raze/source/build/src/engine.cpp
Christoph Oelckers 18b39fd952 - first stage of generic automap code.
Lines and textures get rendered, not all colors are correct - sprites yet to do...
2020-09-06 20:49:43 +02:00

3998 lines
115 KiB
C++

// "Build Engine & Tools" Copyright (c) 1993-1997 Ken Silverman
// Ken Silverman's official web site: "http://www.advsys.net/ken"
// See the included license file "BUILDLIC.TXT" for license info.
//
// This file has been modified from Ken Silverman's original release
// by Jonathon Fowler (jf@jonof.id.au)
// by the EDuke32 team (development@voidpoint.com)
#define engine_c_
#include "gl_load.h"
#include "build.h"
#include "automap.h"
#include "imagehelpers.h"
#include "common.h"
#include "compat.h"
#include "engine_priv.h"
#include "palette.h"
#include "pragmas.h"
#include "scriptfile.h"
#include "gamecvars.h"
#include "c_console.h"
#include "v_2ddrawer.h"
#include "v_draw.h"
#include "stats.h"
#include "menu.h"
#include "version.h"
#include "earcut.hpp"
#include "gamestate.h"
#include "inputstate.h"
#include "printf.h"
#ifdef USE_OPENGL
# include "mdsprite.h"
# include "polymost.h"
#include "v_video.h"
#include "../../glbackend/glbackend.h"
#include "gl_renderer.h"
#endif
int32_t mapversion=7; // JBF 20040211: default mapversion to 7
int32_t g_loadedMapVersion = -1; // -1: none (e.g. started new)
int32_t rendmode=0;
int32_t glrendmode = REND_POLYMOST;
int32_t r_rortexture = 0;
int32_t r_rortexturerange = 0;
int32_t r_rorphase = 0;
int32_t mdtims, omdtims;
int32_t polymostcenterhoriz = 100;
float fcosglobalang, fsinglobalang;
float fxdim, fydim, fydimen, fviewingrange;
uint8_t globalr = 255, globalg = 255, globalb = 255;
int16_t pskybits_override = -1;
// This was on the cache but is permanently allocated, so put it into something static. This needs some rethinking anyway
static TArray<TArray<uint8_t>> voxelmemory;
int16_t tiletovox[MAXTILES];
#ifdef USE_OPENGL
char *voxfilenames[MAXVOXELS];
#endif
char g_haveVoxels;
//#define kloadvoxel loadvoxel
int32_t novoxmips = 1;
//These variables need to be copied into BUILD
#define MAXXSIZ 256
#define MAXYSIZ 256
#define MAXZSIZ 255
int32_t voxscale[MAXVOXELS];
static int32_t beforedrawrooms = 1;
static int32_t oxdimen = -1, oviewingrange = -1, oxyaspect = -1;
int32_t globalflags;
static int8_t tempbuf[MAXWALLS];
// referenced from asm
int32_t reciptable[2048];
intptr_t asm1, asm2;
int32_t globalx1, globaly2, globalx3, globaly3;
static int32_t no_radarang2 = 0;
static int16_t radarang[1280];
static int32_t qradarang[10240];
uint16_t ATTRIBUTE((used)) sqrtable[4096], ATTRIBUTE((used)) shlookup[4096+256], ATTRIBUTE((used)) sqrtable_old[2048];
static char kensmessage[128];
const char *engineerrstr = "No error";
int32_t showfirstwall=0;
int32_t showheightindicators=1;
int32_t circlewall=-1;
int16_t editstatus = 0;
static fixed_t global100horiz; // (-100..300)-scale horiz (the one passed to drawrooms)
static FString printcoords(void)
{
FString str;
str.Format(
"pos.x: %d\n"
"pos.y: %d\n"
"pos.z: %d\n"
"ang : %d\n"
"horiz: %d\n",
globalposx, globalposy,
globalposz, globalang,
FixedToInt(global100horiz)
);
return str;
}
CCMD(printcoords)
{
Printf("%s", printcoords().GetChars());
}
ADD_STAT(printcoords)
{
return printcoords();
}
int32_t(*getpalookup_replace)(int32_t davis, int32_t dashade) = NULL;
// adapted from build.c
static void getclosestpointonwall_internal(vec2_t const p, int32_t const dawall, vec2_t *const closest)
{
vec2_t const w = wall[dawall].pos;
vec2_t const w2 = wall[wall[dawall].point2].pos;
vec2_t const d = { w2.x - w.x, w2.y - w.y };
int64_t i = d.x * ((int64_t)p.x - w.x) + d.y * ((int64_t)p.y - w.y);
if (i <= 0)
{
*closest = w;
return;
}
int64_t const j = (int64_t)d.x * d.x + (int64_t)d.y * d.y;
if (i >= j)
{
*closest = w2;
return;
}
i = ((i << 15) / j) << 15;
*closest = { (int32_t)(w.x + ((d.x * i) >> 30)), (int32_t)(w.y + ((d.y * i) >> 30)) };
}
//
// setslope
//
void setslope(int32_t sectnum, int32_t cf, int16_t slope)
{
if (slope==0)
{
SECTORFLD(sectnum,stat, cf) &= ~2;
SECTORFLD(sectnum,heinum, cf) = 0;
}
else
{
SECTORFLD(sectnum,stat, cf) |= 2;
SECTORFLD(sectnum,heinum, cf) = slope;
}
}
#define WALLS_ARE_CONSISTENT(k) ((wall[k].x == x2 && wall[k].y == y2) \
&& ((wall[wall[k].point2]).x == x1 && (wall[wall[k].point2]).y == y1))
static int32_t getscore(int32_t w1c, int32_t w1f, int32_t w2c, int32_t w2f)
{
if (w1c > w1f)
swaplong(&w1c, &w1f);
if (w2c > w2f)
swaplong(&w2c, &w2f);
// now: c <= f for each "wall-vline"
int32_t maxceil = max(w1c, w2c);
int32_t minflor = min(w1f, w2f);
return minflor-maxceil;
}
const int16_t *chsecptr_onextwall = NULL;
int32_t checksectorpointer(int16_t i, int16_t sectnum)
{
int32_t startsec, endsec;
int32_t j, k, startwall, endwall, x1, y1, x2, y2, numnewwalls=0;
int32_t bestnextwall=-1, bestnextsec=-1, bestwallscore=INT32_MIN;
int32_t cz[4], fz[4], tmp[2], tmpscore=0;
x1 = wall[i].x;
y1 = wall[i].y;
x2 = (wall[wall[i].point2]).x;
y2 = (wall[wall[i].point2]).y;
k = wall[i].nextwall;
if (k >= 0) //Check for early exit
{
if (WALLS_ARE_CONSISTENT(k))
return 0;
wall[k].nextwall = wall[k].nextsector = -1;
}
if ((unsigned)wall[i].nextsector < (unsigned)numsectors && wall[i].nextwall < 0)
{
// if we have a nextsector but no nextwall, take this as a hint
// to search only the walls of that sector
startsec = wall[i].nextsector;
endsec = startsec+1;
}
else
{
startsec = 0;
endsec = numsectors;
}
wall[i].nextsector = wall[i].nextwall = -1;
if (chsecptr_onextwall && (k=chsecptr_onextwall[i])>=0 && wall[k].nextwall<0)
{
// old next wall found
if (WALLS_ARE_CONSISTENT(k))
{
j = sectorofwall(k);
wall[i].nextsector = j;
wall[i].nextwall = k;
wall[k].nextsector = sectnum;
wall[k].nextwall = i;
return 1;
}
}
for (j=startsec; j<endsec; j++)
{
if (j == sectnum)
continue;
startwall = sector[j].wallptr;
endwall = startwall + sector[j].wallnum;
for (k=startwall; k<endwall; k++)
{
if (!WALLS_ARE_CONSISTENT(k))
continue;
// Don't create link if the other side is connected to another wall.
// The nextwall relation should be definitely one-to-one at all times!
if (wall[k].nextwall>=0 && wall[k].nextwall != i)
continue;
{
getzsofslope(sectnum, x1,y1, &cz[0],&fz[0]);
getzsofslope(sectnum, x2,y2, &cz[1],&fz[1]);
getzsofslope(j, x1,y1, &cz[2],&fz[2]);
getzsofslope(j, x2,y2, &cz[3],&fz[3]);
tmp[0] = getscore(cz[0],fz[0], cz[2],fz[2]);
tmp[1] = getscore(cz[1],fz[1], cz[3],fz[3]);
if ((tmp[0]^tmp[1]) >= 0)
tmpscore = tmp[0]+tmp[1];
else
tmpscore = max(tmp[0], tmp[1]);
}
if (bestnextwall == -1 || tmpscore > bestwallscore)
{
bestwallscore = tmpscore;
bestnextwall = k;
bestnextsec = j;
}
numnewwalls++;
}
}
// sectnum -2 means dry run
if (bestnextwall >= 0 && sectnum!=-2)
{
// Printf("w%d new nw=%d (score %d)\n", i, bestnextwall, bestwallscore)
wall[i].nextsector = bestnextsec;
wall[i].nextwall = bestnextwall;
wall[bestnextwall].nextsector = sectnum;
wall[bestnextwall].nextwall = i;
}
return numnewwalls;
}
#undef WALLS_ARE_CONSISTENT
int32_t xb1[MAXWALLSB]; // Polymost uses this as a temp array
static int32_t xb2[MAXWALLSB];
int32_t rx1[MAXWALLSB], ry1[MAXWALLSB];
int16_t bunchp2[MAXWALLSB], thesector[MAXWALLSB];
int16_t bunchfirst[MAXWALLSB], bunchlast[MAXWALLSB];
static vec3_t spritesxyz[MAXSPRITESONSCREEN+1];
int32_t xdimen = -1, xdimenrecip, halfxdimen, xdimenscale, xdimscale;
float fxdimen = -1.f;
int32_t ydimen;
int32_t rxi[8], ryi[8];
int32_t globalposx, globalposy, globalposz, globalhoriz;
fixed_t qglobalhoriz;
float fglobalposx, fglobalposy, fglobalposz;
int16_t globalang, globalcursectnum;
fixed_t qglobalang;
int32_t globalpal, cosglobalang, singlobalang;
int32_t cosviewingrangeglobalang, sinviewingrangeglobalang;
int32_t xyaspect;
int32_t viewingrangerecip;
static char globalxshift, globalyshift;
static int32_t globalxpanning, globalypanning;
int32_t globalshade, globalorientation;
int16_t globalpicnum;
static int32_t globaly1, globalx2;
int16_t sectorborder[256];
int16_t pointhighlight=-1, linehighlight=-1, highlightcnt=0;
int32_t halfxdim16, midydim16;
static_assert(MAXWALLSB < INT16_MAX);
int16_t numscans, numbunches;
static int16_t numhits;
int16_t searchit;
int32_t searchx = -1, searchy; //search input
int16_t searchsector, searchwall, searchstat; //search output
// SEARCHBOTTOMWALL:
// When aiming at a the bottom part of a 2-sided wall whose bottom part
// is swapped (.cstat&2), searchbottomwall equals that wall's .nextwall. In all
// other cases (when aiming at a wall), searchbottomwall equals searchwall.
//
// SEARCHISBOTTOM:
// When aiming at a 2-sided wall, 1 if aiming at the bottom part, 0 else
int16_t searchbottomwall, searchisbottom;
char inpreparemirror = 0;
static int32_t mirrorsx1, mirrorsy1, mirrorsx2, mirrorsy2;
#define MAXSETVIEW 4
//
// Internal Engine Functions
//
// returns: 0=continue sprite collecting;
// 1=break out of sprite collecting;
int32_t renderAddTsprite(int16_t z, int16_t sectnum)
{
auto const spr = (uspriteptr_t)&sprite[z];
if (spritesortcnt >= maxspritesonscreen)
return 1;
renderAddTSpriteFromSprite(z);
return 0;
}
//
// wallfront (internal)
//
int32_t wallfront(int32_t l1, int32_t l2)
{
vec2_t const l1vect = wall[thewall[l1]].pos;
vec2_t const l1p2vect = wall[wall[thewall[l1]].point2].pos;
vec2_t const l2vect = wall[thewall[l2]].pos;
vec2_t const l2p2vect = wall[wall[thewall[l2]].point2].pos;
vec2_t d = { l1p2vect.x - l1vect.x, l1p2vect.y - l1vect.y };
int32_t t1 = dmulscale2(l2vect.x-l1vect.x, d.y, -d.x, l2vect.y-l1vect.y); //p1(l2) vs. l1
int32_t t2 = dmulscale2(l2p2vect.x-l1vect.x, d.y, -d.x, l2p2vect.y-l1vect.y); //p2(l2) vs. l1
if (t1 == 0) { if (t2 == 0) return -1; t1 = t2; }
if (t2 == 0) t2 = t1;
if ((t1^t2) >= 0) //pos vs. l1
return (dmulscale2(globalposx-l1vect.x, d.y, -d.x, globalposy-l1vect.y) ^ t1) >= 0;
d.x = l2p2vect.x-l2vect.x;
d.y = l2p2vect.y-l2vect.y;
t1 = dmulscale2(l1vect.x-l2vect.x, d.y, -d.x, l1vect.y-l2vect.y); //p1(l1) vs. l2
t2 = dmulscale2(l1p2vect.x-l2vect.x, d.y, -d.x, l1p2vect.y-l2vect.y); //p2(l1) vs. l2
if (t1 == 0) { if (t2 == 0) return -1; t1 = t2; }
if (t2 == 0) t2 = t1;
if ((t1^t2) >= 0) //pos vs. l2
return (dmulscale2(globalposx-l2vect.x,d.y,-d.x,globalposy-l2vect.y) ^ t1) < 0;
return -2;
}
//
// animateoffs (internal)
//
int32_t (*animateoffs_replace)(int const tilenum, int fakevar) = NULL;
int32_t animateoffs(int const tilenum, int fakevar)
{
if (animateoffs_replace)
{
return animateoffs_replace(tilenum, fakevar);
}
int const animnum = picanm[tilenum].num;
if (animnum <= 0)
return 0;
int const i = (int) I_GetBuildTime() >> (picanm[tilenum].sf & PICANM_ANIMSPEED_MASK);
int offs = 0;
switch (picanm[tilenum].sf & PICANM_ANIMTYPE_MASK)
{
case PICANM_ANIMTYPE_OSC:
{
int k = (i % (animnum << 1));
offs = (k < animnum) ? k : (animnum << 1) - k;
}
break;
case PICANM_ANIMTYPE_FWD: offs = i % (animnum + 1); break;
case PICANM_ANIMTYPE_BACK: offs = -(i % (animnum + 1)); break;
}
return offs;
}
// globalpicnum --> globalxshift, globalyshift
static void calc_globalshifts(void)
{
globalxshift = (8-widthBits(globalpicnum));
globalyshift = (8-heightBits(globalpicnum));
if (globalorientation&8) { globalxshift++; globalyshift++; }
// PK: the following can happen for large (>= 512) tile sizes.
