- added the script compiler's front end.

This commit is contained in:
Christoph Oelckers 2020-04-08 00:19:49 +02:00
parent 99d3dc67ae
commit 006916a0a6
14 changed files with 15971 additions and 1 deletions

View file

@ -197,7 +197,6 @@ if( NO_OPENAL )
add_definitions( -DNO_OPENAL=1 ) add_definitions( -DNO_OPENAL=1 )
endif() endif()
# Decide on SSE setup # Decide on SSE setup
# SSE only matters on 32-bit targets. We check compiler flags to know if we can do it. # SSE only matters on 32-bit targets. We check compiler flags to know if we can do it.
@ -561,6 +560,10 @@ else()
endif( NOT NO_OPENMP ) endif( NOT NO_OPENMP )
endif() endif()
add_custom_command( OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/zcc-parse.c ${CMAKE_CURRENT_BINARY_DIR}/zcc-parse.h
COMMAND lemon -C${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/frontend/zcc-parse.lemon
DEPENDS lemon ${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/frontend/zcc-parse.lemon )
add_custom_command( OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/sc_man_scanner.h add_custom_command( OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/sc_man_scanner.h
COMMAND re2c --no-generation-date -s -o ${CMAKE_CURRENT_BINARY_DIR}/sc_man_scanner.h ${CMAKE_CURRENT_SOURCE_DIR}/common/engine/sc_man_scanner.re COMMAND re2c --no-generation-date -s -o ${CMAKE_CURRENT_BINARY_DIR}/sc_man_scanner.h ${CMAKE_CURRENT_SOURCE_DIR}/common/engine/sc_man_scanner.re
DEPENDS re2c ${CMAKE_CURRENT_SOURCE_DIR}/common/engine/sc_man_scanner.re ) DEPENDS re2c ${CMAKE_CURRENT_SOURCE_DIR}/common/engine/sc_man_scanner.re )
@ -617,6 +620,7 @@ file( GLOB HEADER_FILES
common/scripting/jit/*h common/scripting/jit/*h
common/scripting/interface/*.h common/scripting/interface/*.h
common/scripting/backend/*.h common/scripting/backend/*.h
common/scripting/frontend/*.h
build/src/*.h build/src/*.h
platform/win32/*.h platform/win32/*.h
@ -635,6 +639,9 @@ set( NOT_COMPILED_SOURCE_FILES
${OTHER_SYSTEM_SOURCES} ${OTHER_SYSTEM_SOURCES}
sc_man_scanner.h sc_man_scanner.h
common/engine/sc_man_scanner.re common/engine/sc_man_scanner.re
common/scripting/frontend/zcc-parse.lemon
zcc-parse.c
zcc-parse.h
platform/win32/zutil.natvis platform/win32/zutil.natvis
) )
@ -797,9 +804,14 @@ set (PCH_SOURCES
common/scripting/core/types.cpp common/scripting/core/types.cpp
common/scripting/core/scopebarrier.cpp common/scripting/core/scopebarrier.cpp
common/scripting/core/vmdisasm.cpp common/scripting/core/vmdisasm.cpp
common/scripting/core/imports.cpp
common/scripting/vm/vmexec.cpp common/scripting/vm/vmexec.cpp
common/scripting/vm/vmframe.cpp common/scripting/vm/vmframe.cpp
common/scripting/interface/stringformat.cpp common/scripting/interface/stringformat.cpp
#common/scripting/interface/exports.cpp
common/scripting/frontend/ast.cpp
common/scripting/frontend/zcc_compile.cpp
common/scripting/frontend/zcc_parser.cpp
common/scripting/backend/vmbuilder.cpp common/scripting/backend/vmbuilder.cpp
common/scripting/backend/codegen.cpp common/scripting/backend/codegen.cpp
@ -965,6 +977,7 @@ include_directories(
common/scripting/jit common/scripting/jit
common/scripting/core common/scripting/core
common/scripting/interface common/scripting/interface
common/scripting/frontend
common/scripting/backend common/scripting/backend
${CMAKE_BINARY_DIR}/libraries/gdtoa ${CMAKE_BINARY_DIR}/libraries/gdtoa
@ -1083,6 +1096,7 @@ source_group("Common\\Fonts" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/co
source_group("Common\\File System" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/filesystem/.+") source_group("Common\\File System" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/filesystem/.+")
source_group("Common\\Scripting" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/.+") source_group("Common\\Scripting" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/.+")
source_group("Common\\Scripting\\Interface" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/interface/.+") source_group("Common\\Scripting\\Interface" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/interface/.+")
source_group("Common\\Scripting\\Frontend" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/frontend/.+" FILES ${CMAKE_CURRENT_BINARY_DIR}/zcc-parse.c ${CMAKE_CURRENT_BINARY_DIR}/zcc-parse.h)
source_group("Common\\Scripting\\Backend" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/backend/.+") source_group("Common\\Scripting\\Backend" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/backend/.+")
source_group("Common\\Scripting\\Core" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/core/.+") source_group("Common\\Scripting\\Core" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/core/.+")
source_group("Common\\Scripting\\JIT" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/jit/.+") source_group("Common\\Scripting\\JIT" REGULAR_EXPRESSION "^${CMAKE_CURRENT_SOURCE_DIR}/common/scripting/jit/.+")

View file

@ -0,0 +1,253 @@
/*
** thingdef_data.cpp
**
** DECORATE data tables
**
**---------------------------------------------------------------------------
** Copyright 2002-2020 Christoph Oelckers
** Copyright 2004-2008 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
** 4. When not used as part of ZDoom or a ZDoom derivative, this code will be
** covered by the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or (at
** your option) any later version.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "gstrings.h"
#include "v_font.h"
#include "menu/menu.h"
#include "types.h"
#include "dictionary.h"
#include "vm.h"
#include "symbols.h"
static TArray<AFuncDesc> AFTable;
static TArray<FieldDesc> FieldTable;
//==========================================================================
//
//
//
//==========================================================================
template <typename Desc>
static int CompareClassNames(const char* const aname, const Desc& b)
{
// ++ to get past the prefix letter of the native class name, which gets omitted by the FName for the class.
const char* bname = b.ClassName;
if ('\0' != *bname) ++bname;
return stricmp(aname, bname);
}
template <typename Desc>
static int CompareClassNames(const Desc& a, const Desc& b)
{
// ++ to get past the prefix letter of the native class name, which gets omitted by the FName for the class.
const char* aname = a.ClassName;
if ('\0' != *aname) ++aname;
return CompareClassNames(aname, b);
}
//==========================================================================
//
// Find a function by name using a binary search
//
//==========================================================================
AFuncDesc *FindFunction(PContainerType *cls, const char * string)
{
int min = 0, max = AFTable.Size() - 1;
while (min <= max)
{
int mid = (min + max) / 2;
int lexval = CompareClassNames(cls->TypeName.GetChars(), AFTable[mid]);
if (lexval == 0) lexval = stricmp(string, AFTable[mid].FuncName);
if (lexval == 0)
{
return &AFTable[mid];
}
else if (lexval > 0)
{
min = mid + 1;
}
else
{
max = mid - 1;
}
}
return nullptr;
}
//==========================================================================
//
// Find a function by name using a binary search
//
//==========================================================================
FieldDesc *FindField(PContainerType *cls, const char * string)
{
int min = 0, max = FieldTable.Size() - 1;
const char * cname = cls ? cls->TypeName.GetChars() : "";
while (min <= max)
{
int mid = (min + max) / 2;
int lexval = CompareClassNames(cname, FieldTable[mid]);
if (lexval == 0) lexval = stricmp(string, FieldTable[mid].FieldName);
if (lexval == 0)
{
return &FieldTable[mid];
}
else if (lexval > 0)
{
min = mid + 1;
}
else
{
max = mid - 1;
}
}
return nullptr;
}
//==========================================================================
//
// Find an action function in AActor's table
//
//==========================================================================
VMFunction *FindVMFunction(PClass *cls, const char *name)
{
auto f = dyn_cast<PFunction>(cls->FindSymbol(name, true));
return f == nullptr ? nullptr : f->Variants[0].Implementation;
}
//==========================================================================
//
// Sorting helpers
//
//==========================================================================
static int funccmp(const void * a, const void * b)
{
int res = CompareClassNames(*(AFuncDesc*)a, *(AFuncDesc*)b);
if (res == 0) res = stricmp(((AFuncDesc*)a)->FuncName, ((AFuncDesc*)b)->FuncName);
return res;
}
static int fieldcmp(const void * a, const void * b)
{
int res = CompareClassNames(*(FieldDesc*)a, *(FieldDesc*)b);
if (res == 0) res = stricmp(((FieldDesc*)a)->FieldName, ((FieldDesc*)b)->FieldName);
return res;
}
//==========================================================================
//
// Initialization
//
//==========================================================================
void InitImports()
{
auto fontstruct = NewStruct("FFont", nullptr, true);
fontstruct->Size = sizeof(FFont);
fontstruct->Align = alignof(FFont);
NewPointer(fontstruct, false)->InstallHandlers(
[](FSerializer &ar, const char *key, const void *addr)
{
ar(key, *(FFont **)addr);
},
[](FSerializer &ar, const char *key, void *addr)
{
Serialize<FFont>(ar, key, *(FFont **)addr, nullptr);
return true;
}
);
// Create a sorted list of native action functions
AFTable.Clear();
if (AFTable.Size() == 0)
{
FAutoSegIterator probe(ARegHead, ARegTail);
while (*++probe != NULL)
{
AFuncDesc *afunc = (AFuncDesc *)*probe;
assert(afunc->VMPointer != NULL);
*(afunc->VMPointer) = new VMNativeFunction(afunc->Function, afunc->FuncName);
(*(afunc->VMPointer))->PrintableName.Format("%s.%s [Native]", afunc->ClassName+1, afunc->FuncName);
(*(afunc->VMPointer))->DirectNativeCall = afunc->DirectNative;
AFTable.Push(*afunc);
}
AFTable.ShrinkToFit();
qsort(&AFTable[0], AFTable.Size(), sizeof(AFTable[0]), funccmp);
}
FieldTable.Clear();
if (FieldTable.Size() == 0)
{
FAutoSegIterator probe(FRegHead, FRegTail);
while (*++probe != NULL)
{
FieldDesc *afield = (FieldDesc *)*probe;
FieldTable.Push(*afield);
}
FieldTable.ShrinkToFit();
qsort(&FieldTable[0], FieldTable.Size(), sizeof(FieldTable[0]), fieldcmp);
}
}
//==========================================================================
//
// SetImplicitArgs
//
// Adds the parameters implied by the function flags.
//
//==========================================================================
void SetImplicitArgs(TArray<PType *> *args, TArray<uint32_t> *argflags, TArray<FName> *argnames, PContainerType *cls, uint32_t funcflags, int useflags)
{
// Must be called before adding any other arguments.
assert(args == nullptr || args->Size() == 0);
assert(argflags == nullptr || argflags->Size() == 0);
if (funcflags & VARF_Method)
{
// implied self pointer
if (args != nullptr) args->Push(NewPointer(cls, !!(funcflags & VARF_ReadOnly)));
if (argflags != nullptr) argflags->Push(VARF_Implicit | VARF_ReadOnly);
if (argnames != nullptr) argnames->Push(NAME_self);
}
}

View file

@ -267,3 +267,9 @@ struct FNamespaceManager
extern FNamespaceManager Namespaces; extern FNamespaceManager Namespaces;
void RemoveUnusedSymbols(); void RemoveUnusedSymbols();
struct AFuncDesc;
struct FieldDesc;
AFuncDesc *FindFunction(PContainerType *cls, const char * string);
FieldDesc *FindField(PContainerType *cls, const char * string);
void SetImplicitArgs(TArray<PType*>* args, TArray<uint32_t>* argflags, TArray<FName>* argnames, PContainerType* cls, uint32_t funcflags, int useflags);

