Equivalently, the branch is taken iff
// y1 != y2 AND y_m <= y < y_M,
// where y_m := min(y1, y2) and y_M := max(y1, y2).
if ((v1.y^v2.y) < 0)
cnt ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
wal++;
}
while (--wallsleft);
return cnt>>31;
}
return -1;
}
int32_t inside(int32_t x, int32_t y, int16_t sectnum)
{
switch (enginecompatibility_mode)
{
case ENGINECOMPATIBILITY_NONE:
break;
case ENGINECOMPATIBILITY_19950829:
return inside_ps(x, y, sectnum);
default:
return inside_old(x, y, sectnum);
}
if ((unsigned)sectnum < (unsigned)numsectors)
{
uint32_t cnt1 = 0, cnt2 = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
// Get the x and y components of the [tested point]-->[wall
// point{1,2}] vectors.
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
// First, test if the point is EXACTLY_ON_WALL_POINT.
if ((v1.x|v1.y) == 0 || (v2.x|v2.y)==0)
return 1;
// If their signs differ[*], ...
//
// [*] where '-' corresponds to <0 and '+' corresponds to >=0.
// Equivalently, the branch is taken iff
// y1 != y2 AND y_m <= y < y_M,
// where y_m := min(y1, y2) and y_M := max(y1, y2).
if ((v1.y^v2.y) < 0)
cnt1 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
v1.y--;
v2.y--;
// Now, do the same comparisons, but with the interval half-open on
// the other side! That is, take the branch iff
// y1 != y2 AND y_m < y <= y_M,
// For a rectangular sector, without EXACTLY_ON_WALL_POINT, this
// would still leave the lower left and upper right points
// "outside" the sector.
if ((v1.y^v2.y) < 0)
{
v1.x--;
v2.x--;
cnt2 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
}
wal++;
}
while (--wallsleft);
return (cnt1|cnt2)>>31;
}
return -1;
}
int32_t getangle(int32_t xvect, int32_t yvect)
{
int32_t rv;
if ((xvect | yvect) == 0)
rv = 0;
else if (xvect == 0)
rv = 512 + ((yvect < 0) << 10);
else if (yvect == 0)
rv = ((xvect < 0) << 10);
else if (xvect == yvect)
rv = 256 + ((xvect < 0) << 10);
else if (xvect == -yvect)
rv = 768 + ((xvect > 0) << 10);
else if (abs(xvect) > abs(yvect))
rv = ((radarang[640 + Scale(160, yvect, xvect)] >> 6) + ((xvect < 0) << 10)) & 2047;
else rv = ((radarang[640 - Scale(160, xvect, yvect)] >> 6) + 512 + ((yvect < 0) << 10)) & 2047;
return rv;
}
// Gets the BUILD unit height and z offset of a sprite.
// Returns the z offset, 'height' may be NULL.
int32_t spriteheightofsptr(uspriteptr_t spr, int32_t *height, int32_t alsotileyofs)
{
int32_t hei, zofs=0;
const int32_t picnum=spr->picnum, yrepeat=spr->yrepeat;
hei = (tileHeight(picnum)*yrepeat)<<2;
if (height != NULL)
*height = hei;
if (spr->cstat&128)
zofs = hei>>1;
// NOTE: a positive per-tile yoffset translates the sprite into the
// negative world z direction (i.e. upward).
if (alsotileyofs)
zofs -= tileTopOffset(picnum) *yrepeat<<2;
return zofs;
}
//
// setsprite
//
int32_t setsprite(int16_t spritenum, const vec3_t *newpos)
{
int16_t tempsectnum = sprite[spritenum].sectnum;
if ((void const *) newpos != (void *) &sprite[spritenum])
sprite[spritenum].pos = *newpos;
updatesector(newpos->x,newpos->y,&tempsectnum);
if (tempsectnum < 0)
return -1;
if (tempsectnum != sprite[spritenum].sectnum)
changespritesect(spritenum,tempsectnum);
return 0;
}
int32_t setspritez(int16_t spritenum, const vec3_t *newpos)
{
int16_t tempsectnum = sprite[spritenum].sectnum;
if ((void const *)newpos != (void *)&sprite[spritenum])
sprite[spritenum].pos = *newpos;
updatesectorz(newpos->x,newpos->y,newpos->z,&tempsectnum);
if (tempsectnum < 0)
return -1;
if (tempsectnum != sprite[spritenum].sectnum)
changespritesect(spritenum,tempsectnum);
return 0;
}
//
// nextsectorneighborz
//
// -1: ceiling or up
// 1: floor or down
int32_t nextsectorneighborz(int16_t sectnum, int32_t refz, int16_t topbottom, int16_t direction)
{
int32_t nextz = (direction==1) ? INT32_MAX : INT32_MIN;
int32_t sectortouse = -1;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int32_t i = sector[sectnum].wallnum;
do
{
const int32_t ns = wal->nextsector;
if (ns >= 0)
{
const int32_t testz = (topbottom == 1) ?
sector[ns].floorz : sector[ns].ceilingz;
const int32_t update = (direction == 1) ?