// NOTE that global[xy]shift are unsigned chars.
if (globalxshift > 31) globalxshift=0;
if (globalyshift > 31) globalyshift=0;
}
static void renderDrawSprite(int32_t snum)
{
polymost_drawsprite(snum);
}
//
// drawmaskwall (internal)
//
static void renderDrawMaskedWall(int16_t damaskwallcnt)
{
if (videoGetRenderMode() == REND_POLYMOST)
{
polymost_drawmaskwall(damaskwallcnt); return;
}
}
static uint32_t msqrtasm(uint32_t c)
{
uint32_t a = 0x40000000l, b = 0x20000000l;
do
{
if (c >= a)
{
c -= a;
a += b*4;
}
a -= b;
a >>= 1;
b >>= 2;
} while (b);
if (c >= a)
a++;
return a >> 1;
}
//
// initksqrt (internal)
//
static inline void initksqrt(void)
{
int32_t i, j, k;
uint32_t root, num;
int32_t temp;
j = 1; k = 0;
for (i=0; i<4096; i++)
{
if (i >= j) { j <<= 2; k++; }
sqrtable[i] = (uint16_t)(msqrtasm((i<<18)+131072)<<1);
shlookup[i] = (k<<1)+((10-k)<<8);
if (i < 256) shlookup[i+4096] = ((k+6)<<1)+((10-(k+6))<<8);
}
for(i=0;i<2048;i++)
{
root = 128;
num = i<<20;
do
{
temp = root;
root = (root+num/root)>>1;
} while((temp-root+1) > 2);
temp = root*root-num;
while (klabs(int32_t(temp-2*root+1)) < klabs(temp))
{
temp += 1-int(2*root);
root--;
}
while (klabs(int32_t(temp+2*root+1)) < klabs(temp))
{
temp += 2*root+1;
root++;
}
sqrtable_old[i] = root;
}
}
//
// dosetaspect
//
static void dosetaspect(void)
{
int32_t i, j;
if (xyaspect != oxyaspect)
{
oxyaspect = xyaspect;
j = xyaspect*320;
}
if (xdimen != oxdimen || viewingrange != oviewingrange)
{
int32_t k, x, xinc;
no_radarang2 = 0;
oviewingrange = viewingrange;
xinc = mulscale32(viewingrange*2560,xdimenrecip);
x = IntToFixed(5120)-mulscale1(xinc,xdimen);
for (i=0; i<xdimen; i++)
{
j = (x&65535); k = FixedToInt(x); x += xinc;
if (k < 0 || k >= (int32_t)ARRAY_SIZE(qradarang)-1)
{
no_radarang2 = 1;
break;
}
if (j != 0)
j = mulscale16(qradarang[k+1]-qradarang[k], j);
}
oxdimen = xdimen;
}
}
static int32_t engineLoadTables(void)
{
static char tablesloaded = 0;
if (tablesloaded == 0)
{
int32_t i;
initksqrt();
for (i=0; i<2048; i++)
reciptable[i] = divscale30(2048, i+2048);
for (i=0; i<=512; i++)
sintable[i] = (int16_t)(16384.f * sinf((float)i * BANG2RAD) + 0.0001f);
for (i=513; i<1024; i++)
sintable[i] = sintable[1024-i];
for (i=1024; i<2048; i++)
sintable[i] = -sintable[i-1024];
for (i=0; i<640; i++)
radarang[i] = (int16_t)(atanf(((float)(640-i)-0.5f) * (1.f/160.f)) * (-64.f * (1.f/BANG2RAD)) + 0.0001f);
for (i=0; i<640; i++)
radarang[1279-i] = -radarang[i];
for (i=0; i<5120; i++)
qradarang[i] = FloatToFixed(atanf(((float)(5120-i)-0.5f) * (1.f/1280.f)) * (-64.f * (1.f/BANG2RAD)));
for (i=0; i<5120; i++)
qradarang[10239-i] = -qradarang[i];
tablesloaded = 1;
}
return 0;
}
////////// SPRITE LIST MANIPULATION FUNCTIONS //////////
#ifdef NETCODE_DISABLE
# define LISTFN_STATIC static
#else
# define LISTFN_STATIC
#endif
///// sector lists of sprites /////
// insert sprite at the head of sector list, change .sectnum
LISTFN_STATIC void do_insertsprite_at_headofsect(int16_t spritenum, int16_t sectnum)
{
int16_t const ohead = headspritesect[sectnum];
prevspritesect[spritenum] = -1;
nextspritesect[spritenum] = ohead;
if (ohead >= 0)
prevspritesect[ohead] = spritenum;
headspritesect[sectnum] = spritenum;
sprite[spritenum].sectnum = sectnum;
}
// remove sprite 'deleteme' from its sector list
LISTFN_STATIC void do_deletespritesect(int16_t deleteme)
{
int32_t const sectnum = sprite[deleteme].sectnum;
int32_t const prev = prevspritesect[deleteme];
int32_t const next = nextspritesect[deleteme];
if (headspritesect[sectnum] == deleteme)
headspritesect[sectnum] = next;
if (prev >= 0)
nextspritesect[prev] = next;
if (next >= 0)
prevspritesect[next] = prev;
}
///// now, status lists /////
// insert sprite at head of status list, change .statnum
LISTFN_STATIC void do_insertsprite_at_headofstat(int16_t spritenum, int16_t statnum)
{
int16_t const ohead = headspritestat[statnum];
prevspritestat[spritenum] = -1;
nextspritestat[spritenum] = ohead;
if (ohead >= 0)
prevspritestat[ohead] = spritenum;
headspritestat[statnum] = spritenum;
sprite[spritenum].statnum = statnum;
}
// insertspritestat (internal)
LISTFN_STATIC int32_t insertspritestat(int16_t statnum)
{
if ((statnum >= MAXSTATUS) || (headspritestat[MAXSTATUS] == -1))
return -1; //list full
// remove one sprite from the statnum-freelist
int16_t const blanktouse = headspritestat[MAXSTATUS];
headspritestat[MAXSTATUS] = nextspritestat[blanktouse];
// make back-link of the new freelist head point to nil
if (headspritestat[MAXSTATUS] >= 0)
prevspritestat[headspritestat[MAXSTATUS]] = -1;
else if (enginecompatibility_mode == ENGINECOMPATIBILITY_NONE)
tailspritefree = -1;
do_insertsprite_at_headofstat(blanktouse, statnum);
return blanktouse;
}
// remove sprite 'deleteme' from its status list
LISTFN_STATIC void do_deletespritestat(int16_t deleteme)
{
int32_t const sectnum = sprite[deleteme].statnum;
int32_t const prev = prevspritestat[deleteme];
int32_t const next = nextspritestat[deleteme];
if (headspritestat[sectnum] == deleteme)
headspritestat[sectnum] = next;
if (prev >= 0)
nextspritestat[prev] = next;
if (next >= 0)
prevspritestat[next] = prev;
}
//
// insertsprite
//
int32_t(*insertsprite_replace)(int16_t sectnum, int16_t statnum) = NULL;
int32_t insertsprite(int16_t sectnum, int16_t statnum)
{
if (insertsprite_replace)
return insertsprite_replace(sectnum, statnum);
// TODO: guard against bad sectnum?
int32_t const newspritenum = insertspritestat(statnum);
if (newspritenum >= 0)
{
assert((unsigned)sectnum < MAXSECTORS);
do_insertsprite_at_headofsect(newspritenum, sectnum);
Numsprites++;
}
return newspritenum;
}
//
// deletesprite
//
int32_t (*deletesprite_replace)(int16_t spritenum) = NULL;
void polymost_deletesprite(int num);
int32_t deletesprite(int16_t spritenum)
{
polymost_deletesprite(spritenum);
if (deletesprite_replace)
return deletesprite_replace(spritenum);
assert((sprite[spritenum].statnum == MAXSTATUS)
== (sprite[spritenum].sectnum == MAXSECTORS));
if (sprite[spritenum].statnum == MAXSTATUS)
return -1; // already not in the world
do_deletespritestat(spritenum);
do_deletespritesect(spritenum);
// (dummy) insert at tail of sector freelist, compat
// for code that checks .sectnum==MAXSECTOR
sprite[spritenum].sectnum = MAXSECTORS;
// insert at tail of status freelist
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
do_insertsprite_at_headofstat(spritenum, MAXSTATUS);
else
{
prevspritestat[spritenum] = tailspritefree;
nextspritestat[spritenum] = -1;
if (tailspritefree >= 0)
nextspritestat[tailspritefree] = spritenum;
else
headspritestat[MAXSTATUS] = spritenum;
sprite[spritenum].statnum = MAXSTATUS;
tailspritefree = spritenum;
}
Numsprites--;
return 0;
}
//
// changespritesect
//
int32_t (*changespritesect_replace)(int16_t spritenum, int16_t newsectnum) = NULL;
int32_t changespritesect(int16_t spritenum, int16_t newsectnum)
{
if (changespritesect_replace)
return changespritesect_replace(spritenum, newsectnum);
// XXX: NOTE: MAXSECTORS is allowed
if ((newsectnum < 0 || newsectnum > MAXSECTORS) || (sprite[spritenum].sectnum == MAXSECTORS))
return -1;
if (sprite[spritenum].sectnum == newsectnum)
return 0;
do_deletespritesect(spritenum);
do_insertsprite_at_headofsect(spritenum, newsectnum);
return 0;
}
//
// changespritestat
//
int32_t (*changespritestat_replace)(int16_t spritenum, int16_t newstatnum) = NULL;
int32_t changespritestat(int16_t spritenum, int16_t newstatnum)
{
if (changespritestat_replace)
return changespritestat_replace(spritenum, newstatnum);
// XXX: NOTE: MAXSTATUS is allowed
if ((newstatnum < 0 || newstatnum > MAXSTATUS) || (sprite[spritenum].statnum == MAXSTATUS))
return -1; // can't set the statnum of a sprite not in the world
if (sprite[spritenum].statnum == newstatnum)
return 0; // sprite already has desired statnum
do_deletespritestat(spritenum);
do_insertsprite_at_headofstat(spritenum, newstatnum);
return 0;
}
//
// lintersect (internal)
//
int32_t lintersect(const int32_t originX, const int32_t originY, const int32_t originZ,
const int32_t destX, const int32_t destY, const int32_t destZ,
const int32_t lineStartX, const int32_t lineStartY, const int32_t lineEndX, const int32_t lineEndY,
int32_t *intersectionX, int32_t *intersectionY, int32_t *intersectionZ)
{
const vec2_t ray = { destX-originX,
destY-originY };
const vec2_t lineVec = { lineEndX-lineStartX,
lineEndY-lineStartY };
const vec2_t originDiff = { lineStartX-originX,
lineStartY-originY };
const int32_t rayCrossLineVec = ray.x*lineVec.y - ray.y*lineVec.x;
const int32_t originDiffCrossRay = originDiff.x*ray.y - originDiff.y*ray.x;
if (rayCrossLineVec == 0)
{
if (originDiffCrossRay != 0 || enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
// line segments are parallel
return 0;
}
// line segments are collinear
const int32_t rayLengthSquared = ray.x*ray.x + ray.y*ray.y;
const int32_t rayDotOriginDiff = ray.x*originDiff.x + ray.y*originDiff.y;
const int32_t rayDotLineEndDiff = rayDotOriginDiff + ray.x*lineVec.x + ray.y*lineVec.y;
int64_t t = min(rayDotOriginDiff, rayDotLineEndDiff);
if (rayDotOriginDiff < 0)
{
if (rayDotLineEndDiff < 0)
return 0;
t = 0;
}
else if (rayDotOriginDiff > rayLengthSquared)
{
if (rayDotLineEndDiff > rayLengthSquared)
return 0;
t = rayDotLineEndDiff;
}
t = (t << 24) / rayLengthSquared;
*intersectionX = originX + mulscale24(ray.x, t);
*intersectionY = originY + mulscale24(ray.y, t);
*intersectionZ = originZ + mulscale24(destZ-originZ, t);
return 1;
}
const int32_t originDiffCrossLineVec = originDiff.x*lineVec.y - originDiff.y*lineVec.x;
static const int32_t signBit = 1u<<31u;
// Any point on either line can be expressed as p+t*r and q+u*s
// The two line segments intersect when we can find a t & u such that p+t*r = q+u*s
// If the point is outside of the bounds of the line segment, we know we don't have an intersection.
// t is < 0 if (originDiffCrossLineVec^rayCrossLineVec) & signBit)
// u is < 0 if (originDiffCrossRay^rayCrossLineVec) & signBit
// t is > 1 if klabs(originDiffCrossLineVec) > klabs(rayCrossLineVec)
// u is > 1 if klabs(originDiffCrossRay) > klabs(rayCrossLineVec)
// where int32_t u = tabledivide64(((int64_t) originDiffCrossRay) << 24L, rayCrossLineVec);
if (((originDiffCrossLineVec^rayCrossLineVec) & signBit) ||
((originDiffCrossRay^rayCrossLineVec) & signBit) ||
klabs(originDiffCrossLineVec) > klabs(rayCrossLineVec) ||
klabs(originDiffCrossRay) > klabs(rayCrossLineVec))
{
// line segments do not overlap
return 0;
}
int64_t t = (int64_t(originDiffCrossLineVec) << 24) / rayCrossLineVec;
// For sake of completeness/readability, alternative to the above approach for an early out & avoidance of an extra division:
*intersectionX = originX + mulscale24(ray.x, t);
*intersectionY = originY + mulscale24(ray.y, t);
*intersectionZ = originZ + mulscale24(destZ-originZ, t);
return 1;
}
//
// rintersect (internal)
//
// returns: -1 if didn't intersect, coefficient IntToFixed(x3--x4 fraction) else
int32_t rintersect_old(int32_t x1, int32_t y1, int32_t z1,
int32_t vx, int32_t vy, int32_t vz,
int32_t x3, int32_t y3, int32_t x4, int32_t y4,
int32_t *intx, int32_t *inty, int32_t *intz)
{
//p1 towards p2 is a ray
int32_t const x34=x3-x4, y34=y3-y4;
int32_t const x31=x3-x1, y31=y3-y1;
int32_t const bot = vx*y34 - vy*x34;
int32_t const topt = x31*y34 - y31*x34;
if (bot == 0)
return -1;
int32_t const topu = vx*y31 - vy*x31;
if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot))
return -1;
else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot))
return -1;
int32_t t = divscale16(topt, bot);
*intx = x1 + mulscale16(vx, t);
*inty = y1 + mulscale16(vy, t);
*intz = z1 + mulscale16(vz, t);
t = divscale16(topu, bot);
return t;
}
int32_t rintersect(int32_t x1, int32_t y1, int32_t z1,
int32_t vx, int32_t vy, int32_t vz,
int32_t x3, int32_t y3, int32_t x4, int32_t y4,
int32_t *intx, int32_t *inty, int32_t *intz)
{
//p1 towards p2 is a ray
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
return rintersect_old(x1,y1,z1,vx,vy,vz,x3,y3,x4,y4,intx,inty,intz);
int64_t const x34=x3-x4, y34=y3-y4;
int64_t const x31=x3-x1, y31=y3-y1;
int64_t const bot = vx*y34 - vy*x34;
int64_t const topt = x31*y34 - y31*x34;
if (bot == 0)
return -1;
int64_t const topu = vx*y31 - vy*x31;
if (bot > 0 && (topt < 0 || topu < 0 || topu >= bot))
return -1;
else if (bot < 0 && (topt > 0 || topu > 0 || topu <= bot))
return -1;
int64_t t = IntToFixed(topt) / bot;
*intx = x1 + FixedToInt(vx*t);
*inty = y1 + FixedToInt(vy*t);
*intz = z1 + FixedToInt(vz*t);
t = IntToFixed(topu) / bot;
assert((unsigned)t < 65536);
return t;
}
int32_t rayintersect(int32_t x1, int32_t y1, int32_t z1, int32_t vx, int32_t vy, int32_t vz, int32_t x3,
int32_t y3, int32_t x4, int32_t y4, int32_t *intx, int32_t *inty, int32_t *intz)
{
return (rintersect(x1, y1, z1, vx, vy, vz, x3, y3, x4, y4, intx, inty, intz) != -1);
}
//
// multi-pskies
//
psky_t * tileSetupSky(int32_t const tilenum)
{
for (auto& sky : multipskies)
if (tilenum == sky.tilenum)
{
sky.combinedtile = -1; // invalidate the old content
return &sky;
}
multipskies.Reserve(1);
multipskies.Last() = {};
multipskies.Last().tilenum = tilenum;
multipskies.Last().combinedtile = -1;
multipskies.Last().yscale = 65536;
return &multipskies.Last();
}
psky_t * defineSky(int32_t const tilenum, int horiz, int lognumtiles, const uint16_t *tileofs, int yoff)
{
auto sky = tileSetupSky(tilenum);
sky->horizfrac = horiz;
sky->lognumtiles = lognumtiles;
sky->yoffs = yoff;
memcpy(sky->tileofs, tileofs, 2 << lognumtiles);
return sky;
}
// Get properties of parallaxed sky to draw.