View file

@ -0,0 +1,982 @@
/*
** ast.cpp
**
**---------------------------------------------------------------------------
** Copyright -2016 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "dobject.h"
#include "vmintern.h"
#include "types.h"
#include "zcc_parser.h"
#include "zcc-parse.h"
#include "printf.h"
class FLispString;
extern void (* const TreeNodePrinter[NUM_AST_NODE_TYPES])(FLispString &, ZCC_TreeNode *);
static const char *BuiltInTypeNames[] =
{
"sint8", "uint8",
"sint16", "uint16",
"sint32", "uint32_t",
"intauto",
"bool",
"float64", "floatauto",
"string",
"vector2",
"vector3",
"name",
"color",
"state",
"sound",
"usertype",
"nativetype",
"let",
};
class FLispString
{
public:
operator FString &() { return Str; }
FLispString()
{
NestDepth = Column = 0;
WrapWidth = 200;
NeedSpace = false;
ConsecOpens = 0;
}
void Open(const char *label)
{
size_t labellen = label != NULL ? strlen(label) : 0;
CheckWrap(labellen + 1 + NeedSpace);
if (NeedSpace)
{
Str << ' ';
ConsecOpens = 0;
}
Str << '(';
ConsecOpens++;
if (label != NULL)
{
Str.AppendCStrPart(label, labellen);
}
Column += labellen + 1 + NeedSpace;
NestDepth++;
NeedSpace = (label != NULL);
}
void Close()
{
assert(NestDepth != 0);
Str << ')';
Column++;
NestDepth--;
NeedSpace = true;
}
void Break()
{
// Don't break if not needed.
if (Column != NestDepth)
{
if (NeedSpace)
{
ConsecOpens = 0;
}
else
{ // Move hanging ( characters to the new line
Str.Truncate(Str.Len() - ConsecOpens);
NestDepth -= ConsecOpens;
}
Str << '\n';
Column = NestDepth;
NeedSpace = false;
if (NestDepth > 0)
{
Str.AppendFormat("%*s", (int)NestDepth, "");
}
if (ConsecOpens > 0)
{
for (size_t i = 0; i < ConsecOpens; ++i)
{
Str << '(';
}
NestDepth += ConsecOpens;
}
}
}
bool CheckWrap(size_t len)
{
if (len + Column > WrapWidth)
{
Break();
return true;
}
return false;
}
void Add(const char *str, size_t len)
{
CheckWrap(len + NeedSpace);
if (NeedSpace)
{
Str << ' ';
}
Str.AppendCStrPart(str, len);
Column += len + NeedSpace;
NeedSpace = true;
}
void Add(const char *str)
{
Add(str, strlen(str));
}
void Add(FString &str)
{
Add(str.GetChars(), str.Len());
}
void AddName(FName name)
{
size_t namelen = strlen(name.GetChars());
CheckWrap(namelen + 2 + NeedSpace);
if (NeedSpace)
{
NeedSpace = false;
Str << ' ';
}
Str << '\'' << name.GetChars() << '\'';
Column += namelen + 2 + NeedSpace;
NeedSpace = true;
}
void AddChar(char c)
{
Add(&c, 1);
}
void AddInt(int i, bool un=false)
{
char buf[16];
size_t len;
if (!un)
{
len = mysnprintf(buf, countof(buf), "%d", i);
}
else
{
len = mysnprintf(buf, countof(buf), "%uu", i);
}
Add(buf, len);
}
void AddHex(unsigned x)
{
char buf[10];
size_t len = mysnprintf(buf, countof(buf), "%08x", x);
Add(buf, len);
}
void AddFloat(double f, bool single)
{
char buf[32];
size_t len = mysnprintf(buf, countof(buf), "%.4f", f);
if (single)
{
buf[len++] = 'f';
buf[len] = '\0';
}
Add(buf, len);
}
private:
FString Str;
size_t NestDepth;
size_t Column;
size_t WrapWidth;
size_t ConsecOpens;
bool NeedSpace;
};
static void PrintNode(FLispString &out, ZCC_TreeNode *node)
{
assert(TreeNodePrinter[NUM_AST_NODE_TYPES-1] != NULL);
if (node->NodeType >= 0 && node->NodeType < NUM_AST_NODE_TYPES)
{
TreeNodePrinter[node->NodeType](out, node);
}
else
{
out.Open("unknown-node-type");
out.AddInt(node->NodeType);
out.Close();
}
}
static void PrintNodes(FLispString &out, ZCC_TreeNode *node, bool newlist=true, bool addbreaks=false)
{
ZCC_TreeNode *p;
if (node == NULL)
{
out.Add("nil", 3);
}
else
{
if (newlist)
{
out.Open(NULL);
}
p = node;
do
{
if (addbreaks)
{
out.Break();
}
PrintNode(out, p);
p = p->SiblingNext;
} while (p != node);
if (newlist)
{
out.Close();
}
}
}
static void PrintBuiltInType(FLispString &out, EZCCBuiltinType type)
{
assert(ZCC_NUM_BUILT_IN_TYPES == countof(BuiltInTypeNames));
if (unsigned(type) >= unsigned(ZCC_NUM_BUILT_IN_TYPES))
{
char buf[30];
size_t len = mysnprintf(buf, countof(buf), "bad-type-%u", type);
out.Add(buf, len);
}
else
{
out.Add(BuiltInTypeNames[type]);
}
}
static void PrintIdentifier(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Identifier *inode = (ZCC_Identifier *)node;
out.Open("identifier");
out.AddName(inode->Id);
out.Close();
}
static void PrintStringConst(FLispString &out, FString str)
{
FString outstr;
outstr << '"';
for (size_t i = 0; i < str.Len(); ++i)
{
if (str[i] == '"')
{
outstr << "\"";
}
else if (str[i] == '\\')
{
outstr << "\\\\";
}
else if (str[i] >= 32)
{
outstr << str[i];
}
else
{
outstr.AppendFormat("\\x%02X", str[i]);
}
}
outstr << '"';
out.Add(outstr);
}
static void PrintClass(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Class *cnode = (ZCC_Class *)node;
out.Break();
out.Open("class");
out.AddName(cnode->NodeName);
PrintNodes(out, cnode->ParentName);
PrintNodes(out, cnode->Replaces);
out.AddHex(cnode->Flags);
PrintNodes(out, cnode->Body, false, true);
out.Close();
}
static void PrintStruct(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Struct *snode = (ZCC_Struct *)node;
out.Break();
out.Open("struct");
out.AddName(snode->NodeName);
PrintNodes(out, snode->Body, false, true);
out.Close();
}
static void PrintProperty(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Property *snode = (ZCC_Property *)node;
out.Break();
out.Open("property");
out.AddName(snode->NodeName);
PrintNodes(out, snode->Body, false, true);
out.Close();
}
static void PrintFlagDef(FLispString &out, ZCC_TreeNode *node)
{
ZCC_FlagDef *snode = (ZCC_FlagDef *)node;
out.Break();
out.Open("flagdef");
out.AddName(snode->NodeName);
out.AddName(snode->RefName);
out.AddInt(snode->BitValue);
out.Close();
}
static void PrintStaticArrayState(FLispString &out, ZCC_TreeNode *node)
{
auto *snode = (ZCC_StaticArrayStatement *)node;
out.Break();
out.Open("static-array");
out.AddName(snode->Id);
PrintNodes(out, snode->Values, false, true);
out.Close();
}
static void PrintEnum(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Enum *enode = (ZCC_Enum *)node;
out.Break();
out.Open("enum");
out.AddName(enode->NodeName);
PrintBuiltInType(out, enode->EnumType);
out.Add(enode->Elements == NULL ? "nil" : "...", 3);
out.Close();
}
static void PrintEnumTerminator(FLispString &out, ZCC_TreeNode *node)
{
out.Open("enum-term");
out.Close();
}
static void PrintStates(FLispString &out, ZCC_TreeNode *node)
{
ZCC_States *snode = (ZCC_States *)node;
out.Break();
out.Open("states");
PrintNodes(out, snode->Flags, false, true);
PrintNodes(out, snode->Body, false, true);
out.Close();
}
static void PrintStatePart(FLispString &out, ZCC_TreeNode *node)
{
out.Open("state-part");
out.Close();
}
static void PrintStateLabel(FLispString &out, ZCC_TreeNode *node)
{
ZCC_StateLabel *snode = (ZCC_StateLabel *)node;
out.Open("state-label");
out.AddName(snode->Label);
out.Close();
}
static void PrintStateStop(FLispString &out, ZCC_TreeNode *node)
{
out.Open("state-stop");
out.Close();
}
static void PrintStateWait(FLispString &out, ZCC_TreeNode *node)
{
out.Open("state-wait");
out.Close();
}
static void PrintStateFail(FLispString &out, ZCC_TreeNode *node)
{
out.Open("state-fail");
out.Close();
}
static void PrintStateLoop(FLispString &out, ZCC_TreeNode *node)
{
out.Open("state-loop");
out.Close();
}
static void PrintStateGoto(FLispString &out, ZCC_TreeNode *node)
{
ZCC_StateGoto *snode = (ZCC_StateGoto *)node;
out.Open("state-goto");
PrintNodes(out, snode->Qualifier);
PrintNodes(out, snode->Label);
PrintNodes(out, snode->Offset);
out.Close();
}
static void PrintStateLine(FLispString &out, ZCC_TreeNode *node)
{
ZCC_StateLine *snode = (ZCC_StateLine *)node;
out.Open("state-line");
out.Add(*(snode->Sprite));
PrintNodes(out, snode->Duration);
if (snode->bNoDelay) out.Add("nodelay", 7);
if (snode->bBright) out.Add("bright", 6);
if (snode->bFast) out.Add("fast", 4);
if (snode->bSlow) out.Add("slow", 4);
if (snode->bCanRaise) out.Add("canraise", 8);
out.Add(*(snode->Frames));
PrintNodes(out, snode->Offset);
PrintNodes(out, snode->Action, false);
out.Close();
}
static void PrintVarName(FLispString &out, ZCC_TreeNode *node)
{
ZCC_VarName *vnode = (ZCC_VarName *)node;
out.Open("var-name");
PrintNodes(out, vnode->ArraySize);
out.AddName(vnode->Name);
out.Close();
}
static void PrintVarInit(FLispString &out, ZCC_TreeNode *node)
{
ZCC_VarInit *vnode = (ZCC_VarInit *)node;
out.Open("var-init");
PrintNodes(out, vnode->ArraySize);
PrintNodes(out, vnode->Init);
if (vnode->InitIsArray) out.Add("array", 5);
out.AddName(vnode->Name);
out.Close();
}
static void PrintType(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Type *tnode = (ZCC_Type *)node;
out.Open("bad-type");
PrintNodes(out, tnode->ArraySize);
out.Close();
}
static void PrintBasicType(FLispString &out, ZCC_TreeNode *node)
{
ZCC_BasicType *tnode = (ZCC_BasicType *)node;
out.Open("basic-type");
PrintNodes(out, tnode->ArraySize);
PrintBuiltInType(out, tnode->Type);
if (tnode->Type == ZCC_UserType || tnode->Type == ZCC_NativeType)
{
if (tnode->Type == ZCC_NativeType) out.Add("@", 1);
PrintNodes(out, tnode->UserType, false);
}
out.Close();
}
static void PrintMapType(FLispString &out, ZCC_TreeNode *node)
{
ZCC_MapType *tnode = (ZCC_MapType *)node;
out.Open("map-type");
PrintNodes(out, tnode->ArraySize);
PrintNodes(out, tnode->KeyType);
PrintNodes(out, tnode->ValueType);
out.Close();
}
static void PrintDynArrayType(FLispString &out, ZCC_TreeNode *node)
{
ZCC_DynArrayType *tnode = (ZCC_DynArrayType *)node;
out.Open("dyn-array-type");
PrintNodes(out, tnode->ArraySize);
PrintNodes(out, tnode->ElementType);
out.Close();
}
static void PrintClassType(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ClassType *tnode = (ZCC_ClassType *)node;
out.Open("class-type");
PrintNodes(out, tnode->ArraySize);
PrintNodes(out, tnode->Restriction);
out.Close();
}
static void OpenExprType(FLispString &out, EZCCExprType type)
{
char buf[32];
if (unsigned(type) < PEX_COUNT_OF)
{
mysnprintf(buf, countof(buf), "expr %d", type);
}
else
{
mysnprintf(buf, countof(buf), "bad-pex-%u", type);
}
out.Open(buf);
}
static void PrintExpression(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Expression *enode = (ZCC_Expression *)node;
OpenExprType(out, enode->Operation);
out.Close();
}
static void PrintExprID(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprID *enode = (ZCC_ExprID *)node;
assert(enode->Operation == PEX_ID);
out.Open("expr-id");
out.AddName(enode->Identifier);
out.Close();
}
static void PrintExprTypeRef(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprTypeRef *enode = (ZCC_ExprTypeRef *)node;
assert(enode->Operation == PEX_TypeRef);
out.Open("expr-type-ref");
if (enode->RefType == TypeSInt8) { out.Add("sint8"); }
else if (enode->RefType == TypeUInt8) { out.Add("uint8"); }
else if (enode->RefType == TypeSInt16) { out.Add("sint16"); }
else if (enode->RefType == TypeSInt32) { out.Add("sint32"); }
else if (enode->RefType == TypeFloat32) { out.Add("float32"); }
else if (enode->RefType == TypeFloat64) { out.Add("float64"); }
else if (enode->RefType == TypeString) { out.Add("string"); }
else if (enode->RefType == TypeName) { out.Add("name"); }
else if (enode->RefType == TypeColor) { out.Add("color"); }
else if (enode->RefType == TypeSound) { out.Add("sound"); }
else { out.Add("other"); }
out.Close();
}
static void PrintExprConstant(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprConstant *enode = (ZCC_ExprConstant *)node;
assert(enode->Operation == PEX_ConstValue);
out.Open("expr-const");
if (enode->Type == TypeString)
{
PrintStringConst(out, *enode->StringVal);
}
else if (enode->Type == TypeFloat64)
{
out.AddFloat(enode->DoubleVal, false);
}
else if (enode->Type == TypeFloat32)
{
out.AddFloat(enode->DoubleVal, true);
}
else if (enode->Type == TypeName)
{
out.AddName(ENamedName(enode->IntVal));
}
else if (enode->Type->isIntCompatible())
{
out.AddInt(enode->IntVal, static_cast<PInt *>(enode->Type)->Unsigned);
}
out.Close();
}
static void PrintExprFuncCall(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprFuncCall *enode = (ZCC_ExprFuncCall *)node;
assert(enode->Operation == PEX_FuncCall);
out.Open("expr-func-call");
PrintNodes(out, enode->Function);
PrintNodes(out, enode->Parameters, false);
out.Close();
}
static void PrintExprClassCast(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ClassCast *enode = (ZCC_ClassCast *)node;
assert(enode->Operation == PEX_ClassCast);
out.Open("expr-class-cast");
out.AddName(enode->ClassName);
PrintNodes(out, enode->Parameters, false);
out.Close();
}
static void PrintStaticArray(FLispString &out, ZCC_TreeNode *node)
{
