mirror of
https://github.com/ZDoom/Raze.git
synced 2025-01-18 22:51:50 +00:00
734 lines
37 KiB
C
734 lines
37 KiB
C
|
/**************************************************************************
|
||
|
*
|
||
|
* Copyright 2013-2014 RAD Game Tools and Valve Software
|
||
|
* Copyright 2010-2014 Rich Geldreich and Tenacious Software LLC
|
||
|
* All Rights Reserved.
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*
|
||
|
**************************************************************************/
|
||
|
|
||
|
#include "miniz_tinfl.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/* ------------------- Low-level Decompression (completely independent from all compression API's) */
|
||
|
|
||
|
#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
|
||
|
#define TINFL_MEMSET(p, c, l) memset(p, c, l)
|
||
|
|
||
|
#define TINFL_CR_BEGIN \
|
||
|
switch (r->m_state) \
|
||
|
{ \
|
||
|
case 0:
|
||
|
#define TINFL_CR_RETURN(state_index, result) \
|
||
|
do \
|
||
|
{ \
|
||
|
status = result; \
|
||
|
r->m_state = state_index; \
|
||
|
goto common_exit; \
|
||
|
case state_index:; \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
#define TINFL_CR_RETURN_FOREVER(state_index, result) \
|
||
|
do \
|
||
|
{ \
|
||
|
for (;;) \
|
||
|
{ \
|
||
|
TINFL_CR_RETURN(state_index, result); \
|
||
|
} \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
#define TINFL_CR_FINISH }
|
||
|
|
||
|
#define TINFL_GET_BYTE(state_index, c) \
|
||
|
do \
|
||
|
{ \
|
||
|
while (pIn_buf_cur >= pIn_buf_end) \
|
||
|
{ \
|
||
|
TINFL_CR_RETURN(state_index, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) ? TINFL_STATUS_NEEDS_MORE_INPUT : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS); \
|
||
|
} \
|
||
|
c = *pIn_buf_cur++; \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
|
||
|
#define TINFL_NEED_BITS(state_index, n) \
|
||
|
do \
|
||
|
{ \
|
||
|
mz_uint c; \
|
||
|
TINFL_GET_BYTE(state_index, c); \
|
||
|
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
|
||
|
num_bits += 8; \
|
||
|
} while (num_bits < (mz_uint)(n))
|
||
|
#define TINFL_SKIP_BITS(state_index, n) \
|
||
|
do \
|
||
|
{ \
|
||
|
if (num_bits < (mz_uint)(n)) \
|
||
|
{ \
|
||
|
TINFL_NEED_BITS(state_index, n); \
|
||
|
} \
|
||
|
bit_buf >>= (n); \
|
||
|
num_bits -= (n); \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
#define TINFL_GET_BITS(state_index, b, n) \
|
||
|
do \
|
||
|
{ \
|
||
|
if (num_bits < (mz_uint)(n)) \
|
||
|
{ \
|
||
|
TINFL_NEED_BITS(state_index, n); \
|
||
|
} \
|
||
|
b = bit_buf & ((1 << (n)) - 1); \
|
||
|
bit_buf >>= (n); \
|
||
|
num_bits -= (n); \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
|
||
|
/* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2. */
|
||
|
/* It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a */
|
||
|
/* Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the */
|
||
|
/* bit buffer contains >=15 bits (deflate's max. Huffman code size). */
|
||
|
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
|
||
|
do \
|
||
|
{ \
|
||
|
temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
|
||
|
if (temp >= 0) \
|
||
|
{ \
|
||
|
code_len = temp >> 9; \
|
||
|
if ((code_len) && (num_bits >= code_len)) \
|
||
|
break; \
|
||
|
} \
|
||
|
else if (num_bits > TINFL_FAST_LOOKUP_BITS) \
|
||
|
{ \
|
||
|
code_len = TINFL_FAST_LOOKUP_BITS; \
|
||
|
do \
|
||
|
{ \
|
||
|
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
|
||
|
} while ((temp < 0) && (num_bits >= (code_len + 1))); \
|
||
|
if (temp >= 0) \
|
||
|
break; \
|
||
|
} \
|
||
|
TINFL_GET_BYTE(state_index, c); \
|
||
|
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
|
||
|
num_bits += 8; \
|
||
|
} while (num_bits < 15);
|
||
|
|
||
|
/* TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read */
|
||
|
/* beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully */
|
||
|
/* decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32. */
|
||
|
/* The slow path is only executed at the very end of the input buffer. */
|
||
|
/* v1.16: The original macro handled the case at the very end of the passed-in input buffer, but we also need to handle the case where the user passes in 1+zillion bytes */
|
||
|
/* following the deflate data and our non-conservative read-ahead path won't kick in here on this code. This is much trickier. */
|
||
|
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \
|
||
|
do \
|
||
|
{ \
|
||
|
int temp; \
|
||
|
mz_uint code_len, c; \
|
||
|
if (num_bits < 15) \
|
||
|
{ \
|
||
|
if ((pIn_buf_end - pIn_buf_cur) < 2) \
|
||
|
{ \
|
||
|
TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
|
||
|
} \
|
||
|
else \
|
||
|
{ \
|
||
|
bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \
|
||
|
pIn_buf_cur += 2; \
|
||
|
num_bits += 16; \
|
||
|
} \
|
||
|
} \
|
||
|
if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
|
||
|
code_len = temp >> 9, temp &= 511; \
|
||
|
else \
|
||
|
{ \
|
||
|
code_len = TINFL_FAST_LOOKUP_BITS; \
|
||
|
do \
|
||
|
{ \
|
||
|
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
|
||
|
} while (temp < 0); \
|
||
|
} \
|
||
|
sym = temp; \
|
||
|
bit_buf >>= code_len; \
|
||
|
num_bits -= code_len; \
|
||
|
} \
|
||
|
MZ_MACRO_END
|
||
|
|
||
|
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
|
||
|
{
|
||
|
static const int s_length_base[31] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 };
|
||
|
static const int s_length_extra[31] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0 };
|
||
|
static const int s_dist_base[32] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0 };
|
||
|
static const int s_dist_extra[32] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
|
||
|
static const mz_uint8 s_length_dezigzag[19] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
|
||
|
static const int s_min_table_sizes[3] = { 257, 1, 4 };
|
||
|
|
||
|
tinfl_status status = TINFL_STATUS_FAILED;
|
||
|
mz_uint32 num_bits, dist, counter, num_extra;
|
||
|
tinfl_bit_buf_t bit_buf;
|
||
|
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
|
||
|
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
|
||
|
size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;
|
||
|
|
||
|
/* Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter). */
|
||
|
if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start))
|
||
|
{
|
||
|
*pIn_buf_size = *pOut_buf_size = 0;
|
||
|
return TINFL_STATUS_BAD_PARAM;
|
||
|
}
|
||
|
|
||
|
num_bits = r->m_num_bits;
|
||
|
bit_buf = r->m_bit_buf;
|
||
|
dist = r->m_dist;
|
||
|
counter = r->m_counter;
|
||
|
num_extra = r->m_num_extra;
|
||
|
dist_from_out_buf_start = r->m_dist_from_out_buf_start;
|
||
|
TINFL_CR_BEGIN
|
||
|
|
||
|
bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
|
||
|
r->m_z_adler32 = r->m_check_adler32 = 1;
|
||
|
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
|
||
|
{
|
||
|
TINFL_GET_BYTE(1, r->m_zhdr0);
|
||
|
TINFL_GET_BYTE(2, r->m_zhdr1);
|
||
|
counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
|
||
|
if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
|
||
|
counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
|
||
|
if (counter)
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
do
|
||
|
{
|
||
|
TINFL_GET_BITS(3, r->m_final, 3);
|
||
|
r->m_type = r->m_final >> 1;
|
||
|
if (r->m_type == 0)
|
||
|
{
|
||
|
TINFL_SKIP_BITS(5, num_bits & 7);
|
||
|
for (counter = 0; counter < 4; ++counter)
|
||
|
{
|
||
|
if (num_bits)
|
||
|
TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
|
||
|
else
|
||
|
TINFL_GET_BYTE(7, r->m_raw_header[counter]);
|
||
|
}
|
||
|
if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8))))