// Returns: pointer to tile offset array. Sets-by-pointer the other three.
const int16_t* getpsky(int32_t picnum, int32_t* dapyscale, int32_t* dapskybits, int32_t* dapyoffs, int32_t* daptileyscale)
{
psky_t const* const psky = getpskyidx(picnum);
if (dapskybits)
*dapskybits = (pskybits_override == -1 ? psky->lognumtiles : pskybits_override);
if (dapyscale)
*dapyscale = (parallaxyscale_override == 0 ? psky->horizfrac : parallaxyscale_override);
if (dapyoffs)
*dapyoffs = psky->yoffs + parallaxyoffs_override;
if (daptileyscale)
*daptileyscale = psky->yscale;
return psky->tileofs;
}
//
// preinitengine
//
static int32_t preinitcalled = 0;
#if !defined DEBUG_MAIN_ARRAYS
static spriteext_t spriteext_s[MAXSPRITES+MAXUNIQHUDID];
static spritesmooth_t spritesmooth_s[MAXSPRITES+MAXUNIQHUDID];
static sectortype sector_s[MAXSECTORS + M32_FIXME_SECTORS];
static walltype wall_s[MAXWALLS + M32_FIXME_WALLS];
#ifndef NEW_MAP_FORMAT
static wallext_t wallext_s[MAXWALLS];
#endif
static spritetype sprite_s[MAXSPRITES];
static tspritetype tsprite_s[MAXSPRITESONSCREEN];
#endif
int32_t enginePreInit(void)
{
polymost_initosdfuncs();
#if !defined DEBUG_MAIN_ARRAYS
sector = sector_s;
wall = wall_s;
# ifndef NEW_MAP_FORMAT
wallext = wallext_s;
# endif
sprite = sprite_s;
tsprite = tsprite_s;
spriteext = spriteext_s;
spritesmooth = spritesmooth_s;
#endif
preinitcalled = 1;
return 0;
}
void (*paletteLoadFromDisk_replace)(void) = NULL; // replacement hook for Blood.
//
// initengine
//
int32_t engineInit(void)
{
int32_t i;
if (!preinitcalled)
{
i = enginePreInit();
if (i) return i;
}
if (engineLoadTables())
return 1;
xyaspect = -1;
showinvisibility = 0;
voxelmemory.Reset();
for (i=0; i<MAXTILES; i++)
tiletovox[i] = -1;
for (auto& v : voxscale) v = 65536;
memset(voxrotate, 0, sizeof(voxrotate));
paletteloaded = 0;
searchit = 0; searchstat = -1;
g_visibility = 512;
parallaxvisibility = 512;
maxspritesonscreen = MAXSPRITESONSCREEN;
GPalette.Init(MAXPALOOKUPS + 1); // one slot for each translation, plus a separate one for the base palettes.
if (paletteLoadFromDisk_replace)
{
paletteLoadFromDisk_replace();
}
else
{
paletteLoadFromDisk();
}
#ifdef USE_OPENGL
if (!mdinited) mdinit();
#endif
return 0;
}
//
// E_PostInit
//
int32_t enginePostInit(void)
{
if (!(paletteloaded & PALETTE_MAIN))
I_FatalError("No palette found.");
V_LoadTranslations(); // loading the translations must be delayed until the palettes have been fully set up.
lookups.postLoadTables();
TileFiles.SetupReverseTileMap();
TileFiles.PostLoadSetup();
return 0;
}
//
// uninitengine
//
void engineUnInit(void)
{
polymost_glreset();
freeallmodels();
# ifdef POLYMER
polymer_uninit();
# endif
TileFiles.CloseAll();
for (bssize_t i = 0; i < num_usermaphacks; i++)
{
Xfree(usermaphacks[i].mhkfile);
Xfree(usermaphacks[i].title);
}
DO_FREE_AND_NULL(usermaphacks);
num_usermaphacks = 0;
}
//
// initspritelists
//
void (*initspritelists_replace)(void) = NULL;
void initspritelists(void)
{
if (initspritelists_replace)
{
initspritelists_replace();
return;
}
int32_t i;
// initial list state for statnum lists:
//
// statnum 0: nil
// statnum 1: nil
// . . .
// statnum MAXSTATUS-1: nil
// "statnum MAXSTATUS": nil <- 0 <-> 1 <-> 2 <-> ... <-> MAXSPRITES-1 -> nil
//
// That is, the dummy MAXSTATUS statnum has all sprites.
for (i=0; i<MAXSECTORS; i++) //Init doubly-linked sprite sector lists
headspritesect[i] = -1;
headspritesect[MAXSECTORS] = 0;
for (i=0; i<MAXSPRITES; i++)
{
prevspritesect[i] = i-1;
nextspritesect[i] = i+1;
sprite[i].sectnum = MAXSECTORS;
}
prevspritesect[0] = -1;
nextspritesect[MAXSPRITES-1] = -1;
for (i=0; i<MAXSTATUS; i++) //Init doubly-linked sprite status lists
headspritestat[i] = -1;
headspritestat[MAXSTATUS] = 0;
for (i=0; i<MAXSPRITES; i++)
{
prevspritestat[i] = i-1;
nextspritestat[i] = i+1;
sprite[i].statnum = MAXSTATUS;
}
prevspritestat[0] = -1;
nextspritestat[MAXSPRITES-1] = -1;
tailspritefree = MAXSPRITES-1;
Numsprites = 0;
}
void set_globalang(fixed_t const ang)
{
globalang = FixedToInt(ang)&2047;
qglobalang = ang & 0x7FFFFFF;
float const f_ang = FixedToFloat(ang);
float const f_ang_radians = f_ang * M_PI * (1.f/1024.f);
float const fcosang = cosf(f_ang_radians) * 16384.f;
float const fsinang = sinf(f_ang_radians) * 16384.f;
#ifdef USE_OPENGL
fcosglobalang = fcosang;
fsinglobalang = fsinang;
#endif
cosglobalang = (int)fcosang;
singlobalang = (int)fsinang;
cosviewingrangeglobalang = mulscale16(cosglobalang,viewingrange);
sinviewingrangeglobalang = mulscale16(singlobalang,viewingrange);
}
//
// drawrooms
//
EXTERN_CVAR(Int, gl_fogmode)
int32_t renderDrawRoomsQ16(int32_t daposx, int32_t daposy, int32_t daposz,
fixed_t daang, fixed_t dahoriz, int16_t dacursectnum)
{
int32_t i;
if (gl_fogmode == 1) gl_fogmode = 2; // only radial fog works with Build's screwed up coordinate system.
set_globalpos(daposx, daposy, daposz);
set_globalang(daang);
global100horiz = dahoriz;
// xdimenscale is scale(xdimen,yxaspect,320);
// normalization by viewingrange so that center-of-aim doesn't depend on it
qglobalhoriz = mulscale16(dahoriz-IntToFixed(100), divscale16(xdimenscale, viewingrange))+IntToFixed(ydimen>>1);
globalhoriz = FixedToInt(qglobalhoriz);
globalcursectnum = dacursectnum;
if ((xyaspect != oxyaspect) || (xdimen != oxdimen) || (viewingrange != oviewingrange))
dosetaspect();
Bmemset(gotsector, 0, sizeof(gotsector));
i = xdimen-1;
for (int i = 0; i < numwalls; ++i)
{
if (wall[i].cstat & CSTAT_WALL_ROTATE_90)
{
auto &w = wall[i];
auto &tile = RotTile(w.picnum+animateoffs(w.picnum,16384));
if (tile.newtile == -1 && tile.owner == -1)
{
auto owner = w.picnum + animateoffs(w.picnum, 16384);
tile.newtile = TileFiles.tileCreateRotated(owner);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = w.picnum+animateoffs(w.picnum,16384);
}
}
}
// Update starting sector number (common to classic and Polymost).
// ADJUST_GLOBALCURSECTNUM.
if (globalcursectnum >= MAXSECTORS)
globalcursectnum -= MAXSECTORS;
else
{
i = globalcursectnum;
updatesector(globalposx,globalposy,&globalcursectnum);
if (globalcursectnum < 0) globalcursectnum = i;
// PK 20110123: I'm not sure what the line above is supposed to do, but 'i'
// *can* be negative, so let's just quit here in that case...
if (globalcursectnum<0)
return 0;
}
polymost_drawrooms();
return inpreparemirror;
}
// UTILITY TYPES AND FUNCTIONS FOR DRAWMASKS OCCLUSION TREE
// typedef struct s_maskleaf
// {
// int32_t index;
// _point2d p1, p2;
// _equation maskeq, p1eq, p2eq;
// struct s_maskleaf* branch[MAXWALLSB];
// int32_t drawing;
// } _maskleaf;
//
// _maskleaf maskleaves[MAXWALLSB];
// returns equation of a line given two points
static inline _equation equation(float const x1, float const y1, float const x2, float const y2)
{
const float f = x2-x1;
// vertical
if (f == 0.f)
return { 1, 0, -x1 };
else
{
float const ff = (y2 - y1) / f;
return { ff, -1, (y1 - (ff * x1)) };
}
}
int32_t wallvisible(int32_t const x, int32_t const y, int16_t const wallnum)
{
// 1 if wall is in front of player 0 otherwise
auto w1 = (uwallptr_t)&wall[wallnum];
auto w2 = (uwallptr_t)&wall[w1->point2];
int32_t const a1 = getangle(w1->x - x, w1->y - y);
int32_t const a2 = getangle(w2->x - x, w2->y - y);
return (((a2 + (2048 - a1)) & 2047) <= 1024);
}
static inline int32_t sameside(const _equation *eq, const vec2f_t *p1, const vec2f_t *p2)
{
const float sign1 = (eq->a * p1->x) + (eq->b * p1->y) + eq->c;
const float sign2 = (eq->a * p2->x) + (eq->b * p2->y) + eq->c;
return (sign1 * sign2) > 0.f;
}
// x1, y1: in/out
// rest x/y: out
#ifdef DEBUG_MASK_DRAWING
int32_t g_maskDrawMode = 0;
#endif
static inline int comparetsprites(int const k, int const l)
{
#ifdef USE_OPENGL
if (videoGetRenderMode() == REND_POLYMOST)
{
if ((tspriteptr[k]->cstat & 48) != (tspriteptr[l]->cstat & 48))
return (tspriteptr[k]->cstat & 48) - (tspriteptr[l]->cstat & 48);
if ((tspriteptr[k]->cstat & 48) == 16 && tspriteptr[k]->ang != tspriteptr[l]->ang)
return tspriteptr[k]->ang - tspriteptr[l]->ang;
}
#endif
if (tspriteptr[k]->statnum != tspriteptr[l]->statnum)
return tspriteptr[k]->statnum - tspriteptr[l]->statnum;
if (tspriteptr[k]->x == tspriteptr[l]->x &&
tspriteptr[k]->y == tspriteptr[l]->y &&
tspriteptr[k]->z == tspriteptr[l]->z &&
(tspriteptr[k]->cstat & 48) == (tspriteptr[l]->cstat & 48) &&
tspriteptr[k]->owner != tspriteptr[l]->owner)
return tspriteptr[k]->owner - tspriteptr[l]->owner;
if (klabs(spritesxyz[k].z-globalposz) != klabs(spritesxyz[l].z-globalposz))
return klabs(spritesxyz[k].z-globalposz)-klabs(spritesxyz[l].z-globalposz);
return 0;
}
static void sortsprites(int const start, int const end)
{
int32_t i, gap, y, ys;
if (start >= end)
return;
gap = 1; while (gap < end - start) gap = (gap<<1)+1;
for (gap>>=1; gap>0; gap>>=1) //Sort sprite list
for (i=start; i<end-gap; i++)
for (bssize_t l=i; l>=start; l-=gap)
{
if (spritesxyz[l].y <= spritesxyz[l+gap].y) break;
swapptr(&tspriteptr[l],&tspriteptr[l+gap]);
swaplong(&spritesxyz[l].x,&spritesxyz[l+gap].x);
swaplong(&spritesxyz[l].y,&spritesxyz[l+gap].y);
}
ys = spritesxyz[start].y; i = start;
for (bssize_t j=start+1; j<=end; j++)
{
if (j < end)
{
y = spritesxyz[j].y;
if (y == ys)
continue;
ys = y;
}
if (j > i+1)
{
for (bssize_t k=i; k<j; k++)
{
auto const s = tspriteptr[k];
spritesxyz[k].z = s->z;
if ((s->cstat&48) != 32)
{
int32_t yoff = tileTopOffset(s->picnum) + s->yoffset;
int32_t yspan = (tilesiz[s->picnum].y*s->yrepeat<<2);
spritesxyz[k].z -= (yoff*s->yrepeat)<<2;
if (!(s->cstat&128))
spritesxyz[k].z -= (yspan>>1);
if (klabs(spritesxyz[k].z-globalposz) < (yspan>>1))
spritesxyz[k].z = globalposz;
}
}
for (bssize_t k=i+1; k<j; k++)
for (bssize_t l=i; l<k; l++)
if (comparetsprites(k, l) < 0)
{
swapptr(&tspriteptr[k],&tspriteptr[l]);
vec3_t tv3 = spritesxyz[k];
spritesxyz[k] = spritesxyz[l];
spritesxyz[l] = tv3;
}
}
i = j;
}
}
//
// drawmasks
//
void renderDrawMasks(void)
{
# define debugmask_add(dispidx, idx) do {} while (0)
int32_t i = spritesortcnt-1;
int32_t numSprites = spritesortcnt;
#ifdef USE_OPENGL
if (videoGetRenderMode() == REND_POLYMOST)
{
spritesortcnt = 0;
int32_t back = i;
for (; i >= 0; --i)
{
if (polymost_spriteHasTranslucency(&tsprite[i]))
{
tspriteptr[spritesortcnt] = &tsprite[i];
++spritesortcnt;
} else
{
tspriteptr[back] = &tsprite[i];
--back;
}
}
} else
#endif
{
for (; i >= 0; --i)
{
tspriteptr[i] = &tsprite[i];
}
}
for (i=numSprites-1; i>=0; --i)
{
const int32_t xs = tspriteptr[i]->x-globalposx, ys = tspriteptr[i]->y-globalposy;
const int32_t yp = dmulscale6(xs,cosviewingrangeglobalang,ys,sinviewingrangeglobalang);
#ifdef USE_OPENGL
const int32_t modelp = polymost_spriteIsModelOrVoxel(tspriteptr[i]);
#endif
if (yp > (4<<8))
{
const int32_t xp = dmulscale6(ys,cosglobalang,-xs,singlobalang);
if (mulscale24(labs(xp+yp),xdimen) >= yp)
goto killsprite;
spritesxyz[i].x = scale(xp+yp,xdimen<<7,yp);
}
else if ((tspriteptr[i]->cstat&48) == 0)
{
killsprite:
#ifdef USE_OPENGL
if (!modelp)
#endif
{
//Delete face sprite if on wrong side!