ZCC_StaticArrayStatement *enode = (ZCC_StaticArrayStatement *)node;
out.Open("static-array-stmt");
PrintNodes(out, enode->Type, false);
out.AddName(enode->Id);
PrintNodes(out, enode->Values, false);
out.Close();
}
static void PrintExprMemberAccess(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprMemberAccess *enode = (ZCC_ExprMemberAccess *)node;
assert(enode->Operation == PEX_MemberAccess);
out.Open("expr-member-access");
PrintNodes(out, enode->Left);
out.AddName(enode->Right);
out.Close();
}
static void PrintExprUnary(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprUnary *enode = (ZCC_ExprUnary *)node;
OpenExprType(out, enode->Operation);
PrintNodes(out, enode->Operand, false);
out.Close();
}
static void PrintExprBinary(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprBinary *enode = (ZCC_ExprBinary *)node;
OpenExprType(out, enode->Operation);
PrintNodes(out, enode->Left);
PrintNodes(out, enode->Right);
out.Close();
}
static void PrintExprTrinary(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExprTrinary *enode = (ZCC_ExprTrinary *)node;
OpenExprType(out, enode->Operation);
PrintNodes(out, enode->Test);
PrintNodes(out, enode->Left);
PrintNodes(out, enode->Right);
out.Close();
}
static void PrintVectorInitializer(FLispString &out, ZCC_TreeNode *node)
{
ZCC_VectorValue *enode = (ZCC_VectorValue *)node;
OpenExprType(out, enode->Operation);
PrintNodes(out, enode->X);
PrintNodes(out, enode->Y);
PrintNodes(out, enode->Z);
out.Close();
}
static void PrintFuncParam(FLispString &out, ZCC_TreeNode *node)
{
ZCC_FuncParm *pnode = (ZCC_FuncParm *)node;
out.Break();
out.Open("func-parm");
out.AddName(pnode->Label);
PrintNodes(out, pnode->Value, false);
out.Close();
}
static void PrintStatement(FLispString &out, ZCC_TreeNode *node)
{
out.Open("statement");
out.Close();
}
static void PrintCompoundStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_CompoundStmt *snode = (ZCC_CompoundStmt *)node;
out.Break();
out.Open("compound-stmt");
PrintNodes(out, snode->Content, false, true);
out.Close();
}
static void PrintDefault(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Default *snode = (ZCC_Default *)node;
out.Break();
out.Open("default");
PrintNodes(out, snode->Content, false, true);
out.Close();
}
static void PrintContinueStmt(FLispString &out, ZCC_TreeNode *node)
{
out.Break();
out.Open("continue-stmt");
out.Close();
}
static void PrintBreakStmt(FLispString &out, ZCC_TreeNode *node)
{
out.Break();
out.Open("break-stmt");
out.Close();
}
static void PrintReturnStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ReturnStmt *snode = (ZCC_ReturnStmt *)node;
out.Break();
out.Open("return-stmt");
PrintNodes(out, snode->Values, false);
out.Close();
}
static void PrintExpressionStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ExpressionStmt *snode = (ZCC_ExpressionStmt *)node;
out.Break();
out.Open("expression-stmt");
PrintNodes(out, snode->Expression, false);
out.Close();
}
static void PrintIterationStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_IterationStmt *snode = (ZCC_IterationStmt *)node;
out.Break();
out.Open("iteration-stmt");
out.Add((snode->CheckAt == ZCC_IterationStmt::Start) ? "start" : "end");
out.Break();
PrintNodes(out, snode->LoopCondition);
out.Break();
PrintNodes(out, snode->LoopBumper);
out.Break();
PrintNodes(out, snode->LoopStatement);
out.Close();
}
static void PrintIfStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_IfStmt *snode = (ZCC_IfStmt *)node;
out.Break();
out.Open("if-stmt");
PrintNodes(out, snode->Condition);
out.Break();
PrintNodes(out, snode->TruePath);
out.Break();
PrintNodes(out, snode->FalsePath);
out.Close();
}
static void PrintSwitchStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_SwitchStmt *snode = (ZCC_SwitchStmt *)node;
out.Break();
out.Open("switch-stmt");
PrintNodes(out, snode->Condition);
out.Break();
PrintNodes(out, snode->Content, false);
out.Close();
}
static void PrintCaseStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_CaseStmt *snode = (ZCC_CaseStmt *)node;
out.Break();
out.Open("case-stmt");
PrintNodes(out, snode->Condition, false);
out.Close();
}
static void BadAssignOp(FLispString &out, int op)
{
char buf[32];
size_t len = mysnprintf(buf, countof(buf), "assign-op-%d", op);
out.Add(buf, len);
}
static void PrintAssignStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_AssignStmt *snode = (ZCC_AssignStmt *)node;
out.Open("assign-stmt");
PrintNodes(out, snode->Dests);
PrintNodes(out, snode->Sources);
out.Close();
}
static void PrintLocalVarStmt(FLispString &out, ZCC_TreeNode *node)
{
ZCC_LocalVarStmt *snode = (ZCC_LocalVarStmt *)node;
out.Open("local-var-stmt");
PrintNodes(out, snode->Type);
PrintNodes(out, snode->Vars);
out.Close();
}
static void PrintFuncParamDecl(FLispString &out, ZCC_TreeNode *node)
{
ZCC_FuncParamDecl *dnode = (ZCC_FuncParamDecl *)node;
out.Break();
out.Open("func-param-decl");
PrintNodes(out, dnode->Type);
out.AddName(dnode->Name);
out.AddHex(dnode->Flags);
PrintNodes(out, dnode->Default);
out.Close();
}
static void PrintConstantDef(FLispString &out, ZCC_TreeNode *node)
{
ZCC_ConstantDef *dnode = (ZCC_ConstantDef *)node;
out.Break();
out.Open("constant-def");
out.AddName(dnode->NodeName);
PrintNodes(out, dnode->Value, false);
out.Close();
}
static void PrintDeclarator(FLispString &out, ZCC_TreeNode *node)
{
ZCC_Declarator *dnode = (ZCC_Declarator *)node;
out.Break();
out.Open("declarator");
out.AddHex(dnode->Flags);
PrintNodes(out, dnode->Type);
out.Close();
}
static void PrintVarDeclarator(FLispString &out, ZCC_TreeNode *node)
{
ZCC_VarDeclarator *dnode = (ZCC_VarDeclarator *)node;
out.Break();
out.Open("var-declarator");
out.AddHex(dnode->Flags);
PrintNodes(out, dnode->Type);
PrintNodes(out, dnode->Names);
out.Close();
}
static void PrintFuncDeclarator(FLispString &out, ZCC_TreeNode *node)
{
ZCC_FuncDeclarator *dnode = (ZCC_FuncDeclarator *)node;
out.Break();
out.Open("func-declarator");
out.AddHex(dnode->Flags);
PrintNodes(out, dnode->UseFlags);
PrintNodes(out, dnode->Type);
out.AddName(dnode->Name);
PrintNodes(out, dnode->Params);
PrintNodes(out, dnode->Body, false);
out.Close();
}
static void PrintDeclFlags(FLispString &out, ZCC_TreeNode *node)
{
auto dnode = (ZCC_DeclFlags *)node;
out.Break();
out.Open("decl-flags");
out.AddHex(dnode->Flags);
PrintNodes(out, dnode->Id);
out.Close();
}
static void PrintFlagStmt(FLispString &out, ZCC_TreeNode *node)
{
auto dnode = (ZCC_FlagStmt *)node;
out.Break();
out.Open("flag-stmt");
PrintNodes(out, dnode->name, false);
out.AddInt(dnode->set);
out.Close();
}
static void PrintPropertyStmt(FLispString &out, ZCC_TreeNode *node)
{
auto dnode = (ZCC_PropertyStmt *)node;
out.Break();
out.Open("property-stmt");
PrintNodes(out, dnode->Prop, false);
PrintNodes(out, dnode->Values, false);
out.Close();
}
void (* const TreeNodePrinter[NUM_AST_NODE_TYPES])(FLispString &, ZCC_TreeNode *) =
{
PrintIdentifier,
PrintClass,
PrintStruct,
PrintEnum,
PrintEnumTerminator,
PrintStates,
PrintStatePart,
PrintStateLabel,
PrintStateStop,
PrintStateWait,
PrintStateFail,
PrintStateLoop,
PrintStateGoto,
PrintStateLine,
PrintVarName,
PrintVarInit,
PrintType,
PrintBasicType,
PrintMapType,
PrintDynArrayType,
PrintClassType,
PrintExpression,
PrintExprID,
PrintExprTypeRef,
PrintExprConstant,
PrintExprFuncCall,
PrintExprMemberAccess,
PrintExprUnary,
PrintExprBinary,
PrintExprTrinary,
PrintFuncParam,
PrintStatement,
PrintCompoundStmt,
PrintContinueStmt,
PrintBreakStmt,
PrintReturnStmt,
PrintExpressionStmt,
PrintIterationStmt,
PrintIfStmt,
PrintSwitchStmt,
PrintCaseStmt,
PrintAssignStmt,
PrintLocalVarStmt,
PrintFuncParamDecl,
PrintConstantDef,
PrintDeclarator,
PrintVarDeclarator,
PrintFuncDeclarator,
PrintDefault,
PrintFlagStmt,
PrintPropertyStmt,
PrintVectorInitializer,
PrintDeclFlags,
PrintExprClassCast,
PrintStaticArrayState,
PrintProperty,
PrintFlagDef,
};
FString ZCC_PrintAST(ZCC_TreeNode *root)
{
FLispString out;
PrintNodes(out, root);
return out;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,173 @@
#ifndef ZCC_COMPILE_H
#define ZCC_COMPILE_H
#include <memory>
#include "codegen.h"
struct Baggage;
struct FPropertyInfo;
class AActor;
class FxExpression;
typedef TDeletingArray<FxExpression*> FArgumentList;
struct ZCC_StructWork
{
PSymbolTable TreeNodes;
ZCC_Struct *strct;
ZCC_Class *OuterDef;
PClass *Outer;
PSymbolTreeNode *node;
TArray<ZCC_Enum *> Enums;
TArray<ZCC_ConstantDef *> Constants;
TArray<ZCC_VarDeclarator *> Fields;
TArray<ZCC_FuncDeclarator *> Functions;
TArray<ZCC_StaticArrayStatement *> Arrays;
ZCC_StructWork()
{
}
ZCC_StructWork(ZCC_Struct * s, PSymbolTreeNode *n, ZCC_Class *outer)
{
strct = s;
node = n;
OuterDef = outer;
Outer = nullptr;
};
FName NodeName() const
{
return strct->NodeName;
}
PContainerType *Type()
{
return strct->Type;
}
};
struct ZCC_ClassWork : public ZCC_StructWork
{
ZCC_Class *cls;
TArray<ZCC_Default *> Defaults;
TArray<ZCC_States *> States;
TArray<ZCC_Property *> Properties;
TArray<ZCC_FlagDef *> FlagDefs;
ZCC_ClassWork(ZCC_Class * s, PSymbolTreeNode *n)
{
strct = s;
cls = s;
node = n;
OuterDef = nullptr;
Outer = nullptr;
}
PClass *ClassType()
{
return static_cast<PClassType *>(strct->Type)->Descriptor;
}
};
struct ZCC_MixinWork
{
PSymbolTable TreeNodes;
ZCC_MixinDef *mixin;
PSymbolTreeNode *node;
ZCC_MixinWork()
{
}
ZCC_MixinWork(ZCC_MixinDef *m, PSymbolTreeNode *n)
{
mixin = m;
node = n;
}
};
struct ZCC_PropertyWork
{
ZCC_Property *prop;
PSymbolTable *outputtable;
};
struct ZCC_ConstantWork
{
ZCC_ConstantDef *node;
PContainerType *cls;
PSymbolTable *Outputtable;
ExpVal constval;
};
class ZCCCompiler
{
public:
ZCCCompiler(ZCC_AST &tree, DObject *outer, PSymbolTable &symbols, PNamespace *outnamespace, int lumpnum, const VersionInfo & ver);
~ZCCCompiler();
int Compile();
private:
const char * GetStringConst(FxExpression *ex, FCompileContext &ctx);
int IntConstFromNode(ZCC_TreeNode *node, PContainerType *cls);
FString StringConstFromNode(ZCC_TreeNode *node, PContainerType *cls);
ZCC_MixinDef *ResolveMixinStmt(ZCC_MixinStmt *mixinStmt, EZCCMixinType type);
void ProcessClass(ZCC_Class *node, PSymbolTreeNode *tnode);
void ProcessStruct(ZCC_Struct *node, PSymbolTreeNode *tnode, ZCC_Class *outer);
void ProcessMixin(ZCC_MixinDef *cnode, PSymbolTreeNode *treenode);
void CreateStructTypes();
void CreateClassTypes();
void CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PContainerType *cls, PSymbolTable *ot);
void CompileAllConstants();
void AddConstant(ZCC_ConstantWork &constant);
bool CompileConstant(ZCC_ConstantWork *def);
void CompileArrays(ZCC_StructWork *work);
void CompileAllFields();
bool CompileFields(PContainerType *type, TArray<ZCC_VarDeclarator *> &Fields, PClass *Outer, PSymbolTable *TreeNodes, bool forstruct, bool hasnativechildren = false);
FString FlagsToString(uint32_t flags);
PType *DetermineType(PType *outertype, ZCC_TreeNode *field, FName name, ZCC_Type *ztype, bool allowarraytypes, bool formember);
PType *ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PContainerType *cls, bool *nosize);
PType *ResolveUserType(ZCC_BasicType *type, PSymbolTable *sym, bool nativetype);
void CompileFunction(ZCC_StructWork *c, ZCC_FuncDeclarator *f, bool forclass);
void InitFunctions();
TArray<ZCC_ConstantDef *> Constants;
TArray<ZCC_StructWork *> Structs;
TArray<ZCC_ClassWork *> Classes;
TArray<ZCC_MixinWork *> Mixins;
TArray<ZCC_PropertyWork *> Properties;
VersionInfo mVersion;
PSymbolTreeNode *AddTreeNode(FName name, ZCC_TreeNode *node, PSymbolTable *treenodes, bool searchparents = false);
ZCC_Expression *NodeFromSymbol(PSymbol *sym, ZCC_Expression *source, PSymbolTable *table);
ZCC_ExprConstant *NodeFromSymbolConst(PSymbolConst *sym, ZCC_Expression *idnode);
ZCC_ExprTypeRef *NodeFromSymbolType(PSymbolType *sym, ZCC_Expression *idnode);
void Warn(ZCC_TreeNode *node, const char *msg, ...) GCCPRINTF(3,4);
void Error(ZCC_TreeNode *node, const char *msg, ...) GCCPRINTF(3,4);
void MessageV(ZCC_TreeNode *node, const char *txtcolor, const char *msg, va_list argptr);
FxExpression *ConvertAST(PContainerType *cclass, ZCC_TreeNode *ast);
FxExpression *ConvertNode(ZCC_TreeNode *node, bool substitute= false);
FxExpression *ConvertImplicitScopeNode(ZCC_TreeNode *node, ZCC_Statement *nested);
FArgumentList &ConvertNodeList(FArgumentList &, ZCC_TreeNode *head);
DObject *Outer;
PContainerType *ConvertClass; // class type to be used when resoving symbols while converting an AST
PSymbolTable *GlobalTreeNodes;
PNamespace *OutNamespace;
ZCC_AST &AST;
int Lump;
};
void ZCC_InitConversions();
#endif