(nextz > testz && testz > refz) :
(nextz < testz && testz < refz);
if (update)
{
nextz = testz;
sectortouse = ns;
}
}
wal++;
i--;
}
while (i != 0);
return sectortouse;
}
//
// cansee
//
int32_t cansee_old(int32_t xs, int32_t ys, int32_t zs, int16_t sectnums, int32_t xe, int32_t ye, int32_t ze, int16_t sectnume)
{
sectortype *sec, *nsec;
walltype *wal, *wal2;
int32_t intx, inty, intz, i, cnt, nextsector, dasectnum, dacnt, danum;
if ((xs == xe) && (ys == ye) && (sectnums == sectnume)) return 1;
clipsectorlist[0] = sectnums; danum = 1;
for(dacnt=0;dacnt<danum;dacnt++)
{
dasectnum = clipsectorlist[dacnt]; sec = &sector[dasectnum];
for(cnt=sec->wallnum,wal=&wall[sec->wallptr];cnt>0;cnt--,wal++)
{
wal2 = &wall[wal->point2];
if (lintersect(xs,ys,zs,xe,ye,ze,wal->x,wal->y,wal2->x,wal2->y,&intx,&inty,&intz) != 0)
{
nextsector = wal->nextsector; if (nextsector < 0) return 0;
if (intz <= sec->ceilingz) return 0;
if (intz >= sec->floorz) return 0;
nsec = &sector[nextsector];
if (intz <= nsec->ceilingz) return 0;
if (intz >= nsec->floorz) return 0;
for(i=danum-1;i>=0;i--)
if (clipsectorlist[i] == nextsector) break;
if (i < 0) clipsectorlist[danum++] = nextsector;
}
}
if (clipsectorlist[dacnt] == sectnume)
return 1;
}
return 0;
}
int32_t cansee(int32_t x1, int32_t y1, int32_t z1, int16_t sect1, int32_t x2, int32_t y2, int32_t z2, int16_t sect2)
{
if (enginecompatibility_mode == ENGINECOMPATIBILITY_19950829)
return cansee_old(x1, y1, z1, sect1, x2, y2, z2, sect2);
int32_t dacnt, danum;
const int32_t x21 = x2-x1, y21 = y2-y1, z21 = z2-z1;
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
memset(sectbitmap, 0, sizeof(sectbitmap));
if (x1 == x2 && y1 == y2)
return (sect1 == sect2);
sectbitmap[sect1>>3] |= (1 << (sect1&7));
clipsectorlist[0] = sect1; danum = 1;
for (dacnt=0; dacnt<danum; dacnt++)
{
const int32_t dasectnum = clipsectorlist[dacnt];
auto const sec = (usectorptr_t)&sector[dasectnum];
uwallptr_t wal;
bssize_t cnt;
for (cnt=sec->wallnum,wal=(uwallptr_t)&wall[sec->wallptr]; cnt>0; cnt--,wal++)
{
auto const wal2 = (uwallptr_t)&wall[wal->point2];
const int32_t x31 = wal->x-x1, x34 = wal->x-wal2->x;
const int32_t y31 = wal->y-y1, y34 = wal->y-wal2->y;
int32_t x, y, z, nexts, t, bot;
int32_t cfz[2];
bot = y21*x34-x21*y34; if (bot <= 0) continue;
// XXX: OVERFLOW
t = y21*x31-x21*y31; if ((unsigned)t >= (unsigned)bot) continue;
t = y31*x34-x31*y34;
if ((unsigned)t >= (unsigned)bot)
{
continue;
}
nexts = wal->nextsector;
if (nexts < 0 || wal->cstat&32)
return 0;
t = DivScale(t,bot, 24);
x = x1 + MulScale(x21,t, 24);
y = y1 + MulScale(y21,t, 24);
z = z1 + MulScale(z21,t, 24);
getzsofslope(dasectnum, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
{
return 0;
}
getzsofslope(nexts, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
return 0;
if (!(sectbitmap[nexts>>3] & (1 << (nexts&7))))
{