if (i >= spritesortcnt)
{
--numSprites;
if (i != numSprites)
{
tspriteptr[i] = tspriteptr[numSprites];
spritesxyz[i].x = spritesxyz[numSprites].x;
spritesxyz[i].y = spritesxyz[numSprites].y;
}
}
else
{
--numSprites;
--spritesortcnt;
if (i != numSprites)
{
tspriteptr[i] = tspriteptr[spritesortcnt];
spritesxyz[i].x = spritesxyz[spritesortcnt].x;
spritesxyz[i].y = spritesxyz[spritesortcnt].y;
tspriteptr[spritesortcnt] = tspriteptr[numSprites];
spritesxyz[spritesortcnt].x = spritesxyz[numSprites].x;
spritesxyz[spritesortcnt].y = spritesxyz[numSprites].y;
}
}
continue;
}
}
spritesxyz[i].y = yp;
}
sortsprites(0, spritesortcnt);
sortsprites(spritesortcnt, numSprites);
renderBeginScene();
#ifdef USE_OPENGL
if (videoGetRenderMode() == REND_POLYMOST)
{
GLInterface.EnableBlend(false);
GLInterface.EnableAlphaTest(true);
GLInterface.SetDepthBias(-2, -256);
if (spritesortcnt < numSprites)
{
i = spritesortcnt;
for (bssize_t i = spritesortcnt; i < numSprites;)
{
int32_t py = spritesxyz[i].y;
int32_t pcstat = tspriteptr[i]->cstat & 48;
int32_t pangle = tspriteptr[i]->ang;
int j = i + 1;
if (!polymost_spriteIsModelOrVoxel(tspriteptr[i]))
{
while (j < numSprites && py == spritesxyz[j].y && pcstat == (tspriteptr[j]->cstat & 48) && (pcstat != 16 || pangle == tspriteptr[j]->ang)
&& !polymost_spriteIsModelOrVoxel(tspriteptr[j]))
{
j++;
}
}
if (j - i == 1)
{
debugmask_add(i | 32768, tspriteptr[i]->owner);
renderDrawSprite(i);
tspriteptr[i] = NULL;
}
else
{
GLInterface.SetDepthMask(false);
for (bssize_t k = j-1; k >= i; k--)
{
debugmask_add(k | 32768, tspriteptr[k]->owner);
renderDrawSprite(k);
}
GLInterface.SetDepthMask(true);
GLInterface.SetColorMask(false);
for (bssize_t k = j-1; k >= i; k--)
{
renderDrawSprite(k);
tspriteptr[k] = NULL;
}
GLInterface.SetColorMask(true);
}
i = j;
}
}
int32_t numMaskWalls = maskwallcnt;
maskwallcnt = 0;
for (i = 0; i < numMaskWalls; i++)
{
if (polymost_maskWallHasTranslucency((uwalltype *) &wall[thewall[maskwall[i]]]))
{
maskwall[maskwallcnt] = maskwall[i];
maskwallcnt++;
}
else
renderDrawMaskedWall(i);
}
GLInterface.EnableBlend(true);
GLInterface.EnableAlphaTest(true);
GLInterface.SetDepthMask(false);
}
#endif
vec2f_t pos;
pos.x = fglobalposx;
pos.y = fglobalposy;
// CAUTION: maskwallcnt and spritesortcnt may be zero!
// Writing e.g. "while (maskwallcnt--)" is wrong!
while (maskwallcnt)
{
// PLAG: sorting stuff
const int32_t w = (videoGetRenderMode()==REND_POLYMER) ?
maskwall[maskwallcnt-1] : thewall[maskwall[maskwallcnt-1]];
maskwallcnt--;
vec2f_t dot = { (float)wall[w].x, (float)wall[w].y };
vec2f_t dot2 = { (float)wall[wall[w].point2].x, (float)wall[wall[w].point2].y };
vec2f_t middle = { (dot.x + dot2.x) * .5f, (dot.y + dot2.y) * .5f };
_equation maskeq = equation(dot.x, dot.y, dot2.x, dot2.y);
_equation p1eq = equation(pos.x, pos.y, dot.x, dot.y);
_equation p2eq = equation(pos.x, pos.y, dot2.x, dot2.y);
i = spritesortcnt;
while (i)
{
i--;
if (tspriteptr[i] != NULL)
{
vec2f_t spr;
auto const tspr = tspriteptr[i];
spr.x = (float)tspr->x;
spr.y = (float)tspr->y;
if (!sameside(&maskeq, &spr, &pos))
{
// Sprite and camera are on different sides of the
// masked wall.
// Check if the sprite is inside the 'cone' given by
// the rays from the camera to the two wall-points.
const int32_t inleft = sameside(&p1eq, &middle, &spr);
const int32_t inright = sameside(&p2eq, &middle, &spr);
int32_t ok = (inleft && inright);
if (!ok)
{
// If not, check if any of the border points are...
int32_t xx[4] = { tspr->x };
int32_t yy[4] = { tspr->y };
int32_t numpts, jj;
const _equation pineq = inleft ? p1eq : p2eq;
if ((tspr->cstat & 48) == 32)
{
numpts = 4;
get_floorspr_points(tspr, 0, 0,
&xx[0], &xx[1], &xx[2], &xx[3],
&yy[0], &yy[1], &yy[2], &yy[3]);
}
else
{
const int32_t oang = tspr->ang;
numpts = 2;
// Consider face sprites as wall sprites with camera ang.
// XXX: factor 4/5 needed?
if ((tspr->cstat & 48) != 16)
tspriteptr[i]->ang = globalang;
get_wallspr_points(tspr, &xx[0], &xx[1], &yy[0], &yy[1]);
if ((tspr->cstat & 48) != 16)
tspriteptr[i]->ang = oang;
}
for (jj=0; jj<numpts; jj++)
{
spr.x = (float)xx[jj];
spr.y = (float)yy[jj];
if (!sameside(&maskeq, &spr, &pos)) // behind the maskwall,
if ((sameside(&p1eq, &middle, &spr) && // inside the 'cone',
sameside(&p2eq, &middle, &spr))
|| !sameside(&pineq, &middle, &spr)) // or on the other outside.
{
ok = 1;
break;
}
}
}
if (ok)
{
debugmask_add(i | 32768, tspr->owner);
renderDrawSprite(i);
tspriteptr[i] = NULL;
}
}
}
}
debugmask_add(maskwall[maskwallcnt], thewall[maskwall[maskwallcnt]]);
renderDrawMaskedWall(maskwallcnt);
}
while (spritesortcnt)
{
--spritesortcnt;
if (tspriteptr[spritesortcnt] != NULL)
{
debugmask_add(i | 32768, tspriteptr[i]->owner);
renderDrawSprite(spritesortcnt);
tspriteptr[spritesortcnt] = NULL;
}
}
renderFinishScene();
GLInterface.SetDepthMask(true);
GLInterface.SetDepthBias(0, 0);
}
//==========================================================================
//
//
//
//==========================================================================
void FillPolygon(int* rx1, int* ry1, int* xb1, int32_t npoints, int picnum, int palette, int shade, int props, const FVector2& xtex, const FVector2& ytex, const FVector2& otex,
int clipx1, int clipy1, int clipx2, int clipy2)
{
//Convert int32_t to float (in-place)
TArray<FVector4> points(npoints, true);
using Point = std::pair<float, float>;
std::vector<std::vector<Point>> polygon;
std::vector<Point>* curPoly;
polygon.resize(1);
curPoly = &polygon.back();
for (bssize_t i = 0; i < npoints; ++i)
{
auto X = ((float)rx1[i]) * (1.0f / 4096.f);
auto Y = ((float)ry1[i]) * (1.0f / 4096.f);
curPoly->push_back(std::make_pair(X, Y));
if (xb1[i] < i && i < npoints - 1)
{
polygon.resize(polygon.size() + 1);
curPoly = &polygon.back();
}
}
// Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible.
int outer = 0;
float minx = FLT_MAX;
float miny = FLT_MAX;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
if (pt.first < minx || (pt.first == minx && pt.second < miny))
{
minx = pt.first;
miny = pt.second;
outer = a;
}
}
}
if (outer != 0) std::swap(polygon[0], polygon[outer]);
auto indices = mapbox::earcut(polygon);
int p = 0;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
FVector4 point = { pt.first, pt.second, float(pt.first * xtex.X + pt.second * ytex.X + otex.X), float(pt.first * xtex.Y + pt.second * ytex.Y + otex.Y) };
points[p++] = point;
}
}
int maskprops = (props >> 7) & DAMETH_MASKPROPS;
FRenderStyle rs = LegacyRenderStyles[STYLE_Translucent];
double alpha = 1.;
if (maskprops > DAMETH_MASK)
{
rs = GetRenderStyle(0, maskprops == DAMETH_TRANS2);
alpha = GetAlphaFromBlend(maskprops, 0);
}
int translation = TRANSLATION(Translation_Remap + curbasepal, palette);
int light = clamp(scale((numshades - shade), 255, numshades), 0, 255);
PalEntry pe = PalEntry(uint8_t(alpha*255), light, light, light);
twod->AddPoly(tileGetTexture(picnum), points.Data(), points.Size(), indices.data(), indices.size(), translation, pe, rs, clipx1, clipy1, clipx2, clipy2);
}
//==========================================================================
//
//
//
//==========================================================================
#include "build.h"
#include "../src/engine_priv.h"
//
// fillpolygon (internal)
//
static void renderFillPolygon(int32_t npoints)
{
// fix for bad next-point (xb1) values...
for (int z = 0; z < npoints; z++)
if ((unsigned)xb1[z] >= (unsigned)npoints)
xb1[z] = 0;
FVector2 xtex, ytex, otex;
int x1 = mulscale16(globalx1, xyaspect);
int y2 = mulscale16(globaly2, xyaspect);
xtex.X = ((float)asm1) * (1.f / 4294967296.f);
xtex.Y = ((float)asm2) * (1.f / 4294967296.f);
ytex.X = ((float)x1) * (1.f / 4294967296.f);
ytex.Y = ((float)y2) * (-1.f / 4294967296.f);
otex.X = (fxdim * xtex.X + fydim * ytex.X) * -0.5f + fglobalposx * (1.f / 4294967296.f);
otex.Y = (fxdim * xtex.Y + fydim * ytex.Y) * -0.5f - fglobalposy * (1.f / 4294967296.f);
FillPolygon(rx1, ry1, xb1, npoints, globalpicnum, globalpal, globalshade, globalorientation, xtex, ytex, otex, windowxy1.x, windowxy1.y, windowxy2.x, windowxy2.y);
}
//
// drawmapview
//
void renderDrawMapView(int32_t dax, int32_t day, int32_t zoome, int16_t ang)
{
int32_t i, j, k, l;
int32_t x, y;
int32_t s, ox, oy;
int32_t const oyxaspect = yxaspect, oviewingrange = viewingrange;
renderSetAspect(65536, divscale16((320*5)/8, 200));
Bmemset(gotsector, 0, sizeof(gotsector));
vec2_t const c1 = { (windowxy1.x<<12), (windowxy1.y<<12) };
vec2_t const c2 = { ((windowxy2.x+1)<<12)-1, ((windowxy2.y+1)<<12)-1 };
zoome <<= 8;
vec2_t const bakgvect = { divscale28(sintable[(1536 - ang) & 2047], zoome),
divscale28(sintable[(2048 - ang) & 2047], zoome) };
vec2_t const vect = { mulscale8(sintable[(2048 - ang) & 2047], zoome), mulscale8(sintable[(1536 - ang) & 2047], zoome) };
vec2_t const vect2 = { mulscale16(vect.x, yxaspect), mulscale16(vect.y, yxaspect) };
int32_t sortnum = 0;
usectorptr_t sec;
for (s=0,sec=(usectorptr_t)&sector[s]; s<numsectors; s++,sec++)
if (gFullMap || show2dsector[s])
{
int32_t npoints = 0; i = 0;
int32_t startwall = sec->wallptr;
j = startwall; l = 0;
uwallptr_t wal;
int32_t w;
for (w=sec->wallnum,wal=(uwallptr_t)&wall[startwall]; w>0; w--,wal++,j++)
{
k = lastwall(j);
if ((k > j) && (npoints > 0)) { xb1[npoints-1] = l; l = npoints; } //overwrite point2
//wall[k].x wal->x wall[wal->point2].x
//wall[k].y wal->y wall[wal->point2].y
if (!dmulscale1(wal->x-wall[k].x,wall[wal->point2].y-wal->y,-(wal->y-wall[k].y),wall[wal->point2].x-wal->x)) continue;
ox = wal->x - dax; oy = wal->y - day;
x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11);
y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11);
i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y);
rx1[npoints] = x;
ry1[npoints] = y;
xb1[npoints] = npoints+1;
npoints++;
}
if (npoints > 0) xb1[npoints-1] = l; //overwrite point2
vec2_t bak = { rx1[0], mulscale16(ry1[0]-(ydim<<11),xyaspect)+(ydim<<11) };
//Collect floor sprites to draw
for (i=headspritesect[s]; i>=0; i=nextspritesect[i])
{
if (sprite[i].cstat & 32768)
continue;
if ((sprite[i].cstat & 48) == 32)
{
if ((sprite[i].cstat & (64 + 8)) == (64 + 8))
continue;
tsprite[sortnum++].owner = i;
}
}
gotsector[s>>3] |= pow2char[s&7];
globalorientation = (int32_t)sec->floorstat;
if ((globalorientation&1) != 0) continue;
globalpal = sec->floorpal;
globalpicnum = sec->floorpicnum;
if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&globalpicnum, s);
setgotpic(globalpicnum);
if ((tilesiz[globalpicnum].x <= 0) || (tilesiz[globalpicnum].y <= 0)) continue;
globalshade = max(min<int>(sec->floorshade, numshades - 1), 0);
if ((globalorientation&64) == 0)
{
set_globalpos(dax, day, globalposz);
globalx1 = bakgvect.x; globaly1 = bakgvect.y;
globalx2 = bakgvect.x; globaly2 = bakgvect.y;
}
else
{
ox = wall[wall[startwall].point2].x - wall[startwall].x;
oy = wall[wall[startwall].point2].y - wall[startwall].y;
i = nsqrtasm(uhypsq(ox,oy)); if (i == 0) continue;
i = 1048576/i;
globalx1 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i);
globaly1 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i);
ox = (bak.x>>4)-(xdim<<7); oy = (bak.y>>4)-(ydim<<7);
globalposx = dmulscale28(-oy, globalx1, -ox, globaly1);
globalposy = dmulscale28(-ox, globalx1, oy, globaly1);
globalx2 = -globalx1;
globaly2 = -globaly1;
int32_t const daslope = sector[s].floorheinum;
i = nsqrtasm(daslope*daslope+16777216);
set_globalpos(globalposx, mulscale12(globalposy,i), globalposz);
globalx2 = mulscale12(globalx2,i);
globaly2 = mulscale12(globaly2,i);
}
calc_globalshifts();
if ((globalorientation&0x4) > 0)
{
i = globalposx; globalposx = -globalposy; globalposy = -i;
i = globalx2; globalx2 = globaly1; globaly1 = i;
i = globalx1; globalx1 = -globaly2; globaly2 = -i;
}
if ((globalorientation&0x10) > 0) globalx1 = -globalx1, globaly1 = -globaly1, globalposx = -globalposx;
