raze/source/common/utility/geometry.h
Christoph Oelckers a3dbfab54b - return some invalid but recognizable magic value when IntersectLines is being passed two collinear lines.
This actually should check if the two lines are identical but since this is rather expensive and rarely needed it's better handled by returning a distinct value the caller can handle if needed.
2022-10-30 16:51:37 +01:00

234 lines
7.7 KiB
C

#pragma once
/*
** geometry.h
** basic geometry math routines
**
**---------------------------------------------------------------------------
** Copyright 2005-2022 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
*/
#include "vectors.h"
inline DVector2 rotatepoint(const DVector2& pivot, const DVector2& point, DAngle angle)
{
return (point - pivot).Rotated(angle) + pivot;
}
//==========================================================================
//
//
//
//==========================================================================
inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay)
{
return (x - linex) * deltay - (y - liney) * deltax;
}
//==========================================================================
//
//
//
//==========================================================================
inline double SquareDist(double lx1, double ly1, double lx2, double ly2)
{
double dx = lx2 - lx1;
double dy = ly2 - ly1;
return dx * dx + dy * dy;
}
// This is for cases where only the factor is needed, and pre-validation was performed.
inline double NearestPointOnLineFast(double px, double py, double lx1, double ly1, double lx2, double ly2)
{
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
assert(wall_length > 0);
return ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
}
inline DVector2 NearestPointOnLine(double px, double py, double lx1, double ly1, double lx2, double ly2, bool clamp = true)
{
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
if (wall_length == 0)
{
return { lx1, ly1 };
}
double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
if (clamp)
{
if (t <= 0) return { lx1, ly1 };
if (t >= 1) return { lx2, ly2 };
}
double xx = lx1 + t * (lx2 - lx1);
double yy = ly1 + t * (ly2 - ly1);
return { xx, yy };
}
//==========================================================================
//
//
//
//==========================================================================
inline double SquareDistToLine(double px, double py, double lx1, double ly1, double lx2, double ly2)
{
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
if (wall_length == 0) return SquareDist(px, py, lx1, ly1);
double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
t = clamp(t, 0., 1.);
double xx = lx1 + t * (lx2 - lx1);
double yy = ly1 + t * (ly2 - ly1);
return SquareDist(px, py, xx, yy);
}
//==========================================================================
//
// taken from GZDoom with the divline_t parameters removed
//
//==========================================================================
inline double InterceptVector(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy)
{
double den = v1dy * v2dx - v1dx * v2dy;
if (den == 0)
return 0; // parallel
double num = (v1x - v2x) * v1dy + (v2y - v1y) * v1dx;
return num / den;
}
//==========================================================================
//
// Essentially two InterceptVector calls. We can reduce the calculations
// because the denominators for both calculations only differ by their sign.
//
//==========================================================================
inline double InterceptLineSegments(double v2x, double v2y, double v2dx, double v2dy, double v1x, double v1y, double v1dx, double v1dy, double* pfactor1 = nullptr, bool forcansee = false)
{
double den = v1dy * v2dx - v1dx * v2dy;
if (den == 0)
return -2 * (double)FLT_MAX; // parallel (return a magic value different from everything else, just in case it needs to be handled)
if (forcansee && den < 0) // cansee does this added check here, aside from that its logic is virtually the same.
return -1; // hitting the backside
// perform the division first for better parallelization.
den = 1 / den;
double factor1 = ((v2x - v1x) * v2dy + (v1y - v2y) * v2dx) * -den;
if (factor1 < 0 || factor1 > 1) return -FLT_MAX; // no intersection
if (pfactor1) *pfactor1 = factor1;
return ((v1x - v2x) * v1dy + (v2y - v1y) * v1dx) * den; // this one's for the line segment where we want to get the intercept factor for so it needs to be last.
}
//==========================================================================
//
// calculates intersection between a plane and line in 3D
//
//==========================================================================
inline double LinePlaneIntersect(const DVector3& start, const DVector3& trace, const DVector3& ppoint, const DVector3& pvec1, const DVector3& pvec2)
{
auto normal = pvec1 ^ pvec2; // we do not need a unit vector here.
double dist = normal.dot(ppoint);
double dotStart = normal.dot(start);
double dotTrace = normal.dot(trace);
if (dotTrace == 0) return -FLT_MAX;
return (dist - dotStart) / dotTrace; // we are only interested in the factor
}
//==========================================================================
//
// BoxOnLineSide
//
// Based on Doom's, but rewritten to be standalone
//
//==========================================================================
inline int BoxOnLineSide(const DVector2& boxtl, const DVector2& boxbr, const DVector2& start, const DVector2& delta)
{
int p1;
int p2;
if (delta.X == 0)
{
p1 = boxbr.X < start.X;
p2 = boxtl.X < start.X;
if (delta.Y < 0)
{
p1 ^= 1;
p2 ^= 1;
}
}
else if (delta.Y == 0)
{
p1 = boxtl.Y > start.Y;
p2 = boxbr.Y > start.Y;
if (delta.X < 0)
{
p1 ^= 1;
p2 ^= 1;
}
}
else if (delta.X * delta.Y <= 0)
{
p1 = PointOnLineSide(boxtl.X, boxtl.Y, start.X, start.Y, delta.X, delta.Y) > 0;
p2 = PointOnLineSide(boxbr.X, boxbr.Y, start.X, start.Y, delta.X, delta.Y) > 0;
}
else
{
p1 = PointOnLineSide(boxbr.X, boxtl.Y, start.X, start.Y, delta.X, delta.Y) > 0;
p2 = PointOnLineSide(boxtl.X, boxbr.Y, start.X, start.Y, delta.X, delta.Y) > 0;
}
return (p1 == p2) ? p1 : -1;
}
//==========================================================================
//
// BoxInRange
//
//==========================================================================
inline bool BoxInRange(const DVector2& boxtl, const DVector2& boxbr, const DVector2& start, const DVector2& end)
{
return boxtl.X < max(start.X, end.X) &&
boxbr.X > min(start.X, end.X) &&
boxtl.Y < max(start.Y, end.Y) &&
boxbr.Y > min(start.Y, end.Y);
}