View file

@ -0,0 +1,76 @@
// Name Token used in the code generator
xx(Nil, TK_None)
xx(ID, TK_Identifier)
xx(Super, TK_Super)
xx(Null, TK_Null)
xx(ConstValue, TK_Const)
xx(FuncCall, '(')
xx(ArrayAccess, TK_Array)
xx(MemberAccess, '.')
xx(ClassCast, TK_Class)
xx(TypeRef, TK_Class)
xx(Vector, TK_Vector2)
xx(PostInc, TK_Incr)
xx(PostDec, TK_Decr)
xx(PreInc, TK_Incr)
xx(PreDec, TK_Decr)
xx(Negate, '-')
xx(AntiNegate, '+')
xx(BitNot, '~')
xx(BoolNot, '!')
xx(SizeOf, TK_SizeOf)
xx(AlignOf, TK_AlignOf)
xx(Add, '+')
xx(Sub, '-')
xx(Mul, '*')
xx(Div, '/')
xx(Mod, '%')
xx(Pow, TK_MulMul)
xx(CrossProduct, TK_Cross)
xx(DotProduct, TK_Dot)
xx(LeftShift, TK_LShift)
xx(RightShift, TK_RShift)
xx(URightShift, TK_URShift)
xx(Concat, TK_DotDot)
xx(LT, '<')
xx(LTEQ, TK_Leq)
xx(GT, '>')
xx(GTEQ, TK_Geq)
xx(LTGTEQ, TK_LtGtEq)
xx(Is, TK_Is)
xx(EQEQ, TK_Eq)
xx(NEQ, TK_Neq)
xx(APREQ, TK_ApproxEq)
xx(BitAnd, '&')
xx(BitOr, '|')
xx(BitXor, '^')
xx(BoolAnd, TK_AndAnd)
xx(BoolOr, TK_OrOr)
xx(Assign, '=')
xx(AddAssign, '+') // these are what the code generator needs, not what they represent.
xx(SubAssign, '-')
xx(MulAssign, '*')
xx(DivAssign, '/')
xx(ModAssign, '%')
xx(LshAssign, TK_LShift)
xx(RshAssign, TK_RShift)
xx(URshAssign, TK_URShift)
xx(AndAssign, '&')
xx(OrAssign, '|')
xx(XorAssign, '^')
xx(Scope, TK_ColonColon)
xx(Trinary, '?')
xx(Cast, TK_Coerce)
#undef xx

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,621 @@
#ifndef ZCC_PARSER_H
#define ZCC_PARSER_H
#include "memarena.h"
#include "sc_man.h"
#include "types.h"
struct ZCCToken
{
template <typename... Ts>
struct TLargest;
template <typename T>
struct TLargest<T>
{
using Type = T;
};
template <typename T, typename U, typename... Ts>
struct TLargest<T, U, Ts...>
{
using Type = typename TLargest<
typename std::conditional<
(sizeof(T) > sizeof(U)), T, U
>::type, Ts...
>::Type;
};
union
{
int Int;
double Float;
FString *String;
TLargest<decltype(Int), decltype(Float), decltype(String)>::Type Largest;
};
int SourceLoc;
ENamedName Name() { return ENamedName(Int); }
};
// Variable / Function / Class modifiers
enum
{
ZCC_Native = 1 << 0,
ZCC_Static = 1 << 1,
ZCC_Private = 1 << 2,
ZCC_Protected = 1 << 3,
ZCC_Latent = 1 << 4,
ZCC_Final = 1 << 5,
ZCC_Meta = 1 << 6,
ZCC_Action = 1 << 7,
ZCC_Deprecated = 1 << 8,
ZCC_ReadOnly = 1 << 9,
ZCC_FuncConst = 1 << 10,
ZCC_Abstract = 1 << 11,
ZCC_Extension = 1 << 12,
ZCC_Virtual = 1 << 13,
ZCC_Override = 1 << 14,
ZCC_Transient = 1 << 15,
ZCC_VarArg = 1 << 16,
ZCC_UIFlag = 1 << 17, // there's also token called ZCC_UI
ZCC_Play = 1 << 18,
ZCC_ClearScope = 1 << 19,
ZCC_VirtualScope = 1 << 20,
ZCC_Version = 1 << 21,
ZCC_Internal = 1 << 22,
};
// Function parameter modifiers
enum
{
ZCC_In = 1 << 0,
ZCC_Out = 1 << 1,
ZCC_Optional = 1 << 2,
};
// Syntax tree structures.
// [pbeta] Any changes to AST node structure or new node types require TreeNodeDeepCopy in zcc_parser.cpp to be updated!
enum EZCCTreeNodeType
{
AST_Identifier,
AST_Class,
AST_Struct,
AST_Enum,
AST_EnumTerminator,
AST_States,
AST_StatePart,
AST_StateLabel,
AST_StateStop,
AST_StateWait,
AST_StateFail,
AST_StateLoop,
AST_StateGoto,
AST_StateLine,
AST_VarName,
AST_VarInit,
AST_Type,
AST_BasicType,
AST_MapType,
AST_DynArrayType,
AST_ClassType,
AST_Expression,
AST_ExprID,
AST_ExprTypeRef,
AST_ExprConstant,
AST_ExprFuncCall,
AST_ExprMemberAccess,
AST_ExprUnary,
AST_ExprBinary,
AST_ExprTrinary,
AST_FuncParm,
AST_Statement,
AST_CompoundStmt,
AST_ContinueStmt,
AST_BreakStmt,
AST_ReturnStmt,
AST_ExpressionStmt,
AST_IterationStmt,
AST_IfStmt,
AST_SwitchStmt,
AST_CaseStmt,
AST_AssignStmt,
AST_LocalVarStmt,
AST_FuncParamDecl,
AST_ConstantDef,
AST_Declarator,
AST_VarDeclarator,
AST_FuncDeclarator,
AST_Default,
AST_FlagStmt,
AST_PropertyStmt,
AST_VectorValue,
AST_DeclFlags,
AST_ClassCast,
AST_StaticArrayStatement,
AST_Property,
AST_FlagDef,
AST_MixinDef,
AST_MixinStmt,
NUM_AST_NODE_TYPES
};
enum EZCCBuiltinType
{
ZCC_SInt8,
ZCC_UInt8,
ZCC_SInt16,
ZCC_UInt16, // smaller than 32 bit types are only valid in structs, classes and arrays.
ZCC_SInt32,
ZCC_UInt32,
ZCC_IntAuto, // for enums, autoselect appropriately sized int
ZCC_Bool,
ZCC_Float64,
ZCC_FloatAuto, // 32-bit in structs/classes, 64-bit everywhere else
ZCC_String,
ZCC_Vector2,
ZCC_Vector3,
ZCC_Name,
ZCC_Color, // special types for ZDoom.
ZCC_State,
ZCC_Sound,
ZCC_UserType,
ZCC_NativeType,
ZCC_Let,
ZCC_NUM_BUILT_IN_TYPES
};
enum EZCCMixinType
{
ZCC_Mixin_Class,
ZCC_NUM_MIXIN_TYPES
};
enum EZCCExprType
{
#define xx(a,z) PEX_##a,
#include "zcc_exprlist.h"
PEX_COUNT_OF
};
struct ZCC_TreeNode
{
// This tree node's siblings are stored in a circular linked list.
// When you get back to this node, you know you've been through
// the whole list.
ZCC_TreeNode *SiblingNext;
ZCC_TreeNode *SiblingPrev;
// can't use FScriptPosition, because the string wouldn't have a chance to
// destruct if we did that.
FString *SourceName;
int SourceLump;
int SourceLoc;
// Node type is one of the node types above, which corresponds with
// one of the structures below.
EZCCTreeNodeType NodeType;
operator FScriptPosition()
{
return FScriptPosition(*SourceName, SourceLoc);
}
};
void AppendTreeNodeSibling(ZCC_TreeNode *thisnode, ZCC_TreeNode *sibling);
struct ZCC_Identifier : ZCC_TreeNode
{
ENamedName Id;
};
struct ZCC_NamedNode : ZCC_TreeNode
{
ENamedName NodeName;
PSymbolType *Symbol;
};
struct ZCC_Struct : ZCC_NamedNode
{
uint32_t Flags;
ZCC_TreeNode *Body;
PContainerType *Type;
VersionInfo Version;
};
struct ZCC_Property : ZCC_NamedNode
{
ZCC_TreeNode *Body;
};
struct ZCC_FlagDef : ZCC_NamedNode
{
ENamedName RefName;
int BitValue;
};
struct ZCC_Class : ZCC_Struct
{
ZCC_Identifier *ParentName;
ZCC_Identifier *Replaces;
PClass *CType() { return static_cast<PClassType *>(Type)->Descriptor; }
};
struct ZCC_MixinDef : ZCC_NamedNode
{
ZCC_TreeNode *Body;
EZCCMixinType MixinType;
};
struct ZCC_Enum : ZCC_NamedNode
{
EZCCBuiltinType EnumType;
struct ZCC_ConstantDef *Elements;
};
struct ZCC_EnumTerminator : ZCC_TreeNode
{
};
struct ZCC_States : ZCC_TreeNode
{
struct ZCC_StatePart *Body;
ZCC_Identifier *Flags;
};
struct ZCC_StatePart : ZCC_TreeNode
{
};
struct ZCC_StateLabel : ZCC_StatePart
{
ENamedName Label;
};
struct ZCC_StateStop : ZCC_StatePart
{
};
struct ZCC_StateWait : ZCC_StatePart
{
};
struct ZCC_StateFail : ZCC_StatePart
{
};
struct ZCC_StateLoop : ZCC_StatePart
{
};
struct ZCC_Expression : ZCC_TreeNode
{
EZCCExprType Operation;
PType *Type;
// Repurposes this node as an error node
void ToErrorNode()
{
Type = TypeError;
Operation = PEX_Nil;
NodeType = AST_Expression;
}
};
struct ZCC_StateGoto : ZCC_StatePart
{
ZCC_Identifier *Qualifier;
ZCC_Identifier *Label;
ZCC_Expression *Offset;
};
struct ZCC_StateLine : ZCC_StatePart
{
FString *Sprite;
BITFIELD bBright : 1;
BITFIELD bFast : 1;
BITFIELD bSlow : 1;
BITFIELD bNoDelay : 1;
BITFIELD bCanRaise : 1;
FString *Frames;
ZCC_Expression *Duration;
ZCC_Expression *Offset;
ZCC_ExprConstant *Lights;
ZCC_TreeNode *Action;
};
struct ZCC_VarName : ZCC_TreeNode
{
ENamedName Name;
ZCC_Expression *ArraySize; // NULL if not an array
};
struct ZCC_VarInit : ZCC_VarName
{
ZCC_Expression *Init;
bool InitIsArray; // this is needed to distinguish one-element arrays from raw elements.
};
struct ZCC_Type : ZCC_TreeNode
{
ZCC_Expression *ArraySize; // NULL if not an array
};
struct ZCC_BasicType : ZCC_Type
{
EZCCBuiltinType Type;
ZCC_Identifier *UserType;
bool isconst;
};
struct ZCC_MapType : ZCC_Type
{
ZCC_Type *KeyType;
ZCC_Type *ValueType;
};
struct ZCC_DynArrayType : ZCC_Type
{
ZCC_Type *ElementType;
};
struct ZCC_ClassType : ZCC_Type
{
ZCC_Identifier *Restriction;
};
struct ZCC_ExprID : ZCC_Expression
{
ENamedName Identifier;
};
struct ZCC_ExprTypeRef : ZCC_Expression
{
PType *RefType;
};
struct ZCC_ExprConstant : ZCC_Expression
{
// [pbeta] The ZCC_ExprConstant case in TreeNodeDeepCopy in zcc_parser.cpp
// must be updated if this union is changed!
union
{
FString *StringVal;
int IntVal;
unsigned int UIntVal;
double DoubleVal;
};
};
struct ZCC_FuncParm : ZCC_TreeNode
{
ZCC_Expression *Value;
ENamedName Label;
};
struct ZCC_ExprFuncCall : ZCC_Expression
{
ZCC_Expression *Function;
ZCC_FuncParm *Parameters;
};
struct ZCC_ClassCast : ZCC_Expression
{
ENamedName ClassName;
ZCC_FuncParm *Parameters;
};
struct ZCC_ExprMemberAccess : ZCC_Expression
{
ZCC_Expression *Left;
ENamedName Right;
};
struct ZCC_ExprUnary : ZCC_Expression
{
ZCC_Expression *Operand;
};
struct ZCC_ExprBinary : ZCC_Expression
{
ZCC_Expression *Left;
ZCC_Expression *Right;
};
struct ZCC_ExprTrinary : ZCC_Expression
{
ZCC_Expression *Test;
ZCC_Expression *Left;
ZCC_Expression *Right;
};
struct ZCC_VectorValue : ZCC_Expression
{
ZCC_Expression *X, *Y, *Z;
};
struct ZCC_Statement : ZCC_TreeNode
{
};
struct ZCC_StaticArrayStatement : ZCC_Statement
{
ZCC_Type *Type;
ENamedName Id;
ZCC_Expression *Values;
};
struct ZCC_CompoundStmt : ZCC_Statement
{
ZCC_Statement *Content;
};
struct ZCC_ContinueStmt : ZCC_Statement
{
};
struct ZCC_BreakStmt : ZCC_Statement
{
};
struct ZCC_ReturnStmt : ZCC_Statement
{
ZCC_Expression *Values;
};
struct ZCC_ExpressionStmt : ZCC_Statement
{
ZCC_Expression *Expression;
};
struct ZCC_IterationStmt : ZCC_Statement
{
ZCC_Expression *LoopCondition;
ZCC_Statement *LoopStatement;
ZCC_Statement *LoopBumper;
// Should the loop condition be checked at the
// start of the loop (before the LoopStatement)
// or at the end (after the LoopStatement)?
enum { Start, End } CheckAt;
};
struct ZCC_IfStmt : ZCC_Statement
{
ZCC_Expression *Condition;
ZCC_Statement *TruePath;
ZCC_Statement *FalsePath;
};
struct ZCC_SwitchStmt : ZCC_Statement
{
ZCC_Expression *Condition;
ZCC_Statement *Content;
};
struct ZCC_CaseStmt : ZCC_Statement
{
// A NULL Condition represents the default branch
ZCC_Expression *Condition;
};
struct ZCC_AssignStmt : ZCC_Statement
{
ZCC_Expression *Dests;
ZCC_Expression *Sources;
int AssignOp;
};
struct ZCC_LocalVarStmt : ZCC_Statement
{
ZCC_Type *Type;
ZCC_VarInit *Vars;
};
struct ZCC_FuncParamDecl : ZCC_TreeNode
{
ZCC_Type *Type;
ZCC_Expression *Default;
ENamedName Name;
int Flags;
};
struct ZCC_DeclFlags : ZCC_TreeNode
{
ZCC_Identifier *Id;
FString *DeprecationMessage;
VersionInfo Version;
int Flags;
};
struct ZCC_ConstantDef : ZCC_NamedNode
{
ZCC_Expression *Value;
PSymbolConst *Symbol;
ZCC_Enum *Type; // gets set when the constant originates from an enum.
};
struct ZCC_Declarator : ZCC_TreeNode
{
ZCC_Type *Type;
int Flags;
VersionInfo Version;
};
// A variable in a class or struct.
struct ZCC_VarDeclarator : ZCC_Declarator
{
ZCC_VarName *Names;
FString *DeprecationMessage;
};
// A function in a class.
struct ZCC_FuncDeclarator : ZCC_Declarator
{
ZCC_FuncParamDecl *Params;
ENamedName Name;
ZCC_Statement *Body;
ZCC_Identifier *UseFlags;
FString *DeprecationMessage;
};
struct ZCC_Default : ZCC_CompoundStmt
{
};
struct ZCC_PropertyStmt : ZCC_Statement
{
ZCC_Identifier *Prop;
ZCC_Expression *Values;
};
struct ZCC_FlagStmt : ZCC_Statement
{
ZCC_Identifier *name;
bool set;
};
struct ZCC_MixinStmt : ZCC_Statement
{
ENamedName MixinName;
};
FString ZCC_PrintAST(ZCC_TreeNode *root);
struct ZCC_AST
{
ZCC_AST() : TopNode(NULL) {}
ZCC_TreeNode *InitNode(size_t size, EZCCTreeNodeType type, ZCC_TreeNode *basis);
FSharedStringArena Strings;
FMemArena SyntaxArena;
struct ZCC_TreeNode *TopNode;
VersionInfo ParseVersion;
};
struct ZCCParseState : public ZCC_AST
{
ZCCParseState(FScanner *scanner = nullptr) : sc(scanner) {}
ZCC_TreeNode *InitNode(size_t size, EZCCTreeNodeType type);
FScanner *sc;
};
const char *GetMixinTypeString(EZCCMixinType type);
ZCC_TreeNode *TreeNodeDeepCopy(ZCC_AST *ast, ZCC_TreeNode *orig, bool copySiblings);
#endif