if ((globalorientation&0x20) > 0) globalx2 = -globalx2, globaly2 = -globaly2, globalposy = -globalposy;
asm1 = (globaly1<<globalxshift);
asm2 = (globalx2<<globalyshift);
globalx1 <<= globalxshift;
globaly2 <<= globalyshift;
set_globalpos(((int64_t) globalposx<<(20+globalxshift))+(((uint32_t) sec->floorxpanning)<<24),
((int64_t) globalposy<<(20+globalyshift))-(((uint32_t) sec->floorypanning)<<24),
globalposz);
renderFillPolygon(npoints);
}
//Sort sprite list
int32_t gap = 1;
while (gap < sortnum) gap = (gap << 1) + 1;
for (gap>>=1; gap>0; gap>>=1)
for (i=0; i<sortnum-gap; i++)
for (j=i; j>=0; j-=gap)
{
if (sprite[tsprite[j].owner].z <= sprite[tsprite[j+gap].owner].z) break;
swapshort(&tsprite[j].owner,&tsprite[j+gap].owner);
}
for (s=sortnum-1; s>=0; s--)
{
auto const spr = (uspritetype * )&sprite[tsprite[s].owner];
if ((spr->cstat&48) == 32)
{
const int32_t xspan = tilesiz[spr->picnum].x;
int32_t npoints = 0;
vec2_t v1 = { spr->x, spr->y }, v2, v3, v4;
get_floorspr_points(spr, 0, 0, &v1.x, &v2.x, &v3.x, &v4.x,
&v1.y, &v2.y, &v3.y, &v4.y);
xb1[0] = 1; xb1[1] = 2; xb1[2] = 3; xb1[3] = 0;
npoints = 4;
i = 0;
ox = v1.x - dax; oy = v1.y - day;
x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11);
y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11);
i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y);
rx1[0] = x; ry1[0] = y;
ox = v2.x - dax; oy = v2.y - day;
x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11);
y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11);
i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y);
rx1[1] = x; ry1[1] = y;
ox = v3.x - dax; oy = v3.y - day;
x = dmulscale16(ox,vect.x,-oy,vect.y) + (xdim<<11);
y = dmulscale16(oy,vect2.x,ox,vect2.y) + (ydim<<11);
i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y);
rx1[2] = x; ry1[2] = y;
x = rx1[0]+rx1[2]-rx1[1];
y = ry1[0]+ry1[2]-ry1[1];
i |= getclipmask(x-c1.x,c2.x-x,y-c1.y,c2.y-y);
rx1[3] = x; ry1[3] = y;
vec2_t bak = { rx1[0], mulscale16(ry1[0] - (ydim << 11), xyaspect) + (ydim << 11) };
globalpicnum = spr->picnum;
globalpal = spr->pal; // GL needs this, software doesn't
if ((unsigned)globalpicnum >= (unsigned)MAXTILES) globalpicnum = 0;
tileUpdatePicnum(&globalpicnum, s);
setgotpic(globalpicnum);
if ((tilesiz[globalpicnum].x <= 0) || (tilesiz[globalpicnum].y <= 0)) continue;
if ((sector[spr->sectnum].ceilingstat&1) > 0)
globalshade = ((int32_t)sector[spr->sectnum].ceilingshade);
else
globalshade = ((int32_t)sector[spr->sectnum].floorshade);
globalshade = max(min(globalshade+spr->shade+6,numshades-1),0);
//relative alignment stuff
ox = v2.x-v1.x; oy = v2.y-v1.y;
i = ox*ox+oy*oy; if (i == 0) continue; i = 65536*16384 / i;
globalx1 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i);
globaly1 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i);
ox = v1.y-v4.y; oy = v4.x-v1.x;
i = ox*ox+oy*oy; if (i == 0) continue; i = 65536 * 16384 / i;
globalx2 = mulscale10(dmulscale10(ox,bakgvect.x,oy,bakgvect.y),i);
globaly2 = mulscale10(dmulscale10(ox,bakgvect.y,-oy,bakgvect.x),i);
ox = widthBits(globalpicnum);
oy = heightBits(globalpicnum);
if ((1 << ox) != xspan)
{
ox++;
globalx1 = mulscale(globalx1,xspan,ox);
globaly1 = mulscale(globaly1,xspan,ox);
}
bak.x = (bak.x>>4)-(xdim<<7); bak.y = (bak.y>>4)-(ydim<<7);
globalposx = dmulscale28(-bak.y,globalx1,-bak.x,globaly1);
globalposy = dmulscale28(bak.x,globalx2,-bak.y,globaly2);
if ((spr->cstat&0x4) > 0) globalx1 = -globalx1, globaly1 = -globaly1, globalposx = -globalposx;
asm1 = (globaly1<<2); globalx1 <<= 2; globalposx <<= (20+2);
asm2 = (globalx2<<2); globaly2 <<= 2; globalposy <<= (20+2);
set_globalpos(globalposx, globalposy, globalposz);
// so polymost can get the translucency. ignored in software mode:
globalorientation = ((spr->cstat&2)<<7) | ((spr->cstat&512)>>2);
renderFillPolygon(npoints);
}
}
renderSetAspect(oviewingrange, oyxaspect);
}
//////////////////// LOADING AND SAVING ROUTINES ////////////////////
static FORCE_INLINE int32_t have_maptext(void)
{
return (mapversion >= 10);
}
static void enginePrepareLoadBoard(FileReader & fr, vec3_t *dapos, int16_t *daang, int16_t *dacursectnum)
{
initspritelists();
ClearAutomap();
#ifdef USE_OPENGL
Polymost_prepare_loadboard();
#endif
if (!have_maptext())
{
fr.Read(&dapos->x,4); dapos->x = B_LITTLE32(dapos->x);
fr.Read(&dapos->y,4); dapos->y = B_LITTLE32(dapos->y);
fr.Read(&dapos->z,4); dapos->z = B_LITTLE32(dapos->z);
fr.Read(daang,2); *daang = B_LITTLE16(*daang) & 2047;
fr.Read(dacursectnum,2); *dacursectnum = B_LITTLE16(*dacursectnum);
}
}
static int32_t engineFinishLoadBoard(const vec3_t *dapos, int16_t *dacursectnum, int16_t numsprites, char myflags)
{
int32_t i, realnumsprites=numsprites, numremoved;
#if !defined USE_OPENGL || !defined POLYMER
UNREFERENCED_PARAMETER(myflags);
#endif
for (i=0; i<numsprites; i++)
{
int32_t removeit = 0;
if ((sprite[i].cstat & 48) == 48)
sprite[i].cstat &= ~48;
if (sprite[i].statnum == MAXSTATUS)
{
// Sprite was removed in loadboard() -> check_sprite(). Insert it
// for now, because we must maintain the sprite numbering.
sprite[i].statnum = sprite[i].sectnum = 0;
removeit = 1;
}
insertsprite(sprite[i].sectnum, sprite[i].statnum);
if (removeit)
{
// Flag .statnum==MAXSTATUS, temporarily creating an inconsistency
// with sprite list.
sprite[i].statnum = MAXSTATUS;
realnumsprites--;
}
}
if (numsprites != realnumsprites)
{
for (i=0; i<numsprites; i++)
if (sprite[i].statnum == MAXSTATUS)
{
// Now remove it for real!
sprite[i].statnum = 0;
deletesprite(i);
}
}
numremoved = (numsprites-realnumsprites);
numsprites = realnumsprites;
assert(numsprites == Numsprites);
//Must be after loading sectors, etc!
updatesector(dapos->x, dapos->y, dacursectnum);
{
Bmemset(spriteext, 0, sizeof(spriteext_t)*MAXSPRITES);
#ifndef NEW_MAP_FORMAT
Bmemset(wallext, 0, sizeof(wallext_t)*MAXWALLS);
#endif
#ifdef USE_OPENGL
Bmemset(spritesmooth, 0, sizeof(spritesmooth_t)*(MAXSPRITES+MAXUNIQHUDID));
# ifdef POLYMER
if (videoGetRenderMode() == REND_POLYMER)
{
if ((myflags&4)==0)
polymer_loadboard();
}
# endif
#endif
}
guniqhudid = 0;
return numremoved;
}
#define MYMAXSECTORS() (MAXSECTORS==MAXSECTORSV7 || mapversion <= 7 ? MAXSECTORSV7 : MAXSECTORSV8)
#define MYMAXWALLS() (MAXSECTORS==MAXSECTORSV7 || mapversion <= 7 ? MAXWALLSV7 : MAXWALLSV8)
#define MYMAXSPRITES() (MAXSECTORS==MAXSECTORSV7 || mapversion <= 7 ? MAXSPRITESV7 : MAXSPRITESV8)
// Sprite checking
static void remove_sprite(int32_t i)
{
Bmemset(&sprite[i], 0, sizeof(spritetype));
sprite[i].statnum = MAXSTATUS;
sprite[i].sectnum = MAXSECTORS;
}
// This is only to be run after reading the sprite array!
static void check_sprite(int32_t i)
{
if ((unsigned)sprite[i].statnum >= MAXSTATUS)
{
Printf("Map error: sprite #%d (%d,%d) with illegal statnum (%d) REMOVED.\n",
i, TrackerCast(sprite[i].x), TrackerCast(sprite[i].y), TrackerCast(sprite[i].statnum));
remove_sprite(i);
}
else if ((unsigned)sprite[i].picnum >= MAXTILES)
{
Printf("Map error: sprite #%d (%d,%d) with illegal picnum (%d) REMOVED.\n",
i, TrackerCast(sprite[i].x), TrackerCast(sprite[i].y), TrackerCast(sprite[i].sectnum));
remove_sprite(i);
}
else if ((unsigned)sprite[i].sectnum >= (unsigned)numsectors)
{
const int32_t osectnum = sprite[i].sectnum;
sprite[i].sectnum = -1;
updatesector(sprite[i].x, sprite[i].y, &sprite[i].sectnum);
if (sprite[i].sectnum < 0)
remove_sprite(i);
Printf("Map error: sprite #%d (%d,%d) with illegal sector (%d) ",
i, TrackerCast(sprite[i].x), TrackerCast(sprite[i].y), osectnum);
if (sprite[i].statnum != MAXSTATUS)
Printf("changed to sector %d.\n", TrackerCast(sprite[i].sectnum));
else
Printf("REMOVED.\n");
}
}
#include "md4.h"
int32_t(*loadboard_replace)(const char *filename, char flags, vec3_t *dapos, int16_t *daang, int16_t *dacursectnum) = NULL;
// flags: 1, 2: former parameter "fromwhere"
// 4: don't call polymer_loadboard
// 8: don't autoexec <mapname>.cfg
// returns: on success, number of removed sprites
// -1: file not found
// -2: invalid version
// -3: invalid number of sectors, walls or sprites
// <= -4: map-text error
int32_t engineLoadBoard(const char *filename, char flags, vec3_t *dapos, int16_t *daang, int16_t *dacursectnum)
{
inputState.ClearAllInput();
if (loadboard_replace)
return loadboard_replace(filename, flags, dapos, daang, dacursectnum);
int32_t i;
int16_t numsprites;
const char myflags = flags&(~3);
flags &= 3;
FileReader fr = fileSystem.OpenFileReader(filename);
if (!fr.isOpen())
{ mapversion = 7; return -1; }
if (fr.Read(&mapversion, 4) != 4)
{
return -2;
}
{
int32_t ok = 0;
#ifdef NEW_MAP_FORMAT
// Check for map-text first.
if (!memcmp(&mapversion, "--ED", 4))
{
mapversion = 10;
ok = 1;
}
else
#endif
{
// Not map-text. We expect a little-endian version int now.
mapversion = B_LITTLE32(mapversion);
#if MAXSECTORS==MAXSECTORSV8
// v8 engine
ok |= (mapversion==8);
#endif
ok |= (mapversion==7);
}
if (!ok)
{
return -2;
}
}
enginePrepareLoadBoard(fr, dapos, daang, dacursectnum);
////////// Read sectors //////////
fr.Read(&numsectors,2); numsectors = B_LITTLE16(numsectors);
if ((unsigned)numsectors >= MYMAXSECTORS() + 1)
{
error:
numsectors = 0;
numwalls = 0;
numsprites = 0;
return -3;
}
fr.Read(sector, sizeof(sectortypev7)*numsectors);
for (i=numsectors-1; i>=0; i--)
{
sector[i].wallptr = B_LITTLE16(sector[i].wallptr);
sector[i].wallnum = B_LITTLE16(sector[i].wallnum);
sector[i].ceilingz = B_LITTLE32(sector[i].ceilingz);
sector[i].floorz = B_LITTLE32(sector[i].floorz);
sector[i].ceilingstat = B_LITTLE16(sector[i].ceilingstat);
sector[i].floorstat = B_LITTLE16(sector[i].floorstat);
sector[i].ceilingpicnum = B_LITTLE16(sector[i].ceilingpicnum);
sector[i].ceilingheinum = B_LITTLE16(sector[i].ceilingheinum);
sector[i].floorpicnum = B_LITTLE16(sector[i].floorpicnum);
sector[i].floorheinum = B_LITTLE16(sector[i].floorheinum);
sector[i].lotag = B_LITTLE16(sector[i].lotag);
sector[i].hitag = B_LITTLE16(sector[i].hitag);
sector[i].extra = B_LITTLE16(sector[i].extra);
}
////////// Read walls //////////
fr.Read(&numwalls,2); numwalls = B_LITTLE16(numwalls);
if ((unsigned)numwalls >= MYMAXWALLS()+1) goto error;
fr.Read( wall, sizeof(walltypev7)*numwalls);
for (i=numwalls-1; i>=0; i--)
{
wall[i].x = B_LITTLE32(wall[i].x);
wall[i].y = B_LITTLE32(wall[i].y);
wall[i].point2 = B_LITTLE16(wall[i].point2);
wall[i].nextwall = B_LITTLE16(wall[i].nextwall);
wall[i].nextsector = B_LITTLE16(wall[i].nextsector);
wall[i].cstat = B_LITTLE16(wall[i].cstat);
wall[i].picnum = B_LITTLE16(wall[i].picnum);
wall[i].overpicnum = B_LITTLE16(wall[i].overpicnum);
wall[i].lotag = B_LITTLE16(wall[i].lotag);
wall[i].hitag = B_LITTLE16(wall[i].hitag);
wall[i].extra = B_LITTLE16(wall[i].extra);
}
////////// Read sprites //////////
fr.Read(&numsprites,2); numsprites = B_LITTLE16(numsprites);
if ((unsigned)numsprites >= MYMAXSPRITES()+1) goto error;
fr.Read( sprite, sizeof(spritetype)*numsprites);
fr.Seek(0, FileReader::SeekSet);
auto buffer = fr.Read();
md4once(buffer.Data(), buffer.Size(), g_loadedMapHack.md4);
// Done reading file.
if (!have_maptext())
{
for (i=numsprites-1; i>=0; i--)
{
sprite[i].x = B_LITTLE32(sprite[i].x);
sprite[i].y = B_LITTLE32(sprite[i].y);
sprite[i].z = B_LITTLE32(sprite[i].z);
sprite[i].cstat = B_LITTLE16(sprite[i].cstat);
sprite[i].picnum = B_LITTLE16(sprite[i].picnum);
sprite[i].sectnum = B_LITTLE16(sprite[i].sectnum);
sprite[i].statnum = B_LITTLE16(sprite[i].statnum);
sprite[i].ang = B_LITTLE16(sprite[i].ang);
sprite[i].owner = B_LITTLE16(sprite[i].owner);
sprite[i].xvel = B_LITTLE16(sprite[i].xvel);
sprite[i].yvel = B_LITTLE16(sprite[i].yvel);
sprite[i].zvel = B_LITTLE16(sprite[i].zvel);
sprite[i].lotag = B_LITTLE16(sprite[i].lotag);
sprite[i].hitag = B_LITTLE16(sprite[i].hitag);
sprite[i].extra = B_LITTLE16(sprite[i].extra);
check_sprite(i);
}
}
else
{
for (i=numsprites-1; i>=0; i--)
check_sprite(i);
}
// Back up the map version of the *loaded* map. Must be before yax_update().