sectbitmap[nexts>>3] |= (1 << (nexts&7));
clipsectorlist[danum++] = nexts;
}
}
}
if (sectbitmap[sect2>>3] & (1<<(sect2&7)))
return 1;
return 0;
}
//
// neartag
//
void neartag(int32_t xs, int32_t ys, int32_t zs, int16_t sectnum, int16_t ange,
int16_t *neartagsector, int16_t *neartagwall, int16_t *neartagsprite, int32_t *neartaghitdist, /* out */
int32_t neartagrange, uint8_t tagsearch,
int32_t (*blacklist_sprite_func)(int32_t))
{
int16_t tempshortcnt, tempshortnum;
const int32_t vx = MulScale(bcos(ange), neartagrange, 14);
const int32_t vy = MulScale(bsin(ange), neartagrange, 14);
vec3_t hitv = { xs+vx, ys+vy, 0 };
const vec3_t sv = { xs, ys, zs };
*neartagsector = -1; *neartagwall = -1; *neartagsprite = -1;
*neartaghitdist = 0;
if (sectnum < 0 || (tagsearch & 3) == 0)
return;
clipsectorlist[0] = sectnum;
tempshortcnt = 0; tempshortnum = 1;
do
{
const int32_t dasector = clipsectorlist[tempshortcnt];
const int32_t startwall = sector[dasector].wallptr;
const int32_t endwall = startwall + sector[dasector].wallnum - 1;
uwallptr_t wal;
int32_t z;
for (z=startwall,wal=(uwallptr_t)&wall[startwall]; z<=endwall; z++,wal++)
{
auto const wal2 = (uwallptr_t)&wall[wal->point2];
const int32_t nextsector = wal->nextsector;
const int32_t x1=wal->x, y1=wal->y, x2=wal2->x, y2=wal2->y;
int32_t intx, inty, intz, good = 0;
if (nextsector >= 0)
{
if ((tagsearch&1) && sector[nextsector].lotag) good |= 1;
if ((tagsearch&2) && sector[nextsector].hitag) good |= 1;
}
if ((tagsearch&1) && wal->lotag) good |= 2;
if ((tagsearch&2) && wal->hitag) good |= 2;
if ((good == 0) && (nextsector < 0)) continue;
if ((coord_t)(x1-xs)*(y2-ys) < (coord_t)(x2-xs)*(y1-ys)) continue;
if (lintersect(xs,ys,zs,hitv.x,hitv.y,hitv.z,x1,y1,x2,y2,&intx,&inty,&intz) == 1)
{
if (good != 0)
{
if (good&1) *neartagsector = nextsector;
if (good&2) *neartagwall = z;
*neartaghitdist = DMulScale(intx-xs, bcos(ange), inty-ys, bsin(ange), 14);
hitv.x = intx; hitv.y = inty; hitv.z = intz;
}
if (nextsector >= 0)
{
int32_t zz;
for (zz=tempshortnum-1; zz>=0; zz--)
if (clipsectorlist[zz] == nextsector) break;
if (zz < 0) clipsectorlist[tempshortnum++] = nextsector;
}
}
}
tempshortcnt++;
if (tagsearch & 4)
continue; // skip sprite search
SectIterator it(dasector);
while ((z = it.NextIndex()) >= 0)
{
auto const spr = (uspriteptr_t)&sprite[z];
if (spr->cstat & CSTAT_SPRITE_NOFIND)
continue;
if (blacklist_sprite_func && blacklist_sprite_func(z))
continue;
if (((tagsearch&1) && spr->lotag) || ((tagsearch&2) && spr->hitag))
{
if (try_facespr_intersect(spr, sv, vx, vy, 0, &hitv, 1))
{
*neartagsprite = z;
*neartaghitdist = DMulScale(hitv.x-xs, bcos(ange), hitv.y-ys, bsin(ange), 14);
}
}
}
}
while (tempshortcnt < tempshortnum);
}
//
// dragpoint
//
// flags:
// 1: don't reset walbitmap[] (the bitmap of already dragged vertices)
// 2: In the editor, do wall[].cstat |= (1<<14) also for the lastwall().
