raze/source/build/src/fix16.cpp
terminx d2b3691e22 Remove FIXMATH_NO_64BIT
This codebase doesn't work on any platforms where int64_t isn't even a type.

git-svn-id: https://svn.eduke32.com/eduke32@7707 1a8010ca-5511-0410-912e-c29ae57300e0
2019-09-20 12:07:17 +02:00

254 lines
5.9 KiB
C++

#include "fix16.h"
#include "fix16_int64.h"
/* Subtraction and addition with overflow detection.
* The versions without overflow detection are inlined in the header.
*/
#ifndef FIXMATH_NO_OVERFLOW
fix16_t fix16_add(fix16_t a, fix16_t b)
{
// Use unsigned integers because overflow with signed integers is
// an undefined operation (http://www.airs.com/blog/archives/120).
uint32_t _a = a, _b = b;
uint32_t sum = _a + _b;
// Overflow can only happen if sign of a == sign of b, and then
// it causes sign of sum != sign of a.
if (!((_a ^ _b) & 0x80000000) && ((_a ^ sum) & 0x80000000))
return FIX16_OVERFLOW;
return sum;
}
fix16_t fix16_sub(fix16_t a, fix16_t b)
{
uint32_t _a = a, _b = b;
uint32_t diff = _a - _b;
// Overflow can only happen if sign of a != sign of b, and then
// it causes sign of diff != sign of a.
if (((_a ^ _b) & 0x80000000) && ((_a ^ diff) & 0x80000000))
return FIX16_OVERFLOW;
return diff;
}
/* Saturating arithmetic */
fix16_t fix16_sadd(fix16_t a, fix16_t b)
{
fix16_t result = fix16_add(a, b);
if (result == FIX16_OVERFLOW)
return (a >= 0) ? FIX16_MAX : FIX16_MIN;
return result;
}
fix16_t fix16_ssub(fix16_t a, fix16_t b)
{
fix16_t result = fix16_sub(a, b);
if (result == FIX16_OVERFLOW)
return (a >= 0) ? FIX16_MAX : FIX16_MIN;
return result;
}
#endif
/* 64-bit implementation for fix16_mul. Fastest version for e.g. ARM Cortex M3.
* Performs a 32*32 -> 64bit multiplication. The middle 32 bits are the result,
* bottom 16 bits are used for rounding, and upper 16 bits are used for overflow
* detection.
*/
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1)
{
int64_t product = (int64_t)inArg0 * inArg1;
#ifndef FIXMATH_NO_OVERFLOW
// The upper 17 bits should all be the same (the sign).
uint32_t upper = (product >> 47);
#endif
if (product < 0)
{
#ifndef FIXMATH_NO_OVERFLOW
if (~upper)
return FIX16_OVERFLOW;
#endif
#ifndef FIXMATH_NO_ROUNDING
// This adjustment is required in order to round -1/2 correctly
product--;
#endif
}
else
{
#ifndef FIXMATH_NO_OVERFLOW
if (upper)
return FIX16_OVERFLOW;
#endif
}
#ifdef FIXMATH_NO_ROUNDING
return product >> 16;
#else
fix16_t result = product >> 16;
result += (product & 0x8000) >> 15;
return result;
#endif
}
#ifndef FIXMATH_NO_OVERFLOW
/* Wrapper around fix16_mul to add saturating arithmetic. */
fix16_t fix16_smul(fix16_t inArg0, fix16_t inArg1)
{
fix16_t result = fix16_mul(inArg0, inArg1);
if (result == FIX16_OVERFLOW)
{
if ((inArg0 >= 0) == (inArg1 >= 0))
return FIX16_MAX;
else
return FIX16_MIN;
}
return result;
}
#endif
/* 32-bit implementation of fix16_div. Fastest version for e.g. ARM Cortex M3.
* Performs 32-bit divisions repeatedly to reduce the remainder. For this to
* be efficient, the processor has to have 32-bit hardware division.