g_loadedMapVersion = mapversion;
if ((myflags&8)==0)
{
// Per-map ART
artSetupMapArt(filename);
}
return engineFinishLoadBoard(dapos, dacursectnum, numsprites, myflags);
}
//
// loadboardv5/6
//
#include "engine_oldmap.h"
// Powerslave uses v6
// Witchaven 1 and TekWar and LameDuke use v5
int32_t engineLoadBoardV5V6(const char *filename, char fromwhere, vec3_t *dapos, int16_t *daang, int16_t *dacursectnum)
{
int32_t i;
int16_t numsprites;
struct sectortypev5 v5sect;
struct walltypev5 v5wall;
struct spritetypev5 v5spr;
struct sectortypev6 v6sect;
struct walltypev6 v6wall;
struct spritetypev6 v6spr;
FileReader fr = fileSystem.OpenFileReader(filename);
if (!fr.isOpen())
{ mapversion = 5L; return -1; }
fr.Read(&mapversion,4); mapversion = B_LITTLE32(mapversion);
if (mapversion != 5L && mapversion != 6L) { return -2; }
enginePrepareLoadBoard(fr, dapos, daang, dacursectnum);
fr.Read(&numsectors,2); numsectors = B_LITTLE16(numsectors);
if (numsectors > MAXSECTORS) { return -1; }
for (i=0; i<numsectors; i++)
{
switch (mapversion)
{
case 5:
fr.Read(&v5sect,sizeof(struct sectortypev5));
v5sect.wallptr = B_LITTLE16(v5sect.wallptr);
v5sect.wallnum = B_LITTLE16(v5sect.wallnum);
v5sect.ceilingpicnum = B_LITTLE16(v5sect.ceilingpicnum);
v5sect.floorpicnum = B_LITTLE16(v5sect.floorpicnum);
v5sect.ceilingheinum = B_LITTLE16(v5sect.ceilingheinum);
v5sect.floorheinum = B_LITTLE16(v5sect.floorheinum);
v5sect.ceilingz = B_LITTLE32(v5sect.ceilingz);
v5sect.floorz = B_LITTLE32(v5sect.floorz);
v5sect.lotag = B_LITTLE16(v5sect.lotag);
v5sect.hitag = B_LITTLE16(v5sect.hitag);
v5sect.extra = B_LITTLE16(v5sect.extra);
break;
case 6:
fr.Read(&v6sect,sizeof(struct sectortypev6));
v6sect.wallptr = B_LITTLE16(v6sect.wallptr);
v6sect.wallnum = B_LITTLE16(v6sect.wallnum);
v6sect.ceilingpicnum = B_LITTLE16(v6sect.ceilingpicnum);
v6sect.floorpicnum = B_LITTLE16(v6sect.floorpicnum);
v6sect.ceilingheinum = B_LITTLE16(v6sect.ceilingheinum);
v6sect.floorheinum = B_LITTLE16(v6sect.floorheinum);
v6sect.ceilingz = B_LITTLE32(v6sect.ceilingz);
v6sect.floorz = B_LITTLE32(v6sect.floorz);
v6sect.lotag = B_LITTLE16(v6sect.lotag);
v6sect.hitag = B_LITTLE16(v6sect.hitag);
v6sect.extra = B_LITTLE16(v6sect.extra);
break;
}
switch (mapversion)
{
case 5:
convertv5sectv6(&v5sect,&v6sect);
fallthrough__;
case 6:
convertv6sectv7(&v6sect,&sector[i]);
break;
}
}
fr.Read(&numwalls,2); numwalls = B_LITTLE16(numwalls);
if (numwalls > MAXWALLS) { return -1; }
for (i=0; i<numwalls; i++)
{
switch (mapversion)
{
case 5:
fr.Read(&v5wall,sizeof(struct walltypev5));
v5wall.x = B_LITTLE32(v5wall.x);
v5wall.y = B_LITTLE32(v5wall.y);
v5wall.point2 = B_LITTLE16(v5wall.point2);
v5wall.picnum = B_LITTLE16(v5wall.picnum);
v5wall.overpicnum = B_LITTLE16(v5wall.overpicnum);
v5wall.cstat = B_LITTLE16(v5wall.cstat);
v5wall.nextsector1 = B_LITTLE16(v5wall.nextsector1);
v5wall.nextwall1 = B_LITTLE16(v5wall.nextwall1);
v5wall.nextsector2 = B_LITTLE16(v5wall.nextsector2);
v5wall.nextwall2 = B_LITTLE16(v5wall.nextwall2);
v5wall.lotag = B_LITTLE16(v5wall.lotag);
v5wall.hitag = B_LITTLE16(v5wall.hitag);
v5wall.extra = B_LITTLE16(v5wall.extra);
break;
case 6:
fr.Read(&v6wall,sizeof(struct walltypev6));
v6wall.x = B_LITTLE32(v6wall.x);
v6wall.y = B_LITTLE32(v6wall.y);
v6wall.point2 = B_LITTLE16(v6wall.point2);
v6wall.nextsector = B_LITTLE16(v6wall.nextsector);
v6wall.nextwall = B_LITTLE16(v6wall.nextwall);
v6wall.picnum = B_LITTLE16(v6wall.picnum);
v6wall.overpicnum = B_LITTLE16(v6wall.overpicnum);
v6wall.cstat = B_LITTLE16(v6wall.cstat);
v6wall.lotag = B_LITTLE16(v6wall.lotag);
v6wall.hitag = B_LITTLE16(v6wall.hitag);
v6wall.extra = B_LITTLE16(v6wall.extra);
break;
}
switch (mapversion)
{
case 5:
convertv5wallv6(&v5wall,&v6wall,i);
fallthrough__;
case 6:
convertv6wallv7(&v6wall,&wall[i]);
break;
}
}
fr.Read(&numsprites,2); numsprites = B_LITTLE16(numsprites);
if (numsprites > MAXSPRITES) { return -1; }
for (i=0; i<numsprites; i++)
{
switch (mapversion)
{
case 5:
fr.Read(&v5spr,sizeof(struct spritetypev5));
v5spr.x = B_LITTLE32(v5spr.x);
v5spr.y = B_LITTLE32(v5spr.y);
v5spr.z = B_LITTLE32(v5spr.z);
v5spr.picnum = B_LITTLE16(v5spr.picnum);
v5spr.ang = B_LITTLE16(v5spr.ang);
v5spr.xvel = B_LITTLE16(v5spr.xvel);
v5spr.yvel = B_LITTLE16(v5spr.yvel);
v5spr.zvel = B_LITTLE16(v5spr.zvel);
v5spr.owner = B_LITTLE16(v5spr.owner);
v5spr.sectnum = B_LITTLE16(v5spr.sectnum);
v5spr.statnum = B_LITTLE16(v5spr.statnum);
v5spr.lotag = B_LITTLE16(v5spr.lotag);
v5spr.hitag = B_LITTLE16(v5spr.hitag);
v5spr.extra = B_LITTLE16(v5spr.extra);
break;
case 6:
fr.Read(&v6spr,sizeof(struct spritetypev6));
v6spr.x = B_LITTLE32(v6spr.x);
v6spr.y = B_LITTLE32(v6spr.y);
v6spr.z = B_LITTLE32(v6spr.z);
v6spr.cstat = B_LITTLE16(v6spr.cstat);
v6spr.picnum = B_LITTLE16(v6spr.picnum);
v6spr.ang = B_LITTLE16(v6spr.ang);
v6spr.xvel = B_LITTLE16(v6spr.xvel);
v6spr.yvel = B_LITTLE16(v6spr.yvel);
v6spr.zvel = B_LITTLE16(v6spr.zvel);
v6spr.owner = B_LITTLE16(v6spr.owner);
v6spr.sectnum = B_LITTLE16(v6spr.sectnum);
v6spr.statnum = B_LITTLE16(v6spr.statnum);
v6spr.lotag = B_LITTLE16(v6spr.lotag);
v6spr.hitag = B_LITTLE16(v6spr.hitag);
v6spr.extra = B_LITTLE16(v6spr.extra);
break;
}
switch (mapversion)
{
case 5:
convertv5sprv6(&v5spr,&v6spr);
fallthrough__;
case 6:
convertv6sprv7(&v6spr,&sprite[i]);
break;
}
check_sprite(i);
}
// Done reading file.
g_loadedMapVersion = mapversion;
return engineFinishLoadBoard(dapos, dacursectnum, numsprites, 0);
}
//
// setgamemode
//
// JBF: davidoption now functions as a windowed-mode flag (0 == windowed, 1 == fullscreen)
int32_t videoSetGameMode(char davidoption, int32_t daupscaledxdim, int32_t daupscaledydim, int32_t dabpp, int32_t daupscalefactor)
{
int32_t j;
if (dabpp != 32) return -1; // block software mode.
daupscaledxdim = max(320, daupscaledxdim);
daupscaledydim = max(200, daupscaledydim);
Bstrcpy(kensmessage,"!!!! BUILD engine&tools programmed by Ken Silverman of E.G. RI."
" (c) Copyright 1995 Ken Silverman. Summary: BUILD = Ken. !!!!");
rendmode = REND_POLYMOST;
upscalefactor = 1;
xdim = daupscaledxdim;
ydim = daupscaledydim;
V_UpdateModeSize(xdim, ydim);
numpages = 1; // We have only one page, no exceptions.
#ifdef USE_OPENGL
fxdim = (float) xdim;
fydim = (float) ydim;
#endif
j = ydim*4; //Leave room for horizlookup&horizlookup2
//Force drawrooms to call dosetaspect & recalculate stuff
oxyaspect = oxdimen = oviewingrange = -1;
videoSetViewableArea(0L,0L,xdim-1,ydim-1);
videoClearScreen(0L);
if (searchx < 0) { searchx = halfxdimen; searchy = (ydimen>>1); }
return 0;
}
//
// qloadkvx
//
int32_t qloadkvx(int32_t voxindex, const char *filename)
{
if ((unsigned)voxindex >= MAXVOXELS)
return -1;
auto fil = fileSystem.OpenFileReader(filename);
if (!fil.isOpen())
return -1;
int32_t lengcnt = 0;
const int32_t lengtot = fil.GetLength();
for (bssize_t i=0; i<MAXVOXMIPS; i++)
{
int32_t dasiz = fil.ReadInt32();
voxelmemory.Reserve(1);
voxelmemory.Last() = fil.Read(dasiz);
lengcnt += dasiz+4;
if (lengcnt >= lengtot-768)
break;
}
#ifdef USE_OPENGL
if (voxmodels[voxindex])
{
voxfree(voxmodels[voxindex]);
voxmodels[voxindex] = NULL;
}
Xfree(voxfilenames[voxindex]);
voxfilenames[voxindex] = Xstrdup(filename);
#endif
g_haveVoxels = 1;
return 0;
}
void vox_undefine(int32_t const tile)
{
ssize_t voxindex = tiletovox[tile];
if (voxindex < 0)
return;
#ifdef USE_OPENGL
if (voxmodels[voxindex])
{
voxfree(voxmodels[voxindex]);
voxmodels[voxindex] = NULL;
}
DO_FREE_AND_NULL(voxfilenames[voxindex]);
#endif
voxscale[voxindex] = 65536;
voxrotate[voxindex>>3] &= ~pow2char[voxindex&7];
tiletovox[tile] = -1;
// TODO: nextvoxid
}
void vox_deinit()
{
for (auto &vox : voxmodels)
{
voxfree(vox);
vox = nullptr;
}
}
//
// inside
//
// See http://fabiensanglard.net/duke3d/build_engine_internals.php,
// "Inside details" for the idea behind the algorithm.
int32_t inside_ps(int32_t x, int32_t y, int16_t sectnum)
{
if (sectnum >= 0 && sectnum < numsectors)
{
int32_t cnt = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
if ((v1.y^v2.y) < 0)
cnt ^= (((v1.x^v2.x) < 0) ? (v1.x*v2.y<v2.x*v1.y)^(v1.y<v2.y) : (v1.x >= 0));
wal++;
}
while (--wallsleft);
return cnt;
}
return -1;
}
int32_t inside_old(int32_t x, int32_t y, int16_t sectnum)
{
if (sectnum >= 0 && sectnum < numsectors)
{
uint32_t cnt = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
// Get the x and y components of the [tested point]-->[wall
// point{1,2}] vectors.
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
// If their signs differ[*], ...
//
// [*] where '-' corresponds to <0 and '+' corresponds to >=0.
// Equivalently, the branch is taken iff
// y1 != y2 AND y_m <= y < y_M,
// where y_m := min(y1, y2) and y_M := max(y1, y2).
if ((v1.y^v2.y) < 0)
cnt ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
wal++;
}
while (--wallsleft);
return cnt>>31;
}
return -1;
}
int32_t inside(int32_t x, int32_t y, int16_t sectnum)
{
switch (enginecompatibility_mode)
{
case ENGINECOMPATIBILITY_NONE:
break;
case ENGINECOMPATIBILITY_19950829:
return inside_ps(x, y, sectnum);
default:
return inside_old(x, y, sectnum);
}
if ((unsigned)sectnum < (unsigned)numsectors)
{
uint32_t cnt1 = 0, cnt2 = 0;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int wallsleft = sector[sectnum].wallnum;
do
{
// Get the x and y components of the [tested point]-->[wall
// point{1,2}] vectors.
vec2_t v1 = { wal->x - x, wal->y - y };
auto const &wal2 = *(uwallptr_t)&wall[wal->point2];
vec2_t v2 = { wal2.x - x, wal2.y - y };
// First, test if the point is EXACTLY_ON_WALL_POINT.
if ((v1.x|v1.y) == 0 || (v2.x|v2.y)==0)
return 1;
// If their signs differ[*], ...
//
// [*] where '-' corresponds to <0 and '+' corresponds to >=0.
