raze/polymer/eduke32/build/src/nedmalloc.c

1434 lines
42 KiB
C
Raw Normal View History

/* Alternative malloc implementation for multiple threads without
lock contention based on dlmalloc. (C) 2005-2009 Niall Douglas
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/
#ifdef _MSC_VER
/* Enable full aliasing on MSVC */
/*#pragma optimize("a", on)*/
#pragma warning(push)
#pragma warning(disable:4100) /* unreferenced formal parameter */
#pragma warning(disable:4127) /* conditional expression is constant */
#pragma warning(disable:4706) /* assignment within conditional expression */
#endif
#define USE_ALLOCATOR 1
#define USE_MAGIC_HEADERS 1
#define MAXTHREADSINPOOL 1
#define FINEGRAINEDBINS 1
#define ENABLE_LARGE_PAGES 1
#define ENABLE_FAST_HEAP_DETECTION 1
#define NDEBUG 1
/*#define ENABLE_TOLERANT_NEDMALLOC 1*/
/*#define ENABLE_FAST_HEAP_DETECTION 1*/
/*#define NEDMALLOC_DEBUG 1*/
/*#define FULLSANITYCHECKS*/
/* If link time code generation is on, don't force or prevent inlining */
#if defined(_MSC_VER) && defined(NEDMALLOC_DLL_EXPORTS)
#define FORCEINLINE
#define NOINLINE
#endif
#include "nedmalloc.h"
#ifdef WIN32
#include <malloc.h>
#include <stddef.h>
#endif
#if USE_ALLOCATOR==1
#define MSPACES 1
#define ONLY_MSPACES 1
#endif
#define USE_DL_PREFIX 1
#ifndef USE_LOCKS
#define USE_LOCKS 1
#endif
#define FOOTERS 1 /* Need to enable footers so frees lock the right mspace */
#ifndef NEDMALLOC_DEBUG #if defined(DEBUG) || defined(_DEBUG) #define NEDMALLOC_DEBUG 1 #else #define NEDMALLOC_DEBUG 0 #endif #endif /* We need to consistently define DEBUG=0|1, _DEBUG and NDEBUG for dlmalloc */ #undef DEBUG #undef _DEBUG #if NEDMALLOC_DEBUG #define _DEBUG #else
#define DEBUG 0
#endif
#ifdef NDEBUG /* Disable assert checking on release builds */
#undef DEBUG
#undef _DEBUG
#endif
/* The default of 64Kb means we spend too much time kernel-side */
#ifndef DEFAULT_GRANULARITY
#define DEFAULT_GRANULARITY (1*1024*1024)
#if DEBUG
#define DEFAULT_GRANULARITY_ALIGNED
#endif
#endif
/*#define USE_SPIN_LOCKS 0*/
#include "malloc.c.h" #ifdef NDEBUG /* Disable assert checking on release builds */ #undef DEBUG #elif !NEDMALLOC_DEBUG #ifdef __GNUC__ #warning DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed. #elif defined(_MSC_VER) #pragma message(__FILE__ ": WARNING: DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.") #endif #endif
/* The maximum concurrent threads in a pool possible */#ifndef MAXTHREADSINPOOL
#define MAXTHREADSINPOOL 16
#endif
/* The maximum number of threadcaches which can be allocated */
#ifndef THREADCACHEMAXCACHES
#define THREADCACHEMAXCACHES 256
#endif
/* The maximum size to be allocated from the thread cache */
#ifndef THREADCACHEMAX
#define THREADCACHEMAX 32768
#endif
#ifdef FINEGRAINEDBINS
/* The number of cache entries for finer grained bins. This is (topbitpos(THREADCACHEMAX)-4)*2 */
#define THREADCACHEMAXBINS ((15-4)*2)
#else
/* The number of cache entries. This is (topbitpos(THREADCACHEMAX)-4) */
#define THREADCACHEMAXBINS (15-4)
#endif
/* Point at which the free space in a thread cache is garbage collected */
#ifndef THREADCACHEMAXFREESPACE
#define THREADCACHEMAXFREESPACE (512*1024*4)
#endif
#ifdef WIN32