View file

@ -0,0 +1,14 @@
cmake_minimum_required( VERSION 2.8.7 )
if( NOT CMAKE_CROSSCOMPILING )
set( CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} -D_DEBUG" )
add_executable( lemon lemon.c )
set( CROSS_EXPORTS ${CROSS_EXPORTS} lemon PARENT_SCOPE )
endif()
# Lemon wants lempar.c in its directory
add_custom_command( TARGET lemon
POST_BUILD
COMMAND echo $<TARGET_FILE_DIR:lemon>
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${CMAKE_CURRENT_SOURCE_DIR}/lempar.c $<TARGET_FILE_DIR:lemon> )

5449
tools/lemon/lemon.c Normal file

File diff suppressed because it is too large Load diff

861
tools/lemon/lemon.html Normal file
View file

@ -0,0 +1,861 @@
<html>
<head>
<title>The Lemon Parser Generator</title>
</head>
<body bgcolor=white>
<h1 align=center>The Lemon Parser Generator</h1>
<p>Lemon is an LALR(1) parser generator for C or C++.
It does the same job as ``bison'' and ``yacc''.
But lemon is not another bison or yacc clone. It
uses a different grammar syntax which is designed to
reduce the number of coding errors. Lemon also uses a more
sophisticated parsing engine that is faster than yacc and
bison and which is both reentrant and thread-safe.
Furthermore, Lemon implements features that can be used
to eliminate resource leaks, making is suitable for use
in long-running programs such as graphical user interfaces
or embedded controllers.</p>
<p>This document is an introduction to the Lemon
parser generator.</p>
<h2>Theory of Operation</h2>
<p>The main goal of Lemon is to translate a context free grammar (CFG)
for a particular language into C code that implements a parser for
that language.
The program has two inputs:
<ul>
<li>The grammar specification.
<li>A parser template file.
</ul>
Typically, only the grammar specification is supplied by the programmer.
Lemon comes with a default parser template which works fine for most
applications. But the user is free to substitute a different parser
template if desired.</p>
<p>Depending on command-line options, Lemon will generate between
one and three files of outputs.
<ul>
<li>C code to implement the parser.
<li>A header file defining an integer ID for each terminal symbol.
<li>An information file that describes the states of the generated parser
automaton.
</ul>
By default, all three of these output files are generated.
The header file is suppressed if the ``-m'' command-line option is
used and the report file is omitted when ``-q'' is selected.</p>
<p>The grammar specification file uses a ``.y'' suffix, by convention.
In the examples used in this document, we'll assume the name of the
grammar file is ``gram.y''. A typical use of Lemon would be the
following command:
<pre>
lemon gram.y
</pre>
This command will generate three output files named ``gram.c'',
``gram.h'' and ``gram.out''.
The first is C code to implement the parser. The second
is the header file that defines numerical values for all
terminal symbols, and the last is the report that explains
the states used by the parser automaton.</p>
<h3>Command Line Options</h3>
<p>The behavior of Lemon can be modified using command-line options.
You can obtain a list of the available command-line options together
with a brief explanation of what each does by typing
<pre>
lemon -?
</pre>
As of this writing, the following command-line options are supported:
<ul>
<li><tt>-b</tt>
<li><tt>-c</tt>
<li><tt>-g</tt>
<li><tt>-m</tt>
<li><tt>-q</tt>
<li><tt>-s</tt>
<li><tt>-x</tt>
</ul>
The ``-b'' option reduces the amount of text in the report file by
printing only the basis of each parser state, rather than the full
configuration.
The ``-c'' option suppresses action table compression. Using -c
will make the parser a little larger and slower but it will detect
syntax errors sooner.
The ``-g'' option causes no output files to be generated at all.
Instead, the input grammar file is printed on standard output but
with all comments, actions and other extraneous text deleted. This
is a useful way to get a quick summary of a grammar.
The ``-m'' option causes the output C source file to be compatible
with the ``makeheaders'' program.
Makeheaders is a program that automatically generates header files
from C source code. When the ``-m'' option is used, the header
file is not output since the makeheaders program will take care
of generated all header files automatically.
The ``-q'' option suppresses the report file.
Using ``-s'' causes a brief summary of parser statistics to be
printed. Like this:
<pre>
Parser statistics: 74 terminals, 70 nonterminals, 179 rules
340 states, 2026 parser table entries, 0 conflicts
</pre>
Finally, the ``-x'' option causes Lemon to print its version number
and copyright information
and then stop without attempting to read the grammar or generate a parser.</p>
<h3>The Parser Interface</h3>
<p>Lemon doesn't generate a complete, working program. It only generates
a few subroutines that implement a parser. This section describes
the interface to those subroutines. It is up to the programmer to
call these subroutines in an appropriate way in order to produce a
complete system.</p>
<p>Before a program begins using a Lemon-generated parser, the program
must first create the parser.
A new parser is created as follows:
<pre>
void *pParser = ParseAlloc( malloc );
</pre>
The ParseAlloc() routine allocates and initializes a new parser and
returns a pointer to it.
The actual data structure used to represent a parser is opaque --
its internal structure is not visible or usable by the calling routine.
For this reason, the ParseAlloc() routine returns a pointer to void
rather than a pointer to some particular structure.
The sole argument to the ParseAlloc() routine is a pointer to the
subroutine used to allocate memory. Typically this means ``malloc()''.</p>
<p>After a program is finished using a parser, it can reclaim all
memory allocated by that parser by calling
<pre>
ParseFree(pParser, free);
</pre>
The first argument is the same pointer returned by ParseAlloc(). The
second argument is a pointer to the function used to release bulk
memory back to the system.</p>
<p>After a parser has been allocated using ParseAlloc(), the programmer
must supply the parser with a sequence of tokens (terminal symbols) to
be parsed. This is accomplished by calling the following function
once for each token:
<pre>
Parse(pParser, hTokenID, sTokenData, pArg);
</pre>
The first argument to the Parse() routine is the pointer returned by
ParseAlloc().
The second argument is a small positive integer that tells the parse the
type of the next token in the data stream.
There is one token type for each terminal symbol in the grammar.
The gram.h file generated by Lemon contains #define statements that
map symbolic terminal symbol names into appropriate integer values.
(A value of 0 for the second argument is a special flag to the
parser to indicate that the end of input has been reached.)
The third argument is the value of the given token. By default,
the type of the third argument is integer, but the grammar will
usually redefine this type to be some kind of structure.
Typically the second argument will be a broad category of tokens
such as ``identifier'' or ``number'' and the third argument will
be the name of the identifier or the value of the number.</p>
<p>The Parse() function may have either three or four arguments,
depending on the grammar. If the grammar specification file request
it, the Parse() function will have a fourth parameter that can be
of any type chosen by the programmer. The parser doesn't do anything
with this argument except to pass it through to action routines.
This is a convenient mechanism for passing state information down
to the action routines without having to use global variables.</p>
<p>A typical use of a Lemon parser might look something like the
following:
<pre>
01 ParseTree *ParseFile(const char *zFilename){
02 Tokenizer *pTokenizer;
03 void *pParser;
04 Token sToken;
05 int hTokenId;
06 ParserState sState;
07
08 pTokenizer = TokenizerCreate(zFilename);
09 pParser = ParseAlloc( malloc );
10 InitParserState(&sState);
11 while( GetNextToken(pTokenizer, &hTokenId, &sToken) ){
12 Parse(pParser, hTokenId, sToken, &sState);
13 }
14 Parse(pParser, 0, sToken, &sState);
15 ParseFree(pParser, free );
16 TokenizerFree(pTokenizer);
17 return sState.treeRoot;
18 }
</pre>
This example shows a user-written routine that parses a file of
text and returns a pointer to the parse tree.
(We've omitted all error-handling from this example to keep it
simple.)
We assume the existence of some kind of tokenizer which is created
using TokenizerCreate() on line 8 and deleted by TokenizerFree()
on line 16. The GetNextToken() function on line 11 retrieves the
next token from the input file and puts its type in the
integer variable hTokenId. The sToken variable is assumed to be
some kind of structure that contains details about each token,
such as its complete text, what line it occurs on, etc. </p>
<p>This example also assumes the existence of structure of type
ParserState that holds state information about a particular parse.
An instance of such a structure is created on line 6 and initialized
on line 10. A pointer to this structure is passed into the Parse()
routine as the optional 4th argument.
The action routine specified by the grammar for the parser can use
the ParserState structure to hold whatever information is useful and
appropriate. In the example, we note that the treeRoot field of
the ParserState structure is left pointing to the root of the parse
tree.</p>
<p>The core of this example as it relates to Lemon is as follows:
<pre>
ParseFile(){
pParser = ParseAlloc( malloc );
while( GetNextToken(pTokenizer,&hTokenId, &sToken) ){
Parse(pParser, hTokenId, sToken);
}
Parse(pParser, 0, sToken);
ParseFree(pParser, free );
}
</pre>
Basically, what a program has to do to use a Lemon-generated parser
is first create the parser, then send it lots of tokens obtained by
tokenizing an input source. When the end of input is reached, the
Parse() routine should be called one last time with a token type
of 0. This step is necessary to inform the parser that the end of
input has been reached. Finally, we reclaim memory used by the
parser by calling ParseFree().</p>
<p>There is one other interface routine that should be mentioned
before we move on.
The ParseTrace() function can be used to generate debugging output
from the parser. A prototype for this routine is as follows:
<pre>
ParseTrace(FILE *stream, char *zPrefix);
</pre>
After this routine is called, a short (one-line) message is written
to the designated output stream every time the parser changes states
or calls an action routine. Each such message is prefaced using
the text given by zPrefix. This debugging output can be turned off
by calling ParseTrace() again with a first argument of NULL (0).</p>
<h3>Differences With YACC and BISON</h3>
<p>Programmers who have previously used the yacc or bison parser
generator will notice several important differences between yacc and/or
bison and Lemon.
<ul>
<li>In yacc and bison, the parser calls the tokenizer. In Lemon,
the tokenizer calls the parser.
<li>Lemon uses no global variables. Yacc and bison use global variables
to pass information between the tokenizer and parser.
<li>Lemon allows multiple parsers to be running simultaneously. Yacc
and bison do not.
</ul>
These differences may cause some initial confusion for programmers
with prior yacc and bison experience.
But after years of experience using Lemon, I firmly
believe that the Lemon way of doing things is better.</p>
<h2>Input File Syntax</h2>
<p>The main purpose of the grammar specification file for Lemon is
to define the grammar for the parser. But the input file also
specifies additional information Lemon requires to do its job.
Most of the work in using Lemon is in writing an appropriate
grammar file.</p>
<p>The grammar file for lemon is, for the most part, free format.
It does not have sections or divisions like yacc or bison. Any
declaration can occur at any point in the file.
Lemon ignores whitespace (except where it is needed to separate
tokens) and it honors the same commenting conventions as C and C++.</p>
<h3>Terminals and Nonterminals</h3>
<p>A terminal symbol (token) is any string of alphanumeric
and underscore characters
that begins with an upper case letter.
A terminal can contain lower class letters after the first character,
but the usual convention is to make terminals all upper case.
A nonterminal, on the other hand, is any string of alphanumeric
and underscore characters than begins with a lower case letter.
Again, the usual convention is to make nonterminals use all lower
case letters.</p>
<p>In Lemon, terminal and nonterminal symbols do not need to
be declared or identified in a separate section of the grammar file.
Lemon is able to generate a list of all terminals and nonterminals
by examining the grammar rules, and it can always distinguish a
terminal from a nonterminal by checking the case of the first
character of the name.</p>
<p>Yacc and bison allow terminal symbols to have either alphanumeric
names or to be individual characters included in single quotes, like
this: ')' or '$'. Lemon does not allow this alternative form for
terminal symbols. With Lemon, all symbols, terminals and nonterminals,
must have alphanumeric names.</p>
<h3>Grammar Rules</h3>
<p>The main component of a Lemon grammar file is a sequence of grammar
rules.
Each grammar rule consists of a nonterminal symbol followed by
the special symbol ``::='' and then a list of terminals and/or nonterminals.
The rule is terminated by a period.
The list of terminals and nonterminals on the right-hand side of the
rule can be empty.
Rules can occur in any order, except that the left-hand side of the
first rule is assumed to be the start symbol for the grammar (unless
specified otherwise using the <tt>%start</tt> directive described below.)
A typical sequence of grammar rules might look something like this:
<pre>
expr ::= expr PLUS expr.
expr ::= expr TIMES expr.
expr ::= LPAREN expr RPAREN.
expr ::= VALUE.
</pre>
</p>
<p>There is one non-terminal in this example, ``expr'', and five
terminal symbols or tokens: ``PLUS'', ``TIMES'', ``LPAREN'',
``RPAREN'' and ``VALUE''.</p>
<p>Like yacc and bison, Lemon allows the grammar to specify a block
of C code that will be executed whenever a grammar rule is reduced
by the parser.
In Lemon, this action is specified by putting the C code (contained
within curly braces <tt>{...}</tt>) immediately after the
period that closes the rule.
For example:
<pre>
expr ::= expr PLUS expr. { printf("Doing an addition...\n"); }
</pre>
</p>
<p>In order to be useful, grammar actions must normally be linked to
their associated grammar rules.
In yacc and bison, this is accomplished by embedding a ``$$'' in the
action to stand for the value of the left-hand side of the rule and
symbols ``$1'', ``$2'', and so forth to stand for the value of
the terminal or nonterminal at position 1, 2 and so forth on the
right-hand side of the rule.
This idea is very powerful, but it is also very error-prone. The
single most common source of errors in a yacc or bison grammar is
to miscount the number of symbols on the right-hand side of a grammar
rule and say ``$7'' when you really mean ``$8''.</p>
<p>Lemon avoids the need to count grammar symbols by assigning symbolic
names to each symbol in a grammar rule and then using those symbolic
names in the action.
In yacc or bison, one would write this:
<pre>
expr -> expr PLUS expr { $$ = $1 + $3; };
</pre>
But in Lemon, the same rule becomes the following:
<pre>
expr(A) ::= expr(B) PLUS expr(C). { A = B+C; }
</pre>
In the Lemon rule, any symbol in parentheses after a grammar rule
symbol becomes a place holder for that symbol in the grammar rule.
This place holder can then be used in the associated C action to
stand for the value of that symbol.<p>
<p>The Lemon notation for linking a grammar rule with its reduce
action is superior to yacc/bison on several counts.
First, as mentioned above, the Lemon method avoids the need to
count grammar symbols.
Secondly, if a terminal or nonterminal in a Lemon grammar rule
includes a linking symbol in parentheses but that linking symbol
is not actually used in the reduce action, then an error message
is generated.
For example, the rule
<pre>
expr(A) ::= expr(B) PLUS expr(C). { A = B; }
</pre>
will generate an error because the linking symbol ``C'' is used
in the grammar rule but not in the reduce action.</p>
<p>The Lemon notation for linking grammar rules to reduce actions
also facilitates the use of destructors for reclaiming memory