// Equivalently, the branch is taken iff
// y1 != y2 AND y_m <= y < y_M,
// where y_m := min(y1, y2) and y_M := max(y1, y2).
if ((v1.y^v2.y) < 0)
cnt1 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
v1.y--;
v2.y--;
// Now, do the same comparisons, but with the interval half-open on
// the other side! That is, take the branch iff
// y1 != y2 AND y_m < y <= y_M,
// For a rectangular sector, without EXACTLY_ON_WALL_POINT, this
// would still leave the lower left and upper right points
// "outside" the sector.
if ((v1.y^v2.y) < 0)
{
v1.x--;
v2.x--;
cnt2 ^= (((v1.x^v2.x) >= 0) ? v1.x : (v1.x*v2.y-v2.x*v1.y)^v2.y);
}
wal++;
}
while (--wallsleft);
return (cnt1|cnt2)>>31;
}
return -1;
}
int32_t getangle(int32_t xvect, int32_t yvect)
{
int32_t rv;
if ((xvect | yvect) == 0)
rv = 0;
else if (xvect == 0)
rv = 512 + ((yvect < 0) << 10);
else if (yvect == 0)
rv = ((xvect < 0) << 10);
else if (xvect == yvect)
rv = 256 + ((xvect < 0) << 10);
else if (xvect == -yvect)
rv = 768 + ((xvect > 0) << 10);
else if (klabs(xvect) > klabs(yvect))
rv = ((radarang[640 + scale(160, yvect, xvect)] >> 6) + ((xvect < 0) << 10)) & 2047;
else rv = ((radarang[640 - scale(160, xvect, yvect)] >> 6) + 512 + ((yvect < 0) << 10)) & 2047;
return rv;
}
fixed_t gethiq16angle(int32_t xvect, int32_t yvect)
{
fixed_t rv;
if ((xvect | yvect) == 0)
rv = 0;
else if (xvect == 0)
rv = IntToFixed(512 + ((yvect < 0) << 10));
else if (yvect == 0)
rv = IntToFixed(((xvect < 0) << 10));
else if (xvect == yvect)
rv = IntToFixed(256 + ((xvect < 0) << 10));
else if (xvect == -yvect)
rv = IntToFixed(768 + ((xvect > 0) << 10));
else if (klabs(xvect) > klabs(yvect))
rv = ((qradarang[5120 + scale(1280, yvect, xvect)] >> 6) + IntToFixed(((xvect < 0) << 10))) & 0x7FFFFFF;
else rv = ((qradarang[5120 - scale(1280, xvect, yvect)] >> 6) + IntToFixed(512 + ((yvect < 0) << 10))) & 0x7FFFFFF;
return rv;
}
//
// ksqrt
//
int32_t ksqrt(uint32_t num)
{
if (enginecompatibility_mode == ENGINECOMPATIBILITY_19950829)
return ksqrtasm_old(num);
return nsqrtasm(num);
}
// Gets the BUILD unit height and z offset of a sprite.
// Returns the z offset, 'height' may be NULL.
int32_t spriteheightofsptr(uspriteptr_t spr, int32_t *height, int32_t alsotileyofs)
{
int32_t hei, zofs=0;
const int32_t picnum=spr->picnum, yrepeat=spr->yrepeat;
hei = (tileHeight(picnum)*yrepeat)<<2;
if (height != NULL)
*height = hei;
if (spr->cstat&128)
zofs = hei>>1;
// NOTE: a positive per-tile yoffset translates the sprite into the
// negative world z direction (i.e. upward).
if (alsotileyofs)
zofs -= tileTopOffset(picnum) *yrepeat<<2;
return zofs;
}
//
// setsprite
//
int32_t setsprite(int16_t spritenum, const vec3_t *newpos)
{
int16_t tempsectnum = sprite[spritenum].sectnum;
if ((void const *) newpos != (void *) &sprite[spritenum])
sprite[spritenum].pos = *newpos;
updatesector(newpos->x,newpos->y,&tempsectnum);
if (tempsectnum < 0)
return -1;
if (tempsectnum != sprite[spritenum].sectnum)
changespritesect(spritenum,tempsectnum);
return 0;
}
int32_t setspritez(int16_t spritenum, const vec3_t *newpos)
{
int16_t tempsectnum = sprite[spritenum].sectnum;
if ((void const *)newpos != (void *)&sprite[spritenum])
sprite[spritenum].pos = *newpos;
updatesectorz(newpos->x,newpos->y,newpos->z,&tempsectnum);
if (tempsectnum < 0)
return -1;
if (tempsectnum != sprite[spritenum].sectnum)
changespritesect(spritenum,tempsectnum);
return 0;
}
//
// nextsectorneighborz
//
// -1: ceiling or up
// 1: floor or down
int32_t nextsectorneighborz(int16_t sectnum, int32_t refz, int16_t topbottom, int16_t direction)
{
int32_t nextz = (direction==1) ? INT32_MAX : INT32_MIN;
int32_t sectortouse = -1;
auto wal = (uwallptr_t)&wall[sector[sectnum].wallptr];
int32_t i = sector[sectnum].wallnum;
do
{
const int32_t ns = wal->nextsector;
if (ns >= 0)
{
const int32_t testz = (topbottom == 1) ?
sector[ns].floorz : sector[ns].ceilingz;
const int32_t update = (direction == 1) ?
(nextz > testz && testz > refz) :
(nextz < testz && testz < refz);
if (update)
{
nextz = testz;
sectortouse = ns;
}
}
wal++;
i--;
}
while (i != 0);
return sectortouse;
}
//
// cansee
//
int32_t cansee_old(int32_t xs, int32_t ys, int32_t zs, int16_t sectnums, int32_t xe, int32_t ye, int32_t ze, int16_t sectnume)
{
sectortype *sec, *nsec;
walltype *wal, *wal2;
int32_t intx, inty, intz, i, cnt, nextsector, dasectnum, dacnt, danum;
if ((xs == xe) && (ys == ye) && (sectnums == sectnume)) return 1;
clipsectorlist[0] = sectnums; danum = 1;
for(dacnt=0;dacnt<danum;dacnt++)
{
dasectnum = clipsectorlist[dacnt]; sec = &sector[dasectnum];
for(cnt=sec->wallnum,wal=&wall[sec->wallptr];cnt>0;cnt--,wal++)
{
wal2 = &wall[wal->point2];
if (lintersect(xs,ys,zs,xe,ye,ze,wal->x,wal->y,wal2->x,wal2->y,&intx,&inty,&intz) != 0)
{
nextsector = wal->nextsector; if (nextsector < 0) return 0;
if (intz <= sec->ceilingz) return 0;
if (intz >= sec->floorz) return 0;
nsec = &sector[nextsector];
if (intz <= nsec->ceilingz) return 0;
if (intz >= nsec->floorz) return 0;
for(i=danum-1;i>=0;i--)
if (clipsectorlist[i] == nextsector) break;
if (i < 0) clipsectorlist[danum++] = nextsector;
}
}
if (clipsectorlist[dacnt] == sectnume)
return 1;
}
return 0;
}
int32_t cansee(int32_t x1, int32_t y1, int32_t z1, int16_t sect1, int32_t x2, int32_t y2, int32_t z2, int16_t sect2)
{
if (enginecompatibility_mode == ENGINECOMPATIBILITY_19950829)
return cansee_old(x1, y1, z1, sect1, x2, y2, z2, sect2);
int32_t dacnt, danum;
const int32_t x21 = x2-x1, y21 = y2-y1, z21 = z2-z1;
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
Bmemset(sectbitmap, 0, sizeof(sectbitmap));
if (x1 == x2 && y1 == y2)
return (sect1 == sect2);
sectbitmap[sect1>>3] |= pow2char[sect1&7];
clipsectorlist[0] = sect1; danum = 1;
for (dacnt=0; dacnt<danum; dacnt++)
{
const int32_t dasectnum = clipsectorlist[dacnt];
auto const sec = (usectorptr_t)&sector[dasectnum];
uwallptr_t wal;
bssize_t cnt;
for (cnt=sec->wallnum,wal=(uwallptr_t)&wall[sec->wallptr]; cnt>0; cnt--,wal++)
{
auto const wal2 = (uwallptr_t)&wall[wal->point2];
const int32_t x31 = wal->x-x1, x34 = wal->x-wal2->x;
const int32_t y31 = wal->y-y1, y34 = wal->y-wal2->y;
int32_t x, y, z, nexts, t, bot;
int32_t cfz[2];
bot = y21*x34-x21*y34; if (bot <= 0) continue;
// XXX: OVERFLOW
t = y21*x31-x21*y31; if ((unsigned)t >= (unsigned)bot) continue;
t = y31*x34-x31*y34;
if ((unsigned)t >= (unsigned)bot)
{
continue;
}
nexts = wal->nextsector;
if (nexts < 0 || wal->cstat&32)
return 0;
t = divscale24(t,bot);
x = x1 + mulscale24(x21,t);
y = y1 + mulscale24(y21,t);
z = z1 + mulscale24(z21,t);
getzsofslope(dasectnum, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
{
return 0;
}
getzsofslope(nexts, x,y, &cfz[0],&cfz[1]);
if (z <= cfz[0] || z >= cfz[1])
return 0;
if (!(sectbitmap[nexts>>3] & pow2char[nexts&7]))
{
sectbitmap[nexts>>3] |= pow2char[nexts&7];
clipsectorlist[danum++] = nexts;
}
}
}
if (sectbitmap[sect2>>3] & pow2char[sect2&7])
return 1;
return 0;
}
//
// neartag
//
void neartag(int32_t xs, int32_t ys, int32_t zs, int16_t sectnum, int16_t ange,
int16_t *neartagsector, int16_t *neartagwall, int16_t *neartagsprite, int32_t *neartaghitdist, /* out */
int32_t neartagrange, uint8_t tagsearch,
int32_t (*blacklist_sprite_func)(int32_t))
{
int16_t tempshortcnt, tempshortnum;
const int32_t vx = mulscale14(sintable[(ange+2560)&2047],neartagrange);
const int32_t vy = mulscale14(sintable[(ange+2048)&2047],neartagrange);
vec3_t hitv = { xs+vx, ys+vy, 0 };
const vec3_t sv = { xs, ys, zs };
*neartagsector = -1; *neartagwall = -1; *neartagsprite = -1;
*neartaghitdist = 0;
if (sectnum < 0 || (tagsearch & 3) == 0)
return;
clipsectorlist[0] = sectnum;
tempshortcnt = 0; tempshortnum = 1;
do
{
const int32_t dasector = clipsectorlist[tempshortcnt];
const int32_t startwall = sector[dasector].wallptr;
const int32_t endwall = startwall + sector[dasector].wallnum - 1;
uwallptr_t wal;
int32_t z;
for (z=startwall,wal=(uwallptr_t)&wall[startwall]; z<=endwall; z++,wal++)
{
auto const wal2 = (uwallptr_t)&wall[wal->point2];
const int32_t nextsector = wal->nextsector;
const int32_t x1=wal->x, y1=wal->y, x2=wal2->x, y2=wal2->y;
int32_t intx, inty, intz, good = 0;
if (nextsector >= 0)
{
if ((tagsearch&1) && sector[nextsector].lotag) good |= 1;
if ((tagsearch&2) && sector[nextsector].hitag) good |= 1;
}
if ((tagsearch&1) && wal->lotag) good |= 2;
if ((tagsearch&2) && wal->hitag) good |= 2;
if ((good == 0) && (nextsector < 0)) continue;
if ((coord_t)(x1-xs)*(y2-ys) < (coord_t)(x2-xs)*(y1-ys)) continue;
if (lintersect(xs,ys,zs,hitv.x,hitv.y,hitv.z,x1,y1,x2,y2,&intx,&inty,&intz) == 1)
{
if (good != 0)
{
if (good&1) *neartagsector = nextsector;
if (good&2) *neartagwall = z;
*neartaghitdist = dmulscale14(intx-xs,sintable[(ange+2560)&2047],inty-ys,sintable[(ange+2048)&2047]);
hitv.x = intx; hitv.y = inty; hitv.z = intz;
}
if (nextsector >= 0)
{
int32_t zz;
for (zz=tempshortnum-1; zz>=0; zz--)
if (clipsectorlist[zz] == nextsector) break;
if (zz < 0) clipsectorlist[tempshortnum++] = nextsector;
}
}
}
tempshortcnt++;
if (tagsearch & 4)
continue; // skip sprite search
for (z=headspritesect[dasector]; z>=0; z=nextspritesect[z])
{
auto const spr = (uspriteptr_t)&sprite[z];
if (blacklist_sprite_func && blacklist_sprite_func(z))
continue;
if (((tagsearch&1) && spr->lotag) || ((tagsearch&2) && spr->hitag))
{
if (try_facespr_intersect(spr, sv, vx, vy, 0, &hitv, 1))
{
*neartagsprite = z;
*neartaghitdist = dmulscale14(hitv.x-xs, sintable[(ange+2560)&2047],
hitv.y-ys, sintable[(ange+2048)&2047]);
}
}
}
}
while (tempshortcnt < tempshortnum);
}
//
// dragpoint
//
// flags:
// 1: don't reset walbitmap[] (the bitmap of already dragged vertices)
// 2: In the editor, do wall[].cstat |= (1<<14) also for the lastwall().
void dragpoint(int16_t pointhighlight, int32_t dax, int32_t day, uint8_t flags)
{
int32_t i, numyaxwalls=0;
static int16_t yaxwalls[MAXWALLS];
uint8_t *const walbitmap = (uint8_t *)tempbuf;
if ((flags&1)==0)
Bmemset(walbitmap, 0, (numwalls+7)>>3);
yaxwalls[numyaxwalls++] = pointhighlight;
for (i=0; i<numyaxwalls; i++)
{
int32_t clockwise = 0;
int32_t w = yaxwalls[i];
const int32_t tmpstartwall = w;
bssize_t cnt = MAXWALLS;
while (1)
{
wall[w].x = dax;
wall[w].y = day;
walbitmap[w>>3] |= pow2char[w&7];
if (!clockwise) //search points CCW
{
if (wall[w].nextwall >= 0)
w = wall[wall[w].nextwall].point2;
else
{
w = tmpstartwall;
clockwise = 1;
}
}
cnt--;
if (cnt==0)
{
Printf("dragpoint %d: infloop!\n", pointhighlight);
i = numyaxwalls;
break;
}
if (clockwise)
{
int32_t thelastwall = lastwall(w);
if (wall[thelastwall].nextwall >= 0)
w = wall[thelastwall].nextwall;
else
break;
}
if ((walbitmap[w>>3] & pow2char[w&7]))
{
if (clockwise)
break;
w = tmpstartwall;
clockwise = 1;
continue;
}
}
}
}
//
// lastwall
//
int32_t lastwall(int16_t point)
{
if (point > 0 && wall[point-1].point2 == point)
return point-1;
int i = point, cnt = numwalls;
do
{
int const j = wall[i].point2;
if (j == point)
{
point = i;
break;
}
i = j;
}
while (--cnt);
return point;
}
////////// UPDATESECTOR* FAMILY OF FUNCTIONS //////////
/* Different "is inside" predicates.