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
while ((counter) && (num_bits))
|
||
|
{
|
||
|
TINFL_GET_BITS(51, dist, 8);
|
||
|
while (pOut_buf_cur >= pOut_buf_end)
|
||
|
{
|
||
|
TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
|
||
|
}
|
||
|
*pOut_buf_cur++ = (mz_uint8)dist;
|
||
|
counter--;
|
||
|
}
|
||
|
while (counter)
|
||
|
{
|
||
|
size_t n;
|
||
|
while (pOut_buf_cur >= pOut_buf_end)
|
||
|
{
|
||
|
TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
|
||
|
}
|
||
|
while (pIn_buf_cur >= pIn_buf_end)
|
||
|
{
|
||
|
TINFL_CR_RETURN(38, (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) ? TINFL_STATUS_NEEDS_MORE_INPUT : TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS);
|
||
|
}
|
||
|
n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);
|
||
|
TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
|
||
|
pIn_buf_cur += n;
|
||
|
pOut_buf_cur += n;
|
||
|
counter -= (mz_uint)n;
|
||
|
}
|
||
|
}
|
||
|
else if (r->m_type == 3)
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (r->m_type == 1)
|
||
|
{
|
||
|
mz_uint8 *p = r->m_tables[0].m_code_size;
|
||
|
mz_uint i;
|
||
|
r->m_table_sizes[0] = 288;
|
||
|
r->m_table_sizes[1] = 32;
|
||
|
TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
|
||
|
for (i = 0; i <= 143; ++i)
|
||
|
*p++ = 8;
|
||
|
for (; i <= 255; ++i)
|
||
|
*p++ = 9;
|
||
|
for (; i <= 279; ++i)
|
||
|
*p++ = 7;
|
||
|
for (; i <= 287; ++i)
|
||
|
*p++ = 8;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for (counter = 0; counter < 3; counter++)
|
||
|
{
|
||
|
TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
|
||
|
r->m_table_sizes[counter] += s_min_table_sizes[counter];
|
||
|
}
|
||
|
MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
|
||
|
for (counter = 0; counter < r->m_table_sizes[2]; counter++)
|
||
|
{
|
||
|
mz_uint s;
|
||
|
TINFL_GET_BITS(14, s, 3);
|
||
|
r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
|
||
|
}
|
||
|
r->m_table_sizes[2] = 19;
|
||
|
}
|
||
|
for (; (int)r->m_type >= 0; r->m_type--)
|
||
|
{
|
||
|
int tree_next, tree_cur;
|
||
|
tinfl_huff_table *pTable;
|
||
|
mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16];
|
||
|
pTable = &r->m_tables[r->m_type];
|
||
|
MZ_CLEAR_OBJ(total_syms);
|
||
|
MZ_CLEAR_OBJ(pTable->m_look_up);
|
||
|
MZ_CLEAR_OBJ(pTable->m_tree);
|
||
|
for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
|
||
|
total_syms[pTable->m_code_size[i]]++;
|
||
|
used_syms = 0, total = 0;
|
||
|
next_code[0] = next_code[1] = 0;
|
||
|
for (i = 1; i <= 15; ++i)
|
||
|
{
|
||
|
used_syms += total_syms[i];
|
||
|
next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
|
||
|
}
|
||
|
if ((65536 != total) && (used_syms > 1))
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)
|
||
|
{
|
||
|
mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index];
|
||
|
if (!code_size)
|
||
|
continue;
|
||
|
cur_code = next_code[code_size]++;
|
||
|
for (l = code_size; l > 0; l--, cur_code >>= 1)
|
||
|
rev_code = (rev_code << 1) | (cur_code & 1);
|
||
|
if (code_size <= TINFL_FAST_LOOKUP_BITS)
|
||
|
{
|
||
|
mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
|
||
|
while (rev_code < TINFL_FAST_LOOKUP_SIZE)
|
||
|
{
|
||
|
pTable->m_look_up[rev_code] = k;
|
||
|
rev_code += (1 << code_size);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)]))
|
||
|
{
|
||
|
pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next;
|
||
|
tree_cur = tree_next;
|
||
|
tree_next -= 2;
|
||
|
}
|
||
|
rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
|
||
|
for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)
|
||
|
{
|
||
|
tree_cur -= ((rev_code >>= 1) & 1);
|
||
|
if (!pTable->m_tree[-tree_cur - 1])
|
||
|
{
|
||
|
pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
|
||
|
tree_cur = tree_next;