allocated by the values of terminals and nonterminals on the
right-hand side of a rule.</p>
<h3>Precedence Rules</h3>
<p>Lemon resolves parsing ambiguities in exactly the same way as
yacc and bison. A shift-reduce conflict is resolved in favor
of the shift, and a reduce-reduce conflict is resolved by reducing
whichever rule comes first in the grammar file.</p>
<p>Just like in
yacc and bison, Lemon allows a measure of control
over the resolution of paring conflicts using precedence rules.
A precedence value can be assigned to any terminal symbol
using the %left, %right or %nonassoc directives. Terminal symbols
mentioned in earlier directives have a lower precedence that
terminal symbols mentioned in later directives. For example:</p>
<p><pre>
%left AND.
%left OR.
%nonassoc EQ NE GT GE LT LE.
%left PLUS MINUS.
%left TIMES DIVIDE MOD.
%right EXP NOT.
</pre></p>
<p>In the preceding sequence of directives, the AND operator is
defined to have the lowest precedence. The OR operator is one
precedence level higher. And so forth. Hence, the grammar would
attempt to group the ambiguous expression
<pre>
a AND b OR c
</pre>
like this
<pre>
a AND (b OR c).
</pre>
The associativity (left, right or nonassoc) is used to determine
the grouping when the precedence is the same. AND is left-associative
in our example, so
<pre>
a AND b AND c
</pre>
is parsed like this
<pre>
(a AND b) AND c.
</pre>
The EXP operator is right-associative, though, so
<pre>
a EXP b EXP c
</pre>
is parsed like this
<pre>
a EXP (b EXP c).
</pre>
The nonassoc precedence is used for non-associative operators.
So
<pre>
a EQ b EQ c
</pre>
is an error.</p>
<p>The precedence of non-terminals is transferred to rules as follows:
The precedence of a grammar rule is equal to the precedence of the
left-most terminal symbol in the rule for which a precedence is
defined. This is normally what you want, but in those cases where
you want to precedence of a grammar rule to be something different,
you can specify an alternative precedence symbol by putting the
symbol in square braces after the period at the end of the rule and
before any C-code. For example:</p>
<p><pre>
expr = MINUS expr. [NOT]
</pre></p>
<p>This rule has a precedence equal to that of the NOT symbol, not the
MINUS symbol as would have been the case by default.</p>
<p>With the knowledge of how precedence is assigned to terminal
symbols and individual
grammar rules, we can now explain precisely how parsing conflicts
are resolved in Lemon. Shift-reduce conflicts are resolved
as follows:
<ul>
<li> If either the token to be shifted or the rule to be reduced
lacks precedence information, then resolve in favor of the
shift, but report a parsing conflict.
<li> If the precedence of the token to be shifted is greater than
the precedence of the rule to reduce, then resolve in favor
of the shift. No parsing conflict is reported.
<li> If the precedence of the token it be shifted is less than the
precedence of the rule to reduce, then resolve in favor of the
reduce action. No parsing conflict is reported.
<li> If the precedences are the same and the shift token is
right-associative, then resolve in favor of the shift.
No parsing conflict is reported.
<li> If the precedences are the same the the shift token is
left-associative, then resolve in favor of the reduce.
No parsing conflict is reported.
<li> Otherwise, resolve the conflict by doing the shift and
report the parsing conflict.
</ul>
Reduce-reduce conflicts are resolved this way:
<ul>
<li> If either reduce rule
lacks precedence information, then resolve in favor of the
rule that appears first in the grammar and report a parsing
conflict.
<li> If both rules have precedence and the precedence is different
then resolve the dispute in favor of the rule with the highest
precedence and do not report a conflict.
<li> Otherwise, resolve the conflict by reducing by the rule that
appears first in the grammar and report a parsing conflict.
</ul>
<h3>Special Directives</h3>
<p>The input grammar to Lemon consists of grammar rules and special
directives. We've described all the grammar rules, so now we'll
talk about the special directives.</p>
<p>Directives in lemon can occur in any order. You can put them before
the grammar rules, or after the grammar rules, or in the mist of the
grammar rules. It doesn't matter. The relative order of
directives used to assign precedence to terminals is important, but
other than that, the order of directives in Lemon is arbitrary.</p>
<p>Lemon supports the following special directives:
<ul>
<li><tt>%destructor</tt>
<li><tt>%extra_argument</tt>
<li><tt>%include</tt>
<li><tt>%left</tt>
<li><tt>%name</tt>
<li><tt>%nonassoc</tt>
<li><tt>%parse_accept</tt>
<li><tt>%parse_failure </tt>
<li><tt>%right</tt>
<li><tt>%stack_overflow</tt>
<li><tt>%stack_size</tt>
<li><tt>%start_symbol</tt>
<li><tt>%syntax_error</tt>
<li><tt>%token_destructor</tt>
<li><tt>%token_prefix</tt>
<li><tt>%token_type</tt>
<li><tt>%type</tt>
</ul>
Each of these directives will be described separately in the
following sections:</p>
<h4>The <tt>%destructor</tt> directive</h4>
<p>The %destructor directive is used to specify a destructor for
a non-terminal symbol.
(See also the %token_destructor directive which is used to
specify a destructor for terminal symbols.)</p>
<p>A non-terminal's destructor is called to dispose of the
non-terminal's value whenever the non-terminal is popped from
the stack. This includes all of the following circumstances:
<ul>
<li> When a rule reduces and the value of a non-terminal on
the right-hand side is not linked to C code.
<li> When the stack is popped during error processing.
<li> When the ParseFree() function runs.
</ul>
The destructor can do whatever it wants with the value of
the non-terminal, but its design is to deallocate memory
or other resources held by that non-terminal.</p>
<p>Consider an example:
<pre>
%type nt {void*}
%destructor nt { free($$); }
nt(A) ::= ID NUM. { A = malloc( 100 ); }
</pre>
This example is a bit contrived but it serves to illustrate how
destructors work. The example shows a non-terminal named
``nt'' that holds values of type ``void*''. When the rule for
an ``nt'' reduces, it sets the value of the non-terminal to
space obtained from malloc(). Later, when the nt non-terminal
is popped from the stack, the destructor will fire and call
free() on this malloced space, thus avoiding a memory leak.
(Note that the symbol ``$$'' in the destructor code is replaced
by the value of the non-terminal.)</p>
<p>It is important to note that the value of a non-terminal is passed
to the destructor whenever the non-terminal is removed from the
stack, unless the non-terminal is used in a C-code action. If
the non-terminal is used by C-code, then it is assumed that the
C-code will take care of destroying it if it should really
be destroyed. More commonly, the value is used to build some
larger structure and we don't want to destroy it, which is why
the destructor is not called in this circumstance.</p>
<p>By appropriate use of destructors, it is possible to
build a parser using Lemon that can be used within a long-running
program, such as a GUI, that will not leak memory or other resources.
To do the same using yacc or bison is much more difficult.</p>
<h4>The <tt>%extra_argument</tt> directive</h4>
The %extra_argument directive instructs Lemon to add a 4th parameter
to the parameter list of the Parse() function it generates. Lemon
doesn't do anything itself with this extra argument, but it does
make the argument available to C-code action routines, destructors,
and so forth. For example, if the grammar file contains:</p>
<p><pre>
%extra_argument { MyStruct *pAbc }
</pre></p>
<p>Then the Parse() function generated will have an 4th parameter
of type ``MyStruct*'' and all action routines will have access to
a variable named ``pAbc'' that is the value of the 4th parameter
in the most recent call to Parse().</p>
<h4>The <tt>%include</tt> directive</h4>
<p>The %include directive specifies C code that is included at the
top of the generated parser. You can include any text you want --
the Lemon parser generator copies to blindly. If you have multiple
%include directives in your grammar file, their values are concatenated
before being put at the beginning of the generated parser.</p>
<p>The %include directive is very handy for getting some extra #include
preprocessor statements at the beginning of the generated parser.
For example:</p>
<p><pre>
%include {#include &lt;unistd.h&gt;}
</pre></p>
<p>This might be needed, for example, if some of the C actions in the
grammar call functions that are prototyed in unistd.h.</p>
<h4>The <tt>%left</tt> directive</h4>
The %left directive is used (along with the %right and
%nonassoc directives) to declare precedences of terminal
symbols. Every terminal symbol whose name appears after
a %left directive but before the next period (``.'') is
given the same left-associative precedence value. Subsequent
%left directives have higher precedence. For example:</p>
<p><pre>
%left AND.
%left OR.
%nonassoc EQ NE GT GE LT LE.
%left PLUS MINUS.
%left TIMES DIVIDE MOD.
%right EXP NOT.
</pre></p>
<p>Note the period that terminates each %left, %right or %nonassoc
directive.</p>
<p>LALR(1) grammars can get into a situation where they require
a large amount of stack space if you make heavy use or right-associative
operators. For this reason, it is recommended that you use %left
rather than %right whenever possible.</p>
<h4>The <tt>%name</tt> directive</h4>
<p>By default, the functions generated by Lemon all begin with the
five-character string ``Parse''. You can change this string to something
different using the %name directive. For instance:</p>
<p><pre>
%name Abcde
</pre></p>
<p>Putting this directive in the grammar file will cause Lemon to generate
functions named
<ul>
<li> AbcdeAlloc(),
<li> AbcdeFree(),
<li> AbcdeTrace(), and
<li> Abcde().
</ul>
The %name directive allows you to generator two or more different
parsers and link them all into the same executable.
</p>
<h4>The <tt>%nonassoc</tt> directive</h4>
<p>This directive is used to assign non-associative precedence to
one or more terminal symbols. See the section on precedence rules
or on the %left directive for additional information.</p>
<h4>The <tt>%parse_accept</tt> directive</h4>
<p>The %parse_accept directive specifies a block of C code that is
executed whenever the parser accepts its input string. To ``accept''
an input string means that the parser was able to process all tokens
without error.</p>
<p>For example:</p>
<p><pre>
%parse_accept {
printf("parsing complete!\n");
}
</pre></p>
<h4>The <tt>%parse_failure</tt> directive</h4>
<p>The %parse_failure directive specifies a block of C code that
is executed whenever the parser fails complete. This code is not
executed until the parser has tried and failed to resolve an input
error using is usual error recovery strategy. The routine is
only invoked when parsing is unable to continue.</p>
<p><pre>
%parse_failure {
fprintf(stderr,"Giving up. Parser is hopelessly lost...\n");
}
</pre></p>
<h4>The <tt>%right</tt> directive</h4>
<p>This directive is used to assign right-associative precedence to
one or more terminal symbols. See the section on precedence rules
or on the %left directive for additional information.</p>
<h4>The <tt>%stack_overflow</tt> directive</h4>
<p>The %stack_overflow directive specifies a block of C code that
is executed if the parser's internal stack ever overflows. Typically
this just prints an error message. After a stack overflow, the parser
will be unable to continue and must be reset.</p>
<p><pre>
%stack_overflow {
fprintf(stderr,"Giving up. Parser stack overflow\n");
}
</pre></p>
<p>You can help prevent parser stack overflows by avoiding the use
of right recursion and right-precedence operators in your grammar.
Use left recursion and and left-precedence operators instead, to
encourage rules to reduce sooner and keep the stack size down.
For example, do rules like this:
<pre>
list ::= list element. // left-recursion. Good!
list ::= .
</pre>
Not like this:
<pre>
list ::= element list. // right-recursion. Bad!
list ::= .
</pre>
<h4>The <tt>%stack_size</tt> directive</h4>
<p>If stack overflow is a problem and you can't resolve the trouble
by using left-recursion, then you might want to increase the size
of the parser's stack using this directive. Put an positive integer
after the %stack_size directive and Lemon will generate a parse
with a stack of the requested size. The default value is 100.</p>
<p><pre>
%stack_size 2000
</pre></p>
<h4>The <tt>%start_symbol</tt> directive</h4>
<p>By default, the start-symbol for the grammar that Lemon generates
is the first non-terminal that appears in the grammar file. But you
can choose a different start-symbol using the %start_symbol directive.</p>
<p><pre>
%start_symbol prog
</pre></p>
<h4>The <tt>%token_destructor</tt> directive</h4>
<p>The %destructor directive assigns a destructor to a non-terminal
symbol. (See the description of the %destructor directive above.)
This directive does the same thing for all terminal symbols.</p>
<p>Unlike non-terminal symbols which may each have a different data type
for their values, terminals all use the same data type (defined by
the %token_type directive) and so they use a common destructor. Other
than that, the token destructor works just like the non-terminal
destructors.</p>
<h4>The <tt>%token_prefix</tt> directive</h4>
<p>Lemon generates #defines that assign small integer constants
to each terminal symbol in the grammar. If desired, Lemon will
add a prefix specified by this directive
to each of the #defines it generates.
So if the default output of Lemon looked like this:
<pre>
#define AND 1
#define MINUS 2
#define OR 3
#define PLUS 4
</pre>
You can insert a statement into the grammar like this:
<pre>
%token_prefix TOKEN_
</pre>
to cause Lemon to produce these symbols instead:
<pre>
#define TOKEN_AND 1
#define TOKEN_MINUS 2
#define TOKEN_OR 3
#define TOKEN_PLUS 4
</pre>
<h4>The <tt>%token_type</tt> and <tt>%type</tt> directives</h4>
<p>These directives are used to specify the data types for values
on the parser's stack associated with terminal and non-terminal
symbols. The values of all terminal symbols must be of the same
type. This turns out to be the same data type as the 3rd parameter
to the Parse() function generated by Lemon. Typically, you will
make the value of a terminal symbol by a pointer to some kind of
token structure. Like this:</p>
<p><pre>
%token_type {Token*}
</pre></p>
<p>If the data type of terminals is not specified, the default value
is ``int''.</p>
<p>Non-terminal symbols can each have their own data types. Typically
the data type of a non-terminal is a pointer to the root of a parse-tree
structure that contains all information about that non-terminal.
For example:</p>
<p><pre>
%type expr {Expr*}
</pre></p>
<p>Each entry on the parser's stack is actually a union containing
instances of all data types for every non-terminal and terminal symbol.
Lemon will automatically use the correct element of this union depending
on what the corresponding non-terminal or terminal symbol is. But
the grammar designer should keep in mind that the size of the union
will be the size of its largest element. So if you have a single
non-terminal whose data type requires 1K of storage, then your 100
entry parser stack will require 100K of heap space. If you are willing
and able to pay that price, fine. You just need to know.</p>
<h3>Error Processing</h3>
<p>After extensive experimentation over several years, it has been
discovered that the error recovery strategy used by yacc is about
as good as it gets. And so that is what Lemon uses.</p>
<p>When a Lemon-generated parser encounters a syntax error, it
first invokes the code specified by the %syntax_error directive, if
any. It then enters its error recovery strategy. The error recovery
strategy is to begin popping the parsers stack until it enters a
state where it is permitted to shift a special non-terminal symbol
named ``error''. It then shifts this non-terminal and continues
parsing. But the %syntax_error routine will not be called again
until at least three new tokens have been successfully shifted.</p>
<p>If the parser pops its stack until the stack is empty, and it still
is unable to shift the error symbol, then the %parse_failed routine
is invoked and the parser resets itself to its start state, ready
to begin parsing a new file. This is what will happen at the very
first syntax error, of course, if there are no instances of the
``error'' non-terminal in your grammar.</p>
</body>
</html>