#define TLSVAR DWORD
#define TLSALLOC(k) (*(k)=TlsAlloc(), TLS_OUT_OF_INDEXES==*(k))
#define TLSFREE(k) (!TlsFree(k))
#define TLSGET(k) TlsGetValue(k)
#define TLSSET(k, a) (!TlsSetValue(k, a))
#ifdef DEBUG
static LPVOID ChkedTlsGetValue(DWORD idx)
{
LPVOID ret=TlsGetValue(idx);
assert(S_OK==GetLastError());
return ret;
}
#undef TLSGET
#define TLSGET(k) ChkedTlsGetValue(k)
#endif
#else
#define TLSVAR pthread_key_t
#define TLSALLOC(k) pthread_key_create(k, 0)
#define TLSFREE(k) pthread_key_delete(k)
#define TLSGET(k) pthread_getspecific(k)
#define TLSSET(k, a) pthread_setspecific(k, a)
#endif
#if defined(__cplusplus)
#if !defined(NO_NED_NAMESPACE)
namespace nedalloc {
#else
extern "C" {
#endif
#endif
#if USE_ALLOCATOR==0
static void *unsupported_operation(const char *opname) THROWSPEC
{
fprintf(stderr, "nedmalloc: The operation %s is not supported under this build configuration\n", opname);
abort();
return 0;
}
static size_t mspacecounter=(size_t) 0xdeadbeef;
#endif
#ifndef ENABLE_FAST_HEAP_DETECTION
static void *RESTRICT leastusedaddress;
static size_t largestusedblock;
#endif
static FORCEINLINE void *CallMalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC { void *RESTRICT ret=0; size_t _alignment=alignment; #if USE_MAGIC_HEADERS size_t *_ret=0; size+=alignment+3*sizeof(size_t); _alignment=0; #endif #if USE_ALLOCATOR==0 ret=_alignment ? #ifdef _MSC_VER /* This is the MSVCRT equivalent */ _aligned_malloc(size, _alignment) #elif defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__) /* This is the glibc/ptmalloc2/dlmalloc/BSD libc equivalent. */ memalign(_alignment, size) #else #error Cannot aligned allocate with the memory allocator of an unknown system! #endif : malloc(size); #elif USE_ALLOCATOR==1 ret=_alignment ? mspace_memalign((mstate) mspace, _alignment, size) : mspace_malloc((mstate) mspace, size); #ifndef ENABLE_FAST_HEAP_DETECTION if(ret) {
size_t truesize=chunksize(mem2chunk(ret));
if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
}
#endif
#endif
if(!ret) return 0;
#if USE_MAGIC_HEADERS
_ret=(size_t *) ret;
ret=(void *)(_ret+3);
if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *)"NEDMALOC";
_ret[0]=(size_t) mspace;
_ret[1]=size-3*sizeof(size_t);
#endif
return ret;
}
static FORCEINLINE void *CallCalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
{
void *RESTRICT ret=0;
#if USE_MAGIC_HEADERS
size_t *_ret=0;
size+=alignment+3*sizeof(size_t);
#endif
#if USE_ALLOCATOR==0
ret=calloc(1, size);
#elif USE_ALLOCATOR==1
ret=mspace_calloc((mstate) mspace, 1, size);
#ifndef ENABLE_FAST_HEAP_DETECTION
if(ret)
{
size_t truesize=chunksize(mem2chunk(ret));
if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
}
#endif
#endif
if(!ret) return 0;
#if USE_MAGIC_HEADERS
_ret=(size_t *) ret;
ret=(void *)(_ret+3);
if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
_ret[0]=(size_t) mspace;
_ret[1]=size-3*sizeof(size_t);
#endif
return ret;
}
static FORCEINLINE void *CallRealloc(void *RESTRICT mspace, void *RESTRICT mem, int isforeign, size_t oldsize, size_t newsize) THROWSPEC
{
void *RESTRICT ret=0;
#if USE_MAGIC_HEADERS
mstate oldmspace=0;
size_t *_ret=0, *_mem=(size_t *) mem-3;
#endif
if(isforeign)
{ /* Transfer */