void dragpoint(int16_t pointhighlight, int32_t dax, int32_t day, uint8_t flags)
{
int32_t i, numyaxwalls=0;
static int16_t yaxwalls[MAXWALLS];
uint8_t *const walbitmap = (uint8_t *)tempbuf;
if ((flags&1)==0)
memset(walbitmap, 0, (numwalls+7)>>3);
yaxwalls[numyaxwalls++] = pointhighlight;
for (i=0; i<numyaxwalls; i++)
{
int32_t clockwise = 0;
int32_t w = yaxwalls[i];
const int32_t tmpstartwall = w;
bssize_t cnt = MAXWALLS;
while (1)
{
sector[wall[w].sector].dirty = 255;
wall[w].x = dax;
wall[w].y = day;
walbitmap[w>>3] |= (1<<(w&7));
if (!clockwise) //search points CCW
{
if (wall[w].nextwall >= 0)
w = wall[wall[w].nextwall].point2;
else
{
w = tmpstartwall;
clockwise = 1;
}
}
cnt--;
if (cnt==0)
{
Printf("dragpoint %d: infloop!\n", pointhighlight);
i = numyaxwalls;
break;
}
if (clockwise)
{
int32_t thelastwall = lastwall(w);
if (wall[thelastwall].nextwall >= 0)
w = wall[thelastwall].nextwall;
else
break;
}
if ((walbitmap[w>>3] & (1<<(w&7))))
{
if (clockwise)
break;
w = tmpstartwall;
clockwise = 1;
continue;
}
}
}
}
//
// lastwall
//
int32_t lastwall(int16_t point)
{
if (point > 0 && wall[point-1].point2 == point)
return point-1;
int i = point, cnt = numwalls;
do
{
int const j = wall[i].point2;
if (j == point)
{
point = i;
break;
}
i = j;
}
while (--cnt);
return point;
}
////////// UPDATESECTOR* FAMILY OF FUNCTIONS //////////
/* Different "is inside" predicates.
* NOTE: The redundant bound checks are expected to be optimized away in the
* inlined code. */
static inline int inside_exclude_p(int32_t const x, int32_t const y, int const sectnum, const uint8_t *excludesectbitmap)
{
return (sectnum>=0 && !bitmap_test(excludesectbitmap, sectnum) && inside_p(x, y, sectnum));
}
/* NOTE: no bound check */
static inline int inside_z_p(int32_t const x, int32_t const y, int32_t const z, int const sectnum)
{
int32_t cz, fz;
getzsofslope(sectnum, x, y, &cz, &fz);
return (z >= cz && z <= fz && inside_p(x, y, sectnum));
}
int32_t getwalldist(vec2_t const in, int const wallnum)
{
vec2_t closest;
getclosestpointonwall_internal(in, wallnum, &closest);
return abs(closest.x - in.x) + abs(closest.y - in.y);
}
int32_t getwalldist(vec2_t const in, int const wallnum, vec2_t * const out)
{
getclosestpointonwall_internal(in, wallnum, out);
return abs(out->x - in.x) + abs(out->y - in.y);
}
int32_t getsectordist(vec2_t const in, int const sectnum, vec2_t * const out /*= nullptr*/)
{
if (inside_p(in.x, in.y, sectnum))
{
if (out)
*out = in;
return 0;
}
int32_t distance = INT32_MAX;
auto const sec = (usectorptr_t)&sector[sectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
vec2_t closest = {};
for (int j = startwall; j < endwall; j++, uwal++)
{
vec2_t p;
int32_t const walldist = getwalldist(in, j, &p);
if (walldist < distance)
{
distance = walldist;
closest = p;
}
}
if (out)
*out = closest;
return distance;
}
int findwallbetweensectors(int sect1, int sect2)
{
if (sector[sect1].wallnum > sector[sect2].wallnum)
std::swap(sect1, sect2);
auto const sec = (usectorptr_t)&sector[sect1];
int const last = sec->wallptr + sec->wallnum;
for (int i = sec->wallptr; i < last; i++)
if (wall[i].nextsector == sect2)
return i;
return -1;
}
//
// updatesector[z]
//
void updatesector(int32_t const x, int32_t const y, int16_t * const sectnum)
{
int16_t sect = *sectnum;
updatesectorneighbor(x, y, &sect, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_p(x, y, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
// new: if *sectnum >= MAXSECTORS, *sectnum-=MAXSECTORS is considered instead
// as starting sector and the 'initial' z check is skipped
// (not initial anymore because it follows the sector updating due to TROR)
void updatesectorz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum)
{
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
if ((uint32_t)(*sectnum) < 2*MAXSECTORS)
{
int32_t nofirstzcheck = 0;
if (*sectnum >= MAXSECTORS)
{
*sectnum -= MAXSECTORS;
nofirstzcheck = 1;
}
// this block used to be outside the "if" and caused crashes in Polymost Mapster32
int32_t cz, fz;
getzsofslope(*sectnum, x, y, &cz, &fz);
if (nofirstzcheck || (z >= cz && z <= fz))
if (inside_p(x, y, *sectnum))
return;
walltype const * wal = &wall[sector[*sectnum].wallptr];
int wallsleft = sector[*sectnum].wallnum;
do
{
// YAX: TODO: check neighboring sectors here too?