* NOTE: The redundant bound checks are expected to be optimized away in the
* inlined code. */
static inline int inside_exclude_p(int32_t const x, int32_t const y, int const sectnum, const uint8_t *excludesectbitmap)
{
return (sectnum>=0 && !bitmap_test(excludesectbitmap, sectnum) && inside_p(x, y, sectnum));
}
/* NOTE: no bound check */
static inline int inside_z_p(int32_t const x, int32_t const y, int32_t const z, int const sectnum)
{
int32_t cz, fz;
getzsofslope(sectnum, x, y, &cz, &fz);
return (z >= cz && z <= fz && inside_p(x, y, sectnum));
}
int32_t getwalldist(vec2_t const in, int const wallnum)
{
vec2_t closest;
getclosestpointonwall_internal(in, wallnum, &closest);
return klabs(closest.x - in.x) + klabs(closest.y - in.y);
}
int32_t getwalldist(vec2_t const in, int const wallnum, vec2_t * const out)
{
getclosestpointonwall_internal(in, wallnum, out);
return klabs(out->x - in.x) + klabs(out->y - in.y);
}
int32_t getsectordist(vec2_t const in, int const sectnum, vec2_t * const out /*= nullptr*/)
{
if (inside_p(in.x, in.y, sectnum))
{
if (out)
*out = in;
return 0;
}
int32_t distance = INT32_MAX;
auto const sec = (usectorptr_t)&sector[sectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
vec2_t closest = {};
for (int j = startwall; j < endwall; j++, uwal++)
{
vec2_t p;
int32_t const walldist = getwalldist(in, j, &p);
if (walldist < distance)
{
distance = walldist;
closest = p;
}
}
if (out)
*out = closest;
return distance;
}
int findwallbetweensectors(int sect1, int sect2)
{
if (sector[sect1].wallnum > sector[sect2].wallnum)
swaplong(&sect1, &sect2);
auto const sec = (usectorptr_t)&sector[sect1];
int const last = sec->wallptr + sec->wallnum;
for (int i = sec->wallptr; i < last; i++)
if (wall[i].nextsector == sect2)
return i;
return -1;
}
//
// updatesector[z]
//
void updatesector(int32_t const x, int32_t const y, int16_t * const sectnum)
{
#if 0
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
if (inside_p(x, y, *sectnum))
return;
if ((unsigned)*sectnum < (unsigned)numsectors)
{
const uwalltype *wal = (uwalltype *)&wall[sector[*sectnum].wallptr];
int wallsleft = sector[*sectnum].wallnum;
do
{
int const next = wal->nextsector;
if (inside_p(x, y, next))
SET_AND_RETURN(*sectnum, next);
wal++;
}
while (--wallsleft);
}
}
else
#endif
{
int16_t sect = *sectnum;
updatesectorneighbor(x, y, &sect, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
}
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_p(x, y, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
void updatesectorexclude(int32_t const x, int32_t const y, int16_t * const sectnum, const uint8_t * const excludesectbitmap)
{
if (inside_exclude_p(x, y, *sectnum, excludesectbitmap))
return;
if (*sectnum >= 0 && *sectnum < numsectors)
{
auto wal = (uwallptr_t)&wall[sector[*sectnum].wallptr];
int wallsleft = sector[*sectnum].wallnum;
do
{
int const next = wal->nextsector;
if (inside_exclude_p(x, y, next, excludesectbitmap))
SET_AND_RETURN(*sectnum, next);
wal++;
}
while (--wallsleft);
}
for (bssize_t i=numsectors-1; i>=0; --i)
if (inside_exclude_p(x, y, i, excludesectbitmap))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
// new: if *sectnum >= MAXSECTORS, *sectnum-=MAXSECTORS is considered instead
// as starting sector and the 'initial' z check is skipped
// (not initial anymore because it follows the sector updating due to TROR)
// NOTE: This comes from Duke, therefore it's GPL!
void updatesectorz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum)
{
if (enginecompatibility_mode != ENGINECOMPATIBILITY_NONE)
{
if ((uint32_t)(*sectnum) < 2*MAXSECTORS)
{
int32_t nofirstzcheck = 0;
if (*sectnum >= MAXSECTORS)
{
*sectnum -= MAXSECTORS;
nofirstzcheck = 1;
}
// this block used to be outside the "if" and caused crashes in Polymost Mapster32
int32_t cz, fz;
getzsofslope(*sectnum, x, y, &cz, &fz);
if (nofirstzcheck || (z >= cz && z <= fz))
if (inside_p(x, y, *sectnum))
return;
uwalltype const * wal = (uwalltype *)&wall[sector[*sectnum].wallptr];
int wallsleft = sector[*sectnum].wallnum;
do
{
// YAX: TODO: check neighboring sectors here too?
int const next = wal->nextsector;
if (next>=0 && inside_z_p(x,y,z, next))
SET_AND_RETURN(*sectnum, next);
wal++;
}
while (--wallsleft);
}
}
else
{
int16_t sect = *sectnum;
updatesectorneighborz(x, y, z, &sect, INITIALUPDATESECTORDIST, MAXUPDATESECTORDIST);
if (sect != -1)
SET_AND_RETURN(*sectnum, sect);
}
// we need to support passing in a sectnum of -1, unfortunately
for (int i = numsectors - 1; i >= 0; --i)
if (inside_z_p(x, y, z, i))
SET_AND_RETURN(*sectnum, i);
*sectnum = -1;
}
void updatesectorneighbor(int32_t const x, int32_t const y, int16_t * const sectnum, int32_t initialMaxDistance /*= INITIALUPDATESECTORDIST*/, int32_t maxDistance /*= MAXUPDATESECTORDIST*/)
{
int const initialsectnum = *sectnum;
if ((unsigned)initialsectnum < (unsigned)numsectors && getsectordist({x, y}, initialsectnum) <= initialMaxDistance)
{
if (inside_p(x, y, initialsectnum))
return;
static int16_t sectlist[MAXSECTORS];
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
int16_t nsecs;
bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, initialsectnum);
for (int sectcnt=0; sectcnt<nsecs; sectcnt++)
{
int const listsectnum = sectlist[sectcnt];
if (inside_p(x, y, listsectnum))
SET_AND_RETURN(*sectnum, listsectnum);
auto const sec = &sector[listsectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
for (int j=startwall; j<endwall; j++, uwal++)
if (uwal->nextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance)
bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector);
}
}
*sectnum = -1;
}
void updatesectorneighborz(int32_t const x, int32_t const y, int32_t const z, int16_t * const sectnum, int32_t initialMaxDistance /*= 0*/, int32_t maxDistance /*= 0*/)
{
bool nofirstzcheck = false;
if (*sectnum >= MAXSECTORS && *sectnum - MAXSECTORS < numsectors)
{
*sectnum -= MAXSECTORS;
nofirstzcheck = true;
}
uint32_t const correctedsectnum = (unsigned)*sectnum;
if (correctedsectnum < (unsigned)numsectors && getsectordist({x, y}, correctedsectnum) <= initialMaxDistance)
{
int32_t cz, fz;
getzsofslope(correctedsectnum, x, y, &cz, &fz);
if ((nofirstzcheck || (z >= cz && z <= fz)) && inside_p(x, y, *sectnum))
return;
static int16_t sectlist[MAXSECTORS];
static uint8_t sectbitmap[(MAXSECTORS+7)>>3];
int16_t nsecs;
bfirst_search_init(sectlist, sectbitmap, &nsecs, MAXSECTORS, correctedsectnum);
for (int sectcnt=0; sectcnt<nsecs; sectcnt++)
{
int const listsectnum = sectlist[sectcnt];
if (inside_z_p(x, y, z, listsectnum))
SET_AND_RETURN(*sectnum, listsectnum);
auto const sec = &sector[listsectnum];
int const startwall = sec->wallptr;
int const endwall = sec->wallptr + sec->wallnum;
auto uwal = (uwallptr_t)&wall[startwall];
for (int j=startwall; j<endwall; j++, uwal++)
if (uwal->nextsector >= 0 && getsectordist({x, y}, uwal->nextsector) <= maxDistance)
bfirst_search_try(sectlist, sectbitmap, &nsecs, uwal->nextsector);
}
}
*sectnum = -1;
}
//
// rotatepoint
//
void rotatepoint(vec2_t const pivot, vec2_t p, int16_t const daang, vec2_t * const p2)
{
int const dacos = sintable[(daang+2560)&2047];
int const dasin = sintable[(daang+2048)&2047];
p.x -= pivot.x;
p.y -= pivot.y;
p2->x = dmulscale14(p.x, dacos, -p.y, dasin) + pivot.x;
p2->y = dmulscale14(p.y, dacos, p.x, dasin) + pivot.y;
}
void videoSetCorrectedAspect()
{
// In DOS the game world is displayed with an aspect of 1.28 instead 1.333,
// meaning we have to stretch it by a factor of 1.25 instead of 1.2
// to get perfect squares
int32_t yx = (65536 * 5) / 4;
int32_t vr, y, x;
x = xdim;
y = ydim;
vr = divscale16(x*3, y*4);
renderSetAspect(vr, yx);
}
//
// setview
//
void videoSetViewableArea(int32_t x1, int32_t y1, int32_t x2, int32_t y2)
{
windowxy1.x = x1;
windowxy1.y = y1;
windowxy2.x = x2;
windowxy2.y = y2;
xdimen = (x2-x1)+1; halfxdimen = (xdimen>>1);
xdimenrecip = divscale32(1L,xdimen);
ydimen = (y2-y1)+1;
fxdimen = (float) xdimen;
#ifdef USE_OPENGL
fydimen = (float) ydimen;
#endif
videoSetCorrectedAspect();
}
//
// setaspect
//
void renderSetAspect(int32_t daxrange, int32_t daaspect)
{
if (daxrange == 65536) daxrange--; // This doesn't work correctly with 65536. All other values are fine. No idea where this is evaluated wrong.
viewingrange = daxrange;
viewingrangerecip = divscale32(1,daxrange);
#ifdef USE_OPENGL
fviewingrange = (float) daxrange;
#endif
yxaspect = daaspect;
xyaspect = divscale32(1,yxaspect);
xdimenscale = scale(xdimen,yxaspect,320);
xdimscale = scale(320,xyaspect,xdimen);
}
#include "v_2ddrawer.h"
//
// clearview
//
void videoClearViewableArea(int32_t dacol)
{
GLInterface.ClearScreen(dacol, false);
}
//
// clearallviews
//
void videoClearScreen(int32_t dacol)
{
GLInterface.ClearScreen(dacol | PalEntry(255,0,0,0));
}
//MUST USE RESTOREFORDRAWROOMS AFTER DRAWING
static int32_t setviewcnt = 0; // interface layers use this now
static int32_t bakxsiz, bakysiz;
static vec2_t bakwindowxy1, bakwindowxy2;
//
// setviewtotile
//
FCanvasTexture* renderSetTarget(int16_t tilenume)
{
auto tex = tileGetTexture(tilenume);
if (!tex || !tex->isHardwareCanvas()) return nullptr;
auto canvas = static_cast<FCanvasTexture*>(tex->GetTexture());
if (!canvas) return nullptr;
int xsiz = tex->GetTexelWidth(), ysiz = tex->GetTexelHeight();
if (setviewcnt > 0 || xsiz <= 0 || ysiz <= 0)
return nullptr;
//DRAWROOMS TO TILE BACKUP&SET CODE
bakxsiz = xdim; bakysiz = ydim;
bakwindowxy1 = windowxy1;
bakwindowxy2 = windowxy2;
setviewcnt++;
xdim = ysiz;
ydim = xsiz;
videoSetViewableArea(0,0,ysiz-1,xsiz-1);
renderSetAspect(65536,65536);
return canvas;
}
//
// setviewback
//
void renderRestoreTarget()
{
if (setviewcnt <= 0) return;
setviewcnt--;
xdim = bakxsiz;
ydim = bakysiz;
videoSetViewableArea(bakwindowxy1.x,bakwindowxy1.y,
bakwindowxy2.x,bakwindowxy2.y);
}
//
// preparemirror
//
void renderPrepareMirror(int32_t dax, int32_t day, int32_t daz, fixed_t daang, fixed_t dahoriz, int16_t dawall,
int32_t *tposx, int32_t *tposy, fixed_t *tang)
{
const int32_t x = wall[dawall].x, dx = wall[wall[dawall].point2].x-x;
const int32_t y = wall[dawall].y, dy = wall[wall[dawall].point2].y-y;
const int32_t j = dx*dx + dy*dy;
if (j == 0)
return;
int i = ((dax-x)*dx + (day-y)*dy)<<1;
*tposx = (x<<1) + scale(dx,i,j) - dax;
*tposy = (y<<1) + scale(dy,i,j) - day;
*tang = (IntToFixed(getangle(dx, dy) << 1) - daang) & 0x7FFFFFF;
inpreparemirror = 1;
polymost_prepareMirror(dax, day, daz, daang, dahoriz, dawall);
}
//
// completemirror
//
void renderCompleteMirror(void)
{
polymost_completeMirror();
inpreparemirror = 0;
}
//
// sectorofwall
//
static int32_t sectorofwall_internal(int16_t wallNum)
{
native_t gap = numsectors>>1, sectNum = gap;
while (gap > 1)
{
gap >>= 1;
native_t const n = !!(sector[sectNum].wallptr < wallNum);
sectNum += (n ^ (n - 1)) * gap;
}
while (sector[sectNum].wallptr > wallNum) sectNum--;
while (sector[sectNum].wallptr + sector[sectNum].wallnum <= wallNum) sectNum++;
return sectNum;
}
int32_t sectorofwall(int16_t wallNum)
{
if ((unsigned)wallNum < (unsigned)numwalls)
{
native_t const w = wall[wallNum].nextwall;
return ((unsigned)w < MAXWALLS) ? wall[w].nextsector : sectorofwall_internal(wallNum);
}
return -1;
}
int32_t getceilzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->ceilingstat&2))
return sec->ceilingz;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->ceilingz;
int const j = dmulscale3(d.x, day-w.y, -d.y, dax-w.x);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->ceilingz + (scale(sec->ceilingheinum,j>>shift,i)<<shift);
}
int32_t getflorzofslopeptr(usectorptr_t sec, int32_t dax, int32_t day)
{
if (!(sec->floorstat&2))
return sec->floorz;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const w = *(vec2_t const *)wal;
vec2_t const d = { wal2->x - w.x, wal2->y - w.y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return sec->floorz;
int const j = dmulscale3(d.x, day-w.y, -d.y, dax-w.x);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
return sec->floorz + (scale(sec->floorheinum,j>>shift,i)<<shift);
}
void getzsofslopeptr(usectorptr_t sec, int32_t dax, int32_t day, int32_t *ceilz, int32_t *florz)
{
*ceilz = sec->ceilingz; *florz = sec->floorz;
if (((sec->ceilingstat|sec->floorstat)&2) != 2)
return;
auto const wal = (uwallptr_t)&wall[sec->wallptr];
auto const wal2 = (uwallptr_t)&wall[wal->point2];
vec2_t const d = { wal2->x - wal->x, wal2->y - wal->y };
int const i = nsqrtasm(uhypsq(d.x,d.y))<<5;
if (i == 0) return;
int const j = dmulscale3(d.x,day-wal->y, -d.y,dax-wal->x);
int const shift = enginecompatibility_mode != ENGINECOMPATIBILITY_NONE ? 0 : 1;
if (sec->ceilingstat&2)
*ceilz += scale(sec->ceilingheinum,j>>shift,i)<<shift;
if (sec->floorstat&2)
*florz += scale(sec->floorheinum,j>>shift,i)<<shift;
}
//
// alignceilslope
//
void alignceilslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
auto const wal = (uwallptr_t)&wall[sector[dasect].wallptr];
const int32_t dax = wall[wal->point2].x-wal->x;
const int32_t day = wall[wal->point2].y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
sector[dasect].ceilingheinum = scale((z-sector[dasect].ceilingz)<<8,
nsqrtasm(uhypsq(dax,day)), i);
if (sector[dasect].ceilingheinum == 0)
sector[dasect].ceilingstat &= ~2;
else sector[dasect].ceilingstat |= 2;
}
//
// alignflorslope
//
void alignflorslope(int16_t dasect, int32_t x, int32_t y, int32_t z)
{
auto const wal = (uwallptr_t)&wall[sector[dasect].wallptr];
const int32_t dax = wall[wal->point2].x-wal->x;
const int32_t day = wall[wal->point2].y-wal->y;
const int32_t i = (y-wal->y)*dax - (x-wal->x)*day;
if (i == 0)
return;
sector[dasect].floorheinum = scale((z-sector[dasect].floorz)<<8,
nsqrtasm(uhypsq(dax,day)), i);
if (sector[dasect].floorheinum == 0)
sector[dasect].floorstat &= ~2;
else sector[dasect].floorstat |= 2;
}
//
// setrendermode
//
int32_t videoSetRenderMode(int32_t renderer)
{
UNREFERENCED_PARAMETER(renderer);
#ifdef USE_OPENGL
renderer = REND_POLYMOST;
rendmode = renderer;
if (videoGetRenderMode() >= REND_POLYMOST)
glrendmode = rendmode;
#endif
return 0;
}
//
// setrollangle
//
#ifdef USE_OPENGL
void renderSetRollAngle(float rolla)
{
gtang = rolla * (fPI * (1.f/1024.f));
}
#endif