#if USE_MAGIC_HEADERS
assert(_mem[0]!=*(size_t *) "NEDMALOC");
#endif
if((ret=CallMalloc(mspace, newsize, 0)))
{
#if defined(DEBUG)
printf("*** nedmalloc frees system allocated block %p\n", mem);
#endif
memcpy(ret, mem, oldsize<newsize ? oldsize : newsize);
free(mem);
}
return ret;
}
#if USE_MAGIC_HEADERS
assert(_mem[0]==*(size_t *) "NEDMALOC");
newsize+=3*sizeof(size_t);
oldmspace=(mstate) _mem[1];
assert(oldsize>=_mem[2]);
for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
mem=(void *)(++_mem);
#endif
#if USE_ALLOCATOR==0
ret=realloc(mem, newsize);
#elif USE_ALLOCATOR==1
ret=mspace_realloc((mstate) mspace, mem, newsize);
#ifndef ENABLE_FAST_HEAP_DETECTION
if(ret)
{
size_t truesize=chunksize(mem2chunk(ret));
if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
}
#endif
#endif
if(!ret)
{ /* Put it back the way it was */
#if USE_MAGIC_HEADERS
for(; *_mem==0; *_mem++=*(size_t *) "NEDMALOC");
#endif
return 0;
}
#if USE_MAGIC_HEADERS
_ret=(size_t *) ret;
ret=(void *)(_ret+3);
for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
_ret[0]=(size_t) mspace;
_ret[1]=newsize-3*sizeof(size_t);
#endif
return ret;
}
static FORCEINLINE void CallFree(void *RESTRICT mspace, void *RESTRICT mem, int isforeign) THROWSPEC
{
#if USE_MAGIC_HEADERS
mstate oldmspace=0;
size_t *_mem=(size_t *) mem-3, oldsize=0;
#endif
if(isforeign)
{
#if USE_MAGIC_HEADERS
assert(_mem[0]!=*(size_t *) "NEDMALOC");
#endif
#if defined(DEBUG)
printf("*** nedmalloc frees system allocated block %p\n", mem);
#endif
free(mem);
return;
}
#if USE_MAGIC_HEADERS
assert(_mem[0]==*(size_t *) "NEDMALOC");
oldmspace=(mstate) _mem[1];
oldsize=_mem[2];
for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
mem=(void *)(++_mem);
#endif
#if USE_ALLOCATOR==0
free(mem);
#elif USE_ALLOCATOR==1
mspace_free((mstate) mspace, mem);
#endif
}
static NEDMALLOCNOALIASATTR mstate nedblkmstate(void *RESTRICT mem) THROWSPEC
{
if(mem)
{
#if USE_MAGIC_HEADERS
size_t *_mem=(size_t *) mem-3;
if(_mem[0]==*(size_t *) "NEDMALOC")
{
return (mstate) _mem[1];
}
else return 0;
#else
#if USE_ALLOCATOR==0
/* Fail everything */
return 0;
#elif USE_ALLOCATOR==1
#ifdef ENABLE_FAST_HEAP_DETECTION
#ifdef WIN32
/* On Windows for RELEASE both x86 and x64 the NT heap precedes each block with an eight byte header
which looks like:
normal: 4 bytes of size, 4 bytes of [char < 64, char < 64, char < 64 bit 0 always set, char random ]
mmaped: 4 bytes of size 4 bytes of [zero, zero, 0xb, zero ]
On Windows for DEBUG both x86 and x64 the preceding four bytes is always 0xfdfdfdfd (no man's land).
*/
#pragma pack(push, 1)
struct _HEAP_ENTRY
{
USHORT Size;
USHORT PreviousSize;
UCHAR Cookie; /* SegmentIndex */
UCHAR Flags; /* always bit 0 (HEAP_ENTRY_BUSY). bit 1=(HEAP_ENTRY_EXTRA_PRESENT), bit 2=normal block (HEAP_ENTRY_FILL_PATTERN), bit 3=mmap block (HEAP_ENTRY_VIRTUAL_ALLOC). Bit 4 (HEAP_ENTRY_LAST_ENTRY) could be set */
UCHAR UnusedBytes;
UCHAR SmallTagIndex; /* fastbin index. Always one of 0x02, 0x03, 0x04 < 0x80 */
} *RESTRICT he=((struct _HEAP_ENTRY *) mem)-1;
#pragma pack(pop)
unsigned int header=((unsigned int *)mem)[-1], mask1=0x8080E100, result1, mask2=0xFFFFFF06, result2;
result1=header & mask1; /* Positive testing