int const next = wal->nextsector;
if (next>=0 && inside_z_p(x,y,z, next))
SET_AND_RETURN(*sectnum, next);
wal++;
}
while (--wallsleft);
}
}
else
{
int16_t sect = *sectnum;
updatesectorneighborz(x, y, z, &sect, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
}
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_z_p(x, y, z, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
void updatesectorneighbor(int32_t const x, int32_t const y, int16_t * const sectnum, int32_t initialMaxDistance /*= INITIALUPDATESECTORDIST*/, int32_t maxDistance /*= MAXUPDATESECTORDIST*/)
{
int const initialsectnum = *sectnum;
if ((unsigned)initialsectnum < (unsigned)numsectors && getsectordist({x, y}, initialsectnum) <= initialMaxDistance)
{
if (inside_p(x, y, initialsectnum))
return;
static int16_t sectlist[MAXSECTORS];
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
int16_t nsecs;
bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, initialsectnum);
for (int sectcnt=0; sectcnt<nsecs; sectcnt++)
{
int const listsectnum = sectlist[sectcnt];
if (inside_p(x, y, listsectnum))
SET_AND_RETURN(*sectnum, listsectnum);
auto const sec = &sector[listsectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
for (int j=startwall; j<endwall; j++, uwal++)
if (uwal->nextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance)
bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector);
}
}
*sectnum = -1;
}
void updatesectorneighborz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum, int32_t initialMaxDistance /*= 0*/, int32_t maxDistance /*= 0*/)
{
bool nofirstzcheck = false;
if (*sectnum >= MAXSECTORS && *sectnum - MAXSECTORS < numsectors)
{
*sectnum -= MAXSECTORS;
nofirstzcheck = true;
}
uint32_t const correctedsectnum = (unsigned)*sectnum;
if (correctedsectnum < (unsigned)numsectors && getsectordist({x, y}, correctedsectnum) <= initialMaxDistance)
{
int32_t cz, fz;
getzsofslope(correctedsectnum, x, y, &cz, &fz);
if ((nofirstzcheck || (z >= cz && z <= fz)) && inside_p(x, y, *sectnum))
return;
static int16_t sectlist[MAXSECTORS];
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
int16_t nsecs;
bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, correctedsectnum);
for (int sectcnt=0; sectcnt<nsecs; sectcnt++)
{
int const listsectnum = sectlist[sectcnt];
if (inside_z_p(x, y, z, listsectnum))
SET_AND_RETURN(*sectnum, listsectnum);
auto const sec = &sector[listsectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
for (int j=startwall; j<endwall; j++, uwal++)
if (uwal->nextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance)
bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector);
}
}
*sectnum = -1;
}
//
// rotatepoint
//
void rotatepoint(vec2_t const pivot, vec2_t p, int16_t const daang, vec2_t * const p2)
{
int const dacos = bcos(daang);
int const dasin = bsin(daang);
p.x -= pivot.x;
p.y -= pivot.y;
p2->x = DMulScale(p.x, dacos, -p.y, dasin, 14) + pivot.x;
p2->y = DMulScale(p.y, dacos, p.x, dasin, 14) + pivot.y;
}
//
// setview
//
void videoSetViewableArea(int32_t x1, int32_t y1, int32_t x2, int32_t y2)
{
windowxy1.x = x1;
windowxy1.y = y1;
windowxy2.x = x2;
windowxy2.y = y2;
xdimen = (x2-x1)+1;
ydimen = (y2-y1)+1;
fxdimen = (float) xdimen;
fydimen = (float) ydimen;
videoSetCorrectedAspect();
}
#include "v_2ddrawer.h"
//
// clearview
//
void videoClearViewableArea(int32_t dacol)
{
GLInterface.ClearScreen(dacol, false);
}
//
// clearallviews
//
void videoClearScreen(int32_t dacol)
{
GLInterface.ClearScreen(dacol | PalEntry(255,0,0,0));
}