972
tools/lemon/lempar.c Normal file
View file

@ -0,0 +1,972 @@
/*
** 2000-05-29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser. The "lemon" program inserts text
** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar. Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#ifdef _MSC_VER
#define CDECL __cdecl
#else
#define CDECL
#endif
/************ Begin %include sections from the grammar ************************/
%%
/**************** End of %include directives **********************************/
/* These constants specify the various numeric values for terminal symbols
** in a format understandable to "makeheaders". This section is blank unless
** "lemon" is run with the "-m" command-line option.
***************** Begin makeheaders token definitions *************************/
%%
/**************** End makeheaders token definitions ***************************/
/* The next section is a series of control #defines.
** various aspects of the generated parser.
** YYCODETYPE is the data type used to store the integer codes
** that represent terminal and non-terminal symbols.
** "unsigned char" is used if there are fewer than
** 256 symbols. Larger types otherwise.
** YYNOCODE is a number of type YYCODETYPE that is not used for
** any terminal or nonterminal symbol.
** YYFALLBACK If defined, this indicates that one or more tokens
** (also known as: "terminal symbols") have fall-back
** values which should be used if the original symbol
** would not parse. This permits keywords to sometimes
** be used as identifiers, for example.
** YYACTIONTYPE is the data type used for "action codes" - numbers
** that indicate what to do in response to the next
** token.
** ParseTOKENTYPE is the data type used for minor type for terminal
** symbols. Background: A "minor type" is a semantic
** value associated with a terminal or non-terminal
** symbols. For example, for an "ID" terminal symbol,
** the minor type might be the name of the identifier.
** Each non-terminal can have a different minor type.
** Terminal symbols all have the same minor type, though.
** This macros defines the minor type for terminal
** symbols.
** YYMINORTYPE is the data type used for all minor types.
** This is typically a union of many types, one of
** which is ParseTOKENTYPE. The entry in the union
** for terminal symbols is called "yy0".
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
** zero the stack is dynamically sized using realloc()
** ParseARG_SDECL A static variable declaration for the %extra_argument
** ParseARG_PDECL A parameter declaration for the %extra_argument
** ParseARG_STORE Code to store %extra_argument into yypParser
** ParseARG_FETCH Code to extract %extra_argument from yypParser
** YYERRORSYMBOL is the code number of the error symbol. If not
** defined, then do no error processing.
** YYNSTATE the combined number of states.
** YYNRULE the number of rules in the grammar
** YY_MAX_SHIFT Maximum value for shift actions
** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
** YY_MIN_REDUCE Maximum value for reduce actions
** YY_ERROR_ACTION The yy_action[] code for syntax error
** YY_ACCEPT_ACTION The yy_action[] code for accept
** YY_NO_ACTION The yy_action[] code for no-op
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/
/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
**
** Applications can choose to define yytestcase() in the %include section
** to a macro that can assist in verifying code coverage. For production
** code the yytestcase() macro should be turned off. But it is useful
** for testing.
*/
#ifndef yytestcase
# define yytestcase(X)
#endif
/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** Suppose the action integer is N. Then the action is determined as
** follows
**
** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
** token onto the stack and goto state N.
**
** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
**
** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
** and YY_MAX_REDUCE
**
** N == YY_ERROR_ACTION A syntax error has occurred.
**
** N == YY_ACCEPT_ACTION The parser accepts its input.
**
** N == YY_NO_ACTION No such action. Denotes unused
** slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as either:
**
** (A) N = yy_action[ yy_shift_ofst[S] + X ]
** (B) N = yy_default[S]
**
** The (A) formula is preferred. The B formula is used instead if:
** (1) The yy_shift_ofst[S]+X value is out of range, or
** (2) yy_lookahead[yy_shift_ofst[S]+X] is not equal to X, or
** (3) yy_shift_ofst[S] equal YY_SHIFT_USE_DFLT.
** (Implementation note: YY_SHIFT_USE_DFLT is chosen so that
** YY_SHIFT_USE_DFLT+X will be out of range for all possible lookaheads X.
** Hence only tests (1) and (2) need to be evaluated.)
**
** The formulas above are for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
**
*********** Begin parsing tables **********************************************/
%%
/********** End of lemon-generated parsing tables *****************************/
/* The next table maps tokens (terminal symbols) into fallback tokens.
** If a construct like the following:
**
** %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
%%
};
#endif /* YYFALLBACK */
/* The following structure represents a single element of the
** parser's stack. Information stored includes:
**
** + The state number for the parser at this level of the stack.
**
** + The value of the token stored at this level of the stack.
** (In other words, the "major" token.)
**
** + The semantic value stored at this level of the stack. This is
** the information used by the action routines in the grammar.
** It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
struct yyStackEntry {
YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
YYCODETYPE major; /* The major token value. This is the code
** number for the token at this stack level */
YYMINORTYPE minor; /* The user-supplied minor token value. This
** is the value of the token */
};
typedef struct yyStackEntry yyStackEntry;
/* The state of the parser is completely contained in an instance of
** the following structure */
struct yyParser {
yyStackEntry *yytos; /* Pointer to top element of the stack */
#ifdef YYTRACKMAXSTACKDEPTH
int yyhwm; /* High-water mark of the stack */
#endif
#ifndef YYNOERRORRECOVERY
int yyerrcnt; /* Shifts left before out of the error */
#endif
ParseARG_SDECL /* A place to hold %extra_argument */
#if YYSTACKDEPTH<=0
int yystksz; /* Current side of the stack */
yyStackEntry *yystack; /* The parser's stack */
yyStackEntry yystk0; /* First stack entry */
#else
yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
#endif
};
typedef struct yyParser yyParser;
#ifndef NDEBUG
#include <stdio.h>
static FILE *yyTraceFILE = 0;
static char *yyTracePrompt = 0;
#endif /* NDEBUG */
#ifndef NDEBUG
/*
** Turn parser tracing on by giving a stream to which to write the trace
** and a prompt to preface each trace message. Tracing is turned off
** by making either argument NULL
**
** Inputs:
** <ul>
** <li> A FILE* to which trace output should be written.
** If NULL, then tracing is turned off.
** <li> A prefix string written at the beginning of every
** line of trace output. If NULL, then tracing is
** turned off.
** </ul>
**
** Outputs:
** None.
*/
void ParseTrace(FILE *TraceFILE, char *zTracePrompt){
yyTraceFILE = TraceFILE;
yyTracePrompt = zTracePrompt;
if( yyTraceFILE==0 ) yyTracePrompt = 0;
else if( yyTracePrompt==0 ) yyTraceFILE = 0;
}
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required. The following table supplies these names */
static const char *const yyTokenName[] = {
%%
};
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
%%
};
#endif /* NDEBUG */
#if YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack. Return the number
** of errors. Return 0 on success.
*/
static int yyGrowStack(yyParser *p){
int newSize;
int idx;
yyStackEntry *pNew;
newSize = p->yystksz*2 + 100;
idx = p->yytos ? (int)(p->yytos - p->yystack) : 0;
if( p->yystack==&p->yystk0 ){
pNew = (yyStackEntry *)malloc(newSize*sizeof(pNew[0]));
if( pNew ) pNew[0] = p->yystk0;
}else{
pNew = (yyStackEntry *)realloc(p->yystack, newSize*sizeof(pNew[0]));
}
if( pNew ){
p->yystack = pNew;
p->yytos = &p->yystack[idx];
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sStack grows from %d to %d entries.\n",
yyTracePrompt, p->yystksz, newSize);
fflush(yyTraceFILE);
}
#endif
p->yystksz = newSize;
}
return pNew==0;
}
#endif
/* Datatype of the argument to the memory allocated passed as the
** second argument to ParseAlloc() below. This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser. This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(CDECL *mallocProc)(YYMALLOCARGTYPE)){
yyParser *pParser;
pParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
if( pParser ){
#ifdef YYTRACKMAXSTACKDEPTH
pParser->yyhwm = 0;
#endif
#if YYSTACKDEPTH<=0
pParser->yytos = NULL;
pParser->yystack = NULL;
pParser->yystksz = 0;
if( yyGrowStack(pParser) ){
pParser->yystack = &pParser->yystk0;
pParser->yystksz = 1;
}
#endif
#ifndef YYNOERRORRECOVERY
pParser->yyerrcnt = -1;
#endif
pParser->yytos = pParser->yystack;
pParser->yystack[0].stateno = 0;
pParser->yystack[0].major = 0;
}
return pParser;
}
/* The following function deletes the "minor type" or semantic value
** associated with a symbol. The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted. The code used to do the
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void yy_destructor(
yyParser *yypParser, /* The parser */
YYCODETYPE yymajor, /* Type code for object to destroy */
YYMINORTYPE *yypminor /* The object to be destroyed */
){
ParseARG_FETCH;
switch( yymajor ){
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
** when the symbol is popped from the stack during a
** reduce or during error processing or when a parser is
** being destroyed before it is finished parsing.
**
** Note: during a reduce, the only symbols destroyed are those
** which appear on the RHS of the rule, but which are *not* used
** inside the C code.
*/
/********* Begin destructor definitions ***************************************/
%%
/********* End destructor definitions *****************************************/
default: break; /* If no destructor action specified: do nothing */
}
}
/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
*/
static void yy_pop_parser_stack(yyParser *pParser){
yyStackEntry *yytos;
assert( pParser->yytos!=0 );
assert( pParser->yytos > pParser->yystack );
yytos = pParser->yytos--;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sPopping %s\n",
yyTracePrompt,
yyTokenName[yytos->major]);
fflush(yyTraceFILE);
}
#endif
yy_destructor(pParser, yytos->major, &yytos->minor);
}
/*
** Deallocate and destroy a parser. Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.
*/
void ParseFree(
void *p, /* The parser to be deleted */
void (CDECL *freeProc)(void*) /* Function used to reclaim memory */
){
yyParser *pParser = (yyParser*)p;
#ifndef YYPARSEFREENEVERNULL
if( pParser==0 ) return;
#endif
while( pParser->yytos>pParser->yystack ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
if( pParser->yystack!=&pParser->yystk0 ) free(pParser->yystack);
#endif
(*freeProc)((void*)pParser);
}
/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
int ParseStackPeak(void *p){
yyParser *pParser = (yyParser*)p;
return pParser->yyhwm;
}
#endif
/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static unsigned int yy_find_shift_action(
yyParser *pParser, /* The parser */
YYCODETYPE iLookAhead /* The look-ahead token */
){
int i;
int stateno = pParser->yytos->stateno;
