mirror of
https://github.com/ZDoom/Raze.git
synced 2025-01-18 14:41:55 +00:00
Lunatic: xmath module + timing test for distance functions.
git-svn-id: https://svn.eduke32.com/eduke32@3488 1a8010ca-5511-0410-912e-c29ae57300e0
This commit is contained in:
parent
b489a62a93
commit
6cd3b9f4fc
2 changed files with 154 additions and 0 deletions
56
polymer/eduke32/source/lunatic/test/test_dists.lua
Normal file
56
polymer/eduke32/source/lunatic/test/test_dists.lua
Normal file
|
@ -0,0 +1,56 @@
|
|||
|
||||
local ffi = require "ffi"
|
||||
local math = require "math"
|
||||
local os = require "os"
|
||||
|
||||
local xmath = require "xmath"
|
||||
|
||||
local ldist = xmath.ldist
|
||||
local sqrt = math.sqrt
|
||||
|
||||
local function printf(fmt, ...)
|
||||
print(string.format(fmt, ...))
|
||||
end
|
||||
|
||||
local function edist(p1, p2)
|
||||
return sqrt(p1.x*p1.x + p2.x*p2.x)
|
||||
end
|
||||
|
||||
local vec2 = ffi.typeof("struct { int32_t x, y; }")
|
||||
|
||||
local numpoints = 1e4
|
||||
local Nsq = numpoints*numpoints
|
||||
printf("number of points: %d, testing %d distances", numpoints, Nsq)
|
||||
|
||||
local B = 8192
|
||||
|
||||
local pts = {}
|
||||
for i=1,numpoints do
|
||||
pts[i] = vec2(math.random(-B, B), math.random(B, -B))
|
||||
end
|
||||
|
||||
-- test edist
|
||||
local t = os.clock()
|
||||
|
||||
local sum = 0
|
||||
for i=1,numpoints do
|
||||
for j=1,numpoints do
|
||||
sum = sum+edist(pts[i], pts[j])
|
||||
end
|
||||
end
|
||||
|
||||
t = os.clock()-t
|
||||
printf("edist: %.03fns per call, mean=%.03f", (1e9*t)/Nsq, sum/Nsq)
|
||||
|
||||
-- test ldist
|
||||
t = os.clock()
|
||||
|
||||
local sum = 0
|
||||
for i=1,numpoints do
|
||||
for j=1,numpoints do
|
||||
sum = sum+ldist(pts[i], pts[j])
|
||||
end
|
||||
end
|
||||
|
||||
t = os.clock()-t
|
||||
printf("ldist: %.03fns per call, mean=%.03f", (1e9*t)/Nsq, sum/Nsq)
|
98
polymer/eduke32/source/lunatic/xmath.lua
Normal file
98
polymer/eduke32/source/lunatic/xmath.lua
Normal file
|
@ -0,0 +1,98 @@
|
|||
-- "Extended" math module for Lunatic.
|
||||
|
||||
local ffi = require("ffi")
|
||||
|
||||
local bit = require("bit")
|
||||
local math = require("math")
|
||||
|
||||
local assert = assert
|
||||
|
||||
|
||||
module(...)
|
||||
|
||||
|
||||
local BANG2RAD = math.pi/1024
|
||||
local isintab = ffi.new("int16_t [?]", 2048)
|
||||
local dsintab = ffi.new("double [?]", 2048)
|
||||
|
||||
for a=0,511 do
|
||||
local s = math.sin(a*BANG2RAD)
|
||||
isintab[a] = 16384*s
|
||||
dsintab[a] = s
|
||||
end
|
||||
|
||||
isintab[512] = 16384
|
||||
dsintab[512] = 1
|
||||
|
||||
for i=513,1023 do
|
||||
isintab[i] = isintab[1024-i];
|
||||
dsintab[i] = dsintab[1024-i];
|
||||
end
|
||||
|
||||
for i=1024,2047 do
|
||||
isintab[i] = -isintab[i-1024];
|
||||
dsintab[i] = -dsintab[i-1024];
|
||||
end
|
||||
|
||||
|
||||
local band = bit.band
|
||||
|
||||
local function ksc_common(ang)
|
||||
ang = band(ang, 2047)
|
||||
assert(ang < 2048+0ULL) -- might have been passed NaN
|
||||
return ang
|
||||
end
|
||||
|
||||
-- k{sin,cos}: 16384-scaled output, 2048-based angle input
|
||||
function ksin(ang)
|
||||
return isintab[ksc_common(ang)]
|
||||
end
|
||||
|
||||
function kcos(ang)
|
||||
return isintab[ksc_common(ang+512)]
|
||||
end
|
||||
|
||||
|
||||
local sin, cos = math.sin, math.cos
|
||||
|
||||
-- {sin,cos}b: [-1..1] output, 2048-based angle input
|
||||
function sinb(ang)
|
||||
return dsintab[ksc_common(ang)]
|
||||
end
|
||||
|
||||
function cosb(ang)
|
||||
return dsintab[ksc_common(ang+512)]
|
||||
end
|
||||
|
||||
|
||||
-- Approximations to 2D and 3D Euclidean distances (also see common.c)
|
||||
local abs = math.abs
|
||||
local arshift = bit.arshift
|
||||
|
||||
local function dist_common(pos1, pos2)
|
||||
local x = abs(pos1.x - pos2.x)
|
||||
local y = abs(pos1.y - pos2.y)
|
||||
if (x < y) then
|
||||
x, y = y, x
|
||||
end
|
||||
return x, y
|
||||
end
|
||||
|
||||
function ldist(pos1, pos2)
|
||||
local x, y = dist_common(pos1, pos2)
|
||||
|
||||
local t = y + arshift(y,1)
|
||||
return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6)
|
||||
end
|
||||
|
||||
function dist(pos1, pos2)
|
||||
local x, y = dist_common(pos1, pos2)
|
||||
local z = abs(arshift(pos1.z - pos2.z, 4))
|
||||
|
||||
if (x < z) then
|
||||
x, z = z, x
|
||||
end
|
||||
|
||||
local t = y + z
|
||||
return x - arshift(x,4) + arshift(t,2) + arshift(t,3)
|
||||
end
|
Loading…
Reference in a new issue