|
||
|
tree_next -= 2;
|
||
|
}
|
||
|
else
|
||
|
tree_cur = pTable->m_tree[-tree_cur - 1];
|
||
|
}
|
||
|
tree_cur -= ((rev_code >>= 1) & 1);
|
||
|
pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
|
||
|
}
|
||
|
if (r->m_type == 2)
|
||
|
{
|
||
|
for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);)
|
||
|
{
|
||
|
mz_uint s;
|
||
|
TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
|
||
|
if (dist < 16)
|
||
|
{
|
||
|
r->m_len_codes[counter++] = (mz_uint8)dist;
|
||
|
continue;
|
||
|
}
|
||
|
if ((dist == 16) && (!counter))
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
num_extra = "\02\03\07"[dist - 16];
|
||
|
TINFL_GET_BITS(18, s, num_extra);
|
||
|
s += "\03\03\013"[dist - 16];
|
||
|
TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
|
||
|
counter += s;
|
||
|
}
|
||
|
if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]);
|
||
|
TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]);
|
||
|
}
|
||
|
}
|
||
|
for (;;)
|
||
|
{
|
||
|
mz_uint8 *pSrc;
|
||
|
for (;;)
|
||
|
{
|
||
|
if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))
|
||
|
{
|
||
|
TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
|
||
|
if (counter >= 256)
|
||
|
break;
|
||
|
while (pOut_buf_cur >= pOut_buf_end)
|
||
|
{
|
||
|
TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
|
||
|
}
|
||
|
*pOut_buf_cur++ = (mz_uint8)counter;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int sym2;
|
||
|
mz_uint code_len;
|
||
|
#if TINFL_USE_64BIT_BITBUF
|
||
|
if (num_bits < 30)
|
||
|
{
|
||
|
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
|
||
|
pIn_buf_cur += 4;
|
||
|
num_bits += 32;
|
||
|
}
|
||
|
#else
|
||
|
if (num_bits < 15)
|
||
|
{
|
||
|
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
|
||
|
pIn_buf_cur += 2;
|
||
|
num_bits += 16;
|
||
|
}
|
||
|
#endif
|
||
|
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
|
||
|
code_len = sym2 >> 9;
|
||
|
else
|
||
|
{
|
||
|
code_len = TINFL_FAST_LOOKUP_BITS;
|
||
|
do
|
||
|
{
|
||
|
sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
|
||
|
} while (sym2 < 0);
|
||
|
}
|
||
|
counter = sym2;
|
||
|
bit_buf >>= code_len;
|
||
|
num_bits -= code_len;
|
||
|
if (counter & 256)
|
||
|
break;
|
||
|
|
||
|
#if !TINFL_USE_64BIT_BITBUF
|
||
|
if (num_bits < 15)
|
||
|
{
|
||
|
bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
|
||
|
pIn_buf_cur += 2;
|
||
|
num_bits += 16;
|
||
|
}
|
||
|
#endif
|
||
|
if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
|
||
|
code_len = sym2 >> 9;
|
||
|
else
|
||
|
{
|
||
|
code_len = TINFL_FAST_LOOKUP_BITS;
|
||
|
do
|
||
|
{
|
||
|
sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
|
||
|
} while (sym2 < 0);
|
||
|
}
|
||
|
bit_buf >>= code_len;
|
||
|
num_bits -= code_len;
|
||
|
|
||
|
pOut_buf_cur[0] = (mz_uint8)counter;
|
||
|
if (sym2 & 256)
|
||
|
{
|
||
|
pOut_buf_cur++;
|
||
|
counter = sym2;
|
||
|
break;
|
||
|
}
|
||
|
pOut_buf_cur[1] = (mz_uint8)sym2;
|
||
|
pOut_buf_cur += 2;
|
||
|
}
|
||
|
}
|
||
|
if ((counter &= 511) == 256)
|
||
|
break;
|
||
|
|
||
|
num_extra = s_length_extra[counter - 257];
|
||
|
counter = s_length_base[counter - 257];
|
||
|
if (num_extra)
|
||
|
{
|
||
|
mz_uint extra_bits;
|
||
|
TINFL_GET_BITS(25, extra_bits, num_extra);
|
||
|
counter += extra_bits;
|
||
|
}
|
||
|
|
||
|
TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
|
||
|
num_extra = s_dist_extra[dist];
|
||
|
dist = s_dist_base[dist];
|
||
|
if (num_extra)
|
||
|
{
|
||
|
mz_uint extra_bits;
|
||
|
TINFL_GET_BITS(27, extra_bits, num_extra);
|
||
|
dist += extra_bits;
|
||
|
}
|
||
|
|
||
|
dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
|
||
|
if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
|
||
|
{
|
||
|
TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
|
||
|
}