*/
#ifdef __GNUC__
// Count leading zeros, using processor-specific instruction if available.
#define clz(x) (__builtin_clzl(x) - (8 * sizeof(long) - 32))
#else
static uint8_t clz(uint32_t x)
{
uint8_t result = 0;
if (x == 0) return 32;
while (!(x & 0xF0000000)) { result += 4; x <<= 4; }
while (!(x & 0x80000000)) { result += 1; x <<= 1; }
return result;
}
#endif
fix16_t fix16_div(fix16_t a, fix16_t b)
{
// This uses a hardware 32/32 bit division multiple times, until we have
// computed all the bits in (a<<17)/b. Usually this takes 1-3 iterations.
if (b == 0)
return FIX16_MIN;
uint32_t remainder = (a >= 0) ? a : (-a);
uint32_t divider = (b >= 0) ? b : (-b);
uint32_t quotient = 0;
int bit_pos = 17;
// Kick-start the division a bit.
// This improves speed in the worst-case scenarios where N and D are large
// It gets a lower estimate for the result by N/(D >> 17 + 1).
if (divider & 0xFFF00000)
{
uint32_t shifted_div = ((divider >> 17) + 1);
quotient = remainder / shifted_div;
remainder -= ((uint64_t)quotient * divider) >> 17;
}
// If the divider is divisible by 2^n, take advantage of it.
while (!(divider & 0xF) && bit_pos >= 4)
{
divider >>= 4;
bit_pos -= 4;
}
while (remainder && bit_pos >= 0)
{
// Shift remainder as much as we can without overflowing
int shift = clz(remainder);
if (shift > bit_pos) shift = bit_pos;
remainder <<= shift;
bit_pos -= shift;
uint32_t div = remainder / divider;
remainder = remainder % divider;
quotient += div << bit_pos;
#ifndef FIXMATH_NO_OVERFLOW
if (div & ~(0xFFFFFFFF >> bit_pos))
return FIX16_OVERFLOW;
#endif
remainder <<= 1;
bit_pos--;
}
#ifndef FIXMATH_NO_ROUNDING
// Quotient is always positive so rounding is easy
quotient++;
#endif
fix16_t result = quotient >> 1;
// Figure out the sign of the result
if ((a ^ b) & 0x80000000)
{
#ifndef FIXMATH_NO_OVERFLOW
if (result == FIX16_MIN)
return FIX16_OVERFLOW;
#endif
result = -result;
}
return result;
}
#ifndef FIXMATH_NO_OVERFLOW
/* Wrapper around fix16_div to add saturating arithmetic. */
fix16_t fix16_sdiv(fix16_t inArg0, fix16_t inArg1)
{
fix16_t result = fix16_div(inArg0, inArg1);
if (result == FIX16_OVERFLOW)
{
if ((inArg0 >= 0) == (inArg1 >= 0))
return FIX16_MAX;
else
return FIX16_MIN;
}
return result;
}
#endif
fix16_t fix16_lerp8(fix16_t inArg0, fix16_t inArg1, uint8_t inFract)
{
int64_t tempOut = int64_mul_i32_i32(inArg0, ((1 << 8) - inFract));
tempOut = int64_add(tempOut, int64_mul_i32_i32(inArg1, inFract));
tempOut = int64_shift(tempOut, -8);
return (fix16_t)int64_lo(tempOut);
}
fix16_t fix16_lerp16(fix16_t inArg0, fix16_t inArg1, uint16_t inFract)
{
int64_t tempOut = int64_mul_i32_i32(inArg0, (((int32_t)1 << 16) - inFract));
tempOut = int64_add(tempOut, int64_mul_i32_i32(inArg1, inFract));
tempOut = int64_shift(tempOut, -16);
return (fix16_t)int64_lo(tempOut);
}
fix16_t fix16_lerp32(fix16_t inArg0, fix16_t inArg1, uint32_t inFract)
{
int64_t tempOut;
tempOut = ((int64_t)inArg0 * (0 - inFract));
tempOut += ((int64_t)inArg1 * inFract);
tempOut >>= 32;
return (fix16_t)tempOut;
}