if( stateno>=YY_MIN_REDUCE ) return stateno;
assert( stateno <= YY_SHIFT_COUNT );
do{
i = yy_shift_ofst[stateno];
assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
#ifdef YYFALLBACK
YYCODETYPE iFallback; /* Fallback token */
if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
fflush(yyTraceFILE);
}
#endif
assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
iLookAhead = iFallback;
continue;
}
#endif
#ifdef YYWILDCARD
{
int j = i - iLookAhead + YYWILDCARD;
if(
#if YY_SHIFT_MIN+YYWILDCARD<0
j>=0 &&
#endif
#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
j<YY_ACTTAB_COUNT &&
#endif
yy_lookahead[j]==YYWILDCARD && iLookAhead>0
){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead],
yyTokenName[YYWILDCARD]);
fflush(yyTraceFILE);
}
#endif /* NDEBUG */
return yy_action[j];
}
}
#endif /* YYWILDCARD */
return yy_default[stateno];
}else{
return yy_action[i];
}
}while(1);
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
static int yy_find_reduce_action(
int stateno, /* Current state number */
YYCODETYPE iLookAhead /* The look-ahead token */
){
int i;
#ifdef YYERRORSYMBOL
if( stateno>YY_REDUCE_COUNT ){
return yy_default[stateno];
}
#else
assert( stateno<=YY_REDUCE_COUNT );
#endif
i = yy_reduce_ofst[stateno];
assert( i!=YY_REDUCE_USE_DFLT );
assert( iLookAhead!=YYNOCODE );
i += iLookAhead;
#ifdef YYERRORSYMBOL
if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
return yy_default[stateno];
}
#else
assert( i>=0 && i<YY_ACTTAB_COUNT );
assert( yy_lookahead[i]==iLookAhead );
#endif
return yy_action[i];
}
/*
** The following routine is called if the stack overflows.
*/
static void yyStackOverflow(yyParser *yypParser){
ParseARG_FETCH;
yypParser->yytos--;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
fflush(yyTraceFILE);
}
#endif
while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
/* Here code is inserted which will execute if the parser
** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}
/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
if( yyTraceFILE ){
if( yyNewState<YYNSTATE ){
fprintf(yyTraceFILE,"%sShift '%s', go to state %d\n",
yyTracePrompt,yyTokenName[yypParser->yytos->major],
yyNewState);
}else{
fprintf(yyTraceFILE,"%sShift '%s'\n",
yyTracePrompt,yyTokenName[yypParser->yytos->major]);
}
fflush(yyTraceFILE);
}
}
#else
# define yyTraceShift(X,Y)
#endif
/*
** Perform a shift action.
*/
static void yy_shift(
yyParser *yypParser, /* The parser to be shifted */
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
ParseTOKENTYPE yyMinor /* The minor token to shift in */
){
yyStackEntry *yytos;
yypParser->yytos++;
#ifdef YYTRACKMAXSTACKDEPTH
if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
yypParser->yyhwm++;
assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack) );
}
#endif
#if YYSTACKDEPTH>0
if( yypParser->yytos>=&yypParser->yystack[YYSTACKDEPTH] ){
yyStackOverflow(yypParser);
return;
}
#else
if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz] ){
if( yyGrowStack(yypParser) ){
yyStackOverflow(yypParser);
return;
}
}
#endif
if( yyNewState > YY_MAX_SHIFT ){
yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
}
yytos = yypParser->yytos;
yytos->stateno = (YYACTIONTYPE)yyNewState;
yytos->major = (YYCODETYPE)yyMajor;
yytos->minor.yy0 = yyMinor;
yyTraceShift(yypParser, yyNewState);
}
/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] = {
%%
};
static void yy_accept(yyParser*); /* Forward Declaration */
/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
*/
static void yy_reduce(
yyParser *yypParser, /* The parser */
unsigned int yyruleno /* Number of the rule by which to reduce */
){
int yygoto; /* The next state */
int yyact; /* The next action */
yyStackEntry *yymsp; /* The top of the parser's stack */
int yysize; /* Amount to pop the stack */
ParseARG_FETCH;
yymsp = yypParser->yytos;
#ifndef NDEBUG
if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
yysize = yyRuleInfo[yyruleno].nrhs;
fprintf(yyTraceFILE, "%sReduce [%s], go to state %d.\n", yyTracePrompt,
yyRuleName[yyruleno], yymsp[-yysize].stateno);
fflush(yyTraceFILE);
}
#endif /* NDEBUG */
/* Check that the stack is large enough to grow by a single entry
** if the RHS of the rule is empty. This ensures that there is room
** enough on the stack to push the LHS value */
if( yyRuleInfo[yyruleno].nrhs==0 ){
#ifdef YYTRACKMAXSTACKDEPTH
if( (int)(yypParser->yytos - yypParser->yystack)>yypParser->yyhwm ){
yypParser->yyhwm++;
assert( yypParser->yyhwm == (int)(yypParser->yytos - yypParser->yystack));
}
#endif
#if YYSTACKDEPTH>0
if( yypParser->yytos>=&yypParser->yystack[YYSTACKDEPTH-1] ){
yyStackOverflow(yypParser);
return;
}
#else
if( yypParser->yytos>=&yypParser->yystack[yypParser->yystksz-1] ){
if( yyGrowStack(yypParser) ){
yyStackOverflow(yypParser);
return;
}
yymsp = yypParser->yytos;
}
#endif
}
switch( yyruleno ){
/* Beginning here are the reduction cases. A typical example
** follows:
** case 0:
** #line <lineno> <grammarfile>
** { ... } // User supplied code
** #line <lineno> <thisfile>
** break;
*/
/********** Begin reduce actions **********************************************/
%%
/********** End reduce actions ************************************************/
};
assert( yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
yygoto = yyRuleInfo[yyruleno].lhs;
yysize = yyRuleInfo[yyruleno].nrhs;
yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
if( yyact <= YY_MAX_SHIFTREDUCE ){
if( yyact>YY_MAX_SHIFT ){
yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
}
yymsp -= yysize-1;
yypParser->yytos = yymsp;
yymsp->stateno = (YYACTIONTYPE)yyact;
yymsp->major = (YYCODETYPE)yygoto;
yyTraceShift(yypParser, yyact);
}else{
assert( yyact == YY_ACCEPT_ACTION );
yypParser->yytos -= yysize;
yy_accept(yypParser);
}
}
/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
yyParser *yypParser /* The parser */
){
ParseARG_FETCH;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
fflush(yyTraceFILE);
}
#endif
while( yypParser->yytos>yypParser->yystack ) yy_pop_parser_stack(yypParser);
/* Here code is inserted which will be executed whenever the
** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* YYNOERRORRECOVERY */
/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
yyParser *yypParser, /* The parser */
int yymajor, /* The major type of the error token */
ParseTOKENTYPE yyminor /* The minor type of the error token */
){
ParseARG_FETCH;
#define TOKEN yyminor
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/*
** The following is executed when the parser accepts
*/
static void yy_accept(
yyParser *yypParser /* The parser */
){
ParseARG_FETCH;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
fflush(yyTraceFILE);
}
#endif
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt = -1;
#endif
#if 0
assert( yypParser->yytos==yypParser->yystack );
#else
while (yypParser->yytos>yypParser->yystack) yy_pop_parser_stack(yypParser);
#endif
/* Here code is inserted which will be executed whenever the
** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number. The third is
** the minor token. The fourth optional argument is whatever the
** user wants (and specified in the grammar) and is available for
** use by the action routines.
**
** Inputs:
** <ul>
** <li> A pointer to the parser (an opaque structure.)
** <li> The major token number.
** <li> The minor token number.
** <li> An option argument of a grammar-specified type.
** </ul>
**
** Outputs:
** None.
*/
void Parse(
void *yyp, /* The parser */
int yymajor, /* The major token code number */
ParseTOKENTYPE yyminor /* The value for the token */
ParseARG_PDECL /* Optional %extra_argument parameter */
){
YYMINORTYPE yyminorunion;
unsigned int yyact; /* The parser action. */
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
int yyendofinput; /* True if we are at the end of input */
#endif
#ifdef YYERRORSYMBOL
int yyerrorhit = 0; /* True if yymajor has invoked an error */
#endif
yyParser *yypParser; /* The parser */
yypParser = (yyParser*)yyp;
assert( yypParser->yytos!=0 );
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
yyendofinput = (yymajor==0);
#endif
ParseARG_STORE;
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sInput '%s'\n",yyTracePrompt,yyTokenName[yymajor]);
fflush(yyTraceFILE);
}
#endif
do{
yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
if( yyact <= YY_MAX_SHIFTREDUCE ){
yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt--;
#endif
yymajor = YYNOCODE;
}else if( yyact <= YY_MAX_REDUCE ){
yy_reduce(yypParser,yyact-YY_MIN_REDUCE);
}else{
assert( yyact == YY_ERROR_ACTION );
yyminorunion.yy0 = yyminor;
#ifdef YYERRORSYMBOL
int yymx;
#endif
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
fflush(yyTraceFILE);
}
#endif
#ifdef YYERRORSYMBOL
/* A syntax error has occurred.
** The response to an error depends upon whether or not the
** grammar defines an error token "ERROR".
**
** This is what we do if the grammar does define ERROR:
**
** * Call the %syntax_error function.
**
** * Begin popping the stack until we enter a state where
** it is legal to shift the error symbol, then shift
** the error symbol.
**
** * Set the error count to three.
**
** * Begin accepting and shifting new tokens. No new error
** processing will occur until three tokens have been
** shifted successfully.
**
*/
if( yypParser->yyerrcnt<0 ){
yy_syntax_error(yypParser,yymajor,yyminor);
}
yymx = yypParser->yytos->major;
if( yymx==YYERRORSYMBOL || yyerrorhit ){
#ifndef NDEBUG
if( yyTraceFILE ){
fprintf(yyTraceFILE,"%sDiscard input token %s\n",
yyTracePrompt,yyTokenName[yymajor]);
fflush(yyTraceFILE);
}
#endif
yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
yymajor = YYNOCODE;
}else{
while( yypParser->yytos >= yypParser->yystack
&& yymx != YYERRORSYMBOL
&& (yyact = yy_find_reduce_action(
yypParser->yytos->stateno,
YYERRORSYMBOL)) >= YY_MIN_REDUCE
){
yy_pop_parser_stack(yypParser);
}
if( yypParser->yytos < yypParser->yystack || yymajor==0 ){
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt = -1;
#endif
yymajor = YYNOCODE;
}else if( yymx!=YYERRORSYMBOL ){
yy_shift(yypParser,yyact,YYERRORSYMBOL,yyminor);
}
}
yypParser->yyerrcnt = 3;
yyerrorhit = 1;
#elif defined(YYNOERRORRECOVERY)
/* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
** do any kind of error recovery. Instead, simply invoke the syntax
** error routine and continue going as if nothing had happened.
**
** Applications can set this macro (for example inside %include) if
** they intend to abandon the parse upon the first syntax error seen.
*/
yy_syntax_error(yypParser,yymajor, yyminor);
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
yymajor = YYNOCODE;
#else /* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
** * Report an error message, and throw away the input token.
**
** * If the input token is $, then fail the parse.
**
** As before, subsequent error messages are suppressed until
** three input tokens have been successfully shifted.
*/
if( yypParser->yyerrcnt<=0 ){
yy_syntax_error(yypParser,yymajor, yyminor);
}
yypParser->yyerrcnt = 3;
yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
if( yyendofinput ){
yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY
yypParser->yyerrcnt = -1;
#endif
}
yymajor = YYNOCODE;
#endif
}
}while( yymajor!=YYNOCODE && yypParser->yytos>yypParser->yystack );
#ifndef NDEBUG
if( yyTraceFILE ){
yyStackEntry *i;
char cDiv = '[';
fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
for(i=&yypParser->yystack[1]; i<=yypParser->yytos; i++){
fprintf(yyTraceFILE,"%c%s", cDiv, yyTokenName[i->major]);
cDiv = ' ';
}
fprintf(yyTraceFILE,"]\n");
fflush(yyTraceFILE);
}
#endif
return;
}