|
||
|
|
||
|
pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);
|
||
|
|
||
|
if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)
|
||
|
{
|
||
|
while (counter--)
|
||
|
{
|
||
|
while (pOut_buf_cur >= pOut_buf_end)
|
||
|
{
|
||
|
TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
|
||
|
}
|
||
|
*pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
|
||
|
else if ((counter >= 9) && (counter <= dist))
|
||
|
{
|
||
|
const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
|
||
|
do
|
||
|
{
|
||
|
((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
|
||
|
((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
|
||
|
pOut_buf_cur += 8;
|
||
|
} while ((pSrc += 8) < pSrc_end);
|
||
|
if ((counter &= 7) < 3)
|
||
|
{
|
||
|
if (counter)
|
||
|
{
|
||
|
pOut_buf_cur[0] = pSrc[0];
|
||
|
if (counter > 1)
|
||
|
pOut_buf_cur[1] = pSrc[1];
|
||
|
pOut_buf_cur += counter;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
do
|
||
|
{
|
||
|
pOut_buf_cur[0] = pSrc[0];
|
||
|
pOut_buf_cur[1] = pSrc[1];
|
||
|
pOut_buf_cur[2] = pSrc[2];
|
||
|
pOut_buf_cur += 3;
|
||
|
pSrc += 3;
|
||
|
} while ((int)(counter -= 3) > 2);
|
||
|
if ((int)counter > 0)
|
||
|
{
|
||
|
pOut_buf_cur[0] = pSrc[0];
|
||
|
if ((int)counter > 1)
|
||
|
pOut_buf_cur[1] = pSrc[1];
|
||
|
pOut_buf_cur += counter;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} while (!(r->m_final & 1));
|
||
|
|
||
|
/* Ensure byte alignment and put back any bytes from the bitbuf if we've looked ahead too far on gzip, or other Deflate streams followed by arbitrary data. */
|
||
|
/* I'm being super conservative here. A number of simplifications can be made to the byte alignment part, and the Adler32 check shouldn't ever need to worry about reading from the bitbuf now. */
|
||
|
TINFL_SKIP_BITS(32, num_bits & 7);
|
||
|
while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8))
|
||
|
{
|
||
|
--pIn_buf_cur;
|
||
|
num_bits -= 8;
|
||
|
}
|
||
|
bit_buf &= (tinfl_bit_buf_t)((((mz_uint64)1) << num_bits) - (mz_uint64)1);
|
||
|
MZ_ASSERT(!num_bits); /* if this assert fires then we've read beyond the end of non-deflate/zlib streams with following data (such as gzip streams). */
|
||
|
|
||
|
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
|
||
|
{
|
||
|
for (counter = 0; counter < 4; ++counter)
|
||
|
{
|
||
|
mz_uint s;
|
||
|
if (num_bits)
|
||
|
TINFL_GET_BITS(41, s, 8);
|
||
|
else
|
||
|
TINFL_GET_BYTE(42, s);
|
||
|
r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
|
||
|
}
|
||
|
}
|
||
|
TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
|
||
|
|
||
|
TINFL_CR_FINISH
|
||
|
|
||
|
common_exit:
|
||
|
/* As long as we aren't telling the caller that we NEED more input to make forward progress: */
|
||
|
/* Put back any bytes from the bitbuf in case we've looked ahead too far on gzip, or other Deflate streams followed by arbitrary data. */
|
||
|
/* We need to be very careful here to NOT push back any bytes we definitely know we need to make forward progress, though, or we'll lock the caller up into an inf loop. */
|
||
|
if ((status != TINFL_STATUS_NEEDS_MORE_INPUT) && (status != TINFL_STATUS_FAILED_CANNOT_MAKE_PROGRESS))
|
||
|
{
|
||
|
while ((pIn_buf_cur > pIn_buf_next) && (num_bits >= 8))
|
||
|
{
|
||
|
--pIn_buf_cur;
|
||
|
num_bits -= 8;
|
||
|
}
|
||
|
}
|
||
|
r->m_num_bits = num_bits;
|
||
|
r->m_bit_buf = bit_buf & (tinfl_bit_buf_t)((((mz_uint64)1) << num_bits) - (mz_uint64)1);
|
||
|
r->m_dist = dist;
|
||
|
r->m_counter = counter;
|
||
|
r->m_num_extra = num_extra;
|
||
|
r->m_dist_from_out_buf_start = dist_from_out_buf_start;
|
||
|
*pIn_buf_size = pIn_buf_cur - pIn_buf_next;
|
||
|
*pOut_buf_size = pOut_buf_cur - pOut_buf_next;
|
||
|
if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))
|
||
|
{
|
||
|
const mz_uint8 *ptr = pOut_buf_next;