//MUST USE RESTOREFORDRAWROOMS AFTER DRAWING
static int32_t setviewcnt = 0; // interface layers use this now
static int32_t bakxsiz, bakysiz;
static vec2_t bakwindowxy1, bakwindowxy2;
//
// setviewtotile
//
FCanvasTexture* renderSetTarget(int16_t tilenume)
{
auto tex = tileGetTexture(tilenume);
if (!tex || !tex->isHardwareCanvas()) return nullptr;
auto canvas = static_cast<FCanvasTexture*>(tex->GetTexture());
if (!canvas) return nullptr;
int xsiz = tex->GetTexelWidth(), ysiz = tex->GetTexelHeight();
if (setviewcnt > 0 || xsiz <= 0 || ysiz <= 0)
return nullptr;
//DRAWROOMS TO TILE BACKUP&SET CODE
bakxsiz = xdim; bakysiz = ydim;
bakwindowxy1 = windowxy1;
bakwindowxy2 = windowxy2;
setviewcnt++;
xdim = ysiz;
ydim = xsiz;
videoSetViewableArea(0,0,ysiz-1,xsiz-1);
renderSetAspect(65536,65536);
return canvas;
}
//
// setviewback
//
void renderRestoreTarget()
{
if (setviewcnt <= 0) return;
setviewcnt--;
xdim = bakxsiz;
ydim = bakysiz;
videoSetViewableArea(bakwindowxy1.x,bakwindowxy1.y,
bakwindowxy2.x,bakwindowxy2.y);
}
int32_t getceilzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->ceilingstat&2))
return sec->ceilingz;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->ceilingz;
int const j = DMulScale(d.x, day-w.y, -d.y, dax-w.x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->ceilingz + (Scale(sec->ceilingheinum,j>>shift,i)<<shift);
}
int32_t getflorzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->floorstat&2))
return sec->floorz;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->floorz;
int const j = DMulScale(d.x, day-w.y, -d.y, dax-w.x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->floorz + (Scale(sec->floorheinum,j>>shift,i)<<shift);
}
void getzsofslopeptr(usectorptr_t sec, int32_t dax, int32_t day, int32_t *ceilz, int32_t *florz)
{
*ceilz = sec->ceilingz; *florz = sec->floorz;
if (((sec->ceilingstat|sec->floorstat)&2) != 2)
return;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const d = { wal2->x - wal->x, wal2->y - wal->y };
int const i = ksqrt(uhypsq(d.x,d.y))<<5;
if (i == 0) return;
int const j = DMulScale(d.x,day-wal->y, -d.y,dax-wal->x, 3);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
if (sec->ceilingstat&2)
*ceilz += Scale(sec->ceilingheinum,j>>shift,i)<<shift;
if (sec->floorstat&2)
*florz += Scale(sec->floorheinum,j>>shift,i)<<shift;
}
//
// alignceilslope
//
void alignceilslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
auto const wal = (uwallptr_t)&wall[sector[dasect].wallptr];
const int32_t dax = wall[wal->point2].x-wal->x;
const int32_t day = wall[wal->point2].y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
sector[dasect].ceilingheinum = Scale((z-sector[dasect].ceilingz)<<8,
ksqrt(uhypsq(dax,day)), i);
if (sector[dasect].ceilingheinum == 0)
sector[dasect].ceilingstat &= ~2;
else sector[dasect].ceilingstat |= 2;
}
//
// alignflorslope
//
void alignflorslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
auto const wal = (uwallptr_t)&wall[sector[dasect].wallptr];
const int32_t dax = wall[wal->point2].x-wal->x;
const int32_t day = wall[wal->point2].y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
sector[dasect].floorheinum = Scale((z-sector[dasect].floorz)<<8,
ksqrt(uhypsq(dax,day)), i);
if (sector[dasect].floorheinum == 0)
sector[dasect].floorstat &= ~2;
else sector[dasect].floorstat |= 2;
}
int tilehasmodelorvoxel(int const tilenume, int pal)
{
UNREFERENCED_PARAMETER(pal);
return
(mdinited && hw_models && tile2model[Ptile2tile(tilenume, pal)].modelid != -1) ||
(r_voxels && tiletovox[tilenume] != -1);
}