|
||
|
size_t buf_len = *pOut_buf_size;
|
||
|
mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16;
|
||
|
size_t block_len = buf_len % 5552;
|
||
|
while (buf_len)
|
||
|
{
|
||
|
for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
|
||
|
{
|
||
|
s1 += ptr[0], s2 += s1;
|
||
|
s1 += ptr[1], s2 += s1;
|
||
|
s1 += ptr[2], s2 += s1;
|
||
|
s1 += ptr[3], s2 += s1;
|
||
|
s1 += ptr[4], s2 += s1;
|
||
|
s1 += ptr[5], s2 += s1;
|
||
|
s1 += ptr[6], s2 += s1;
|
||
|
s1 += ptr[7], s2 += s1;
|
||
|
}
|
||
|
for (; i < block_len; ++i)
|
||
|
s1 += *ptr++, s2 += s1;
|
||
|
s1 %= 65521U, s2 %= 65521U;
|
||
|
buf_len -= block_len;
|
||
|
block_len = 5552;
|
||
|
}
|
||
|
r->m_check_adler32 = (s2 << 16) + s1;
|
||
|
if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32))
|
||
|
status = TINFL_STATUS_ADLER32_MISMATCH;
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Higher level helper functions. */
|
||
|
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
|
||
|
{
|
||
|
tinfl_decompressor decomp;
|
||
|
void *pBuf = NULL, *pNew_buf;
|
||
|
size_t src_buf_ofs = 0, out_buf_capacity = 0;
|
||
|
*pOut_len = 0;
|
||
|
tinfl_init(&decomp);
|
||
|
for (;;)
|
||
|
{
|
||
|
size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
|
||
|
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL, &dst_buf_size,
|
||
|
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
|
||
|
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))
|
||
|
{
|
||
|
MZ_FREE(pBuf);
|
||
|
*pOut_len = 0;
|
||
|
return NULL;
|
||
|
}
|
||
|
src_buf_ofs += src_buf_size;
|
||
|
*pOut_len += dst_buf_size;
|
||
|
if (status == TINFL_STATUS_DONE)
|
||
|
break;
|
||
|
new_out_buf_capacity = out_buf_capacity * 2;
|
||
|
if (new_out_buf_capacity < 128)
|
||
|
new_out_buf_capacity = 128;
|
||
|
pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
|
||
|
if (!pNew_buf)
|
||
|
{
|
||
|
MZ_FREE(pBuf);
|
||
|
*pOut_len = 0;
|
||
|
return NULL;
|
||
|
}
|
||
|
pBuf = pNew_buf;
|
||
|
out_buf_capacity = new_out_buf_capacity;
|
||
|
}
|
||
|
return pBuf;
|
||
|
}
|
||
|
|
||
|
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
|
||
|
{
|
||
|
tinfl_decompressor decomp;
|
||
|
tinfl_status status;
|
||
|
tinfl_init(&decomp);
|
||
|
status = tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len, (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
|
||
|
return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
|
||
|
}
|
||
|
|
||
|
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
|
||
|
{
|
||
|
int result = 0;
|
||
|
tinfl_decompressor decomp;
|
||
|
mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
|
||
|
size_t in_buf_ofs = 0, dict_ofs = 0;
|
||
|
if (!pDict)
|
||
|
return TINFL_STATUS_FAILED;
|
||
|
tinfl_init(&decomp);
|
||
|
for (;;)
|
||
|
{
|
||
|
size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
|
||
|
tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
|
||
|
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
|
||
|
in_buf_ofs += in_buf_size;
|
||
|
if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
|
||
|
break;
|
||
|
if (status != TINFL_STATUS_HAS_MORE_OUTPUT)
|
||
|
{
|
||
|
result = (status == TINFL_STATUS_DONE);
|
||
|
break;
|
||
|
}
|
||
|
dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
|
||
|
}
|
||
|
MZ_FREE(pDict);
|
||
|
*pIn_buf_size = in_buf_ofs;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
tinfl_decompressor *tinfl_decompressor_alloc()
|
||
|
{
|
||
|
tinfl_decompressor *pDecomp = (tinfl_decompressor *)MZ_MALLOC(sizeof(tinfl_decompressor));
|
||
|
if (pDecomp)
|
||
|
tinfl_init(pDecomp);
|
||
|
return pDecomp;
|
||
|
}
|
||
|
|
||
|
void tinfl_decompressor_free(tinfl_decompressor *pDecomp)
|
||
|
{
|
||
|
MZ_FREE(pDecomp);
|
||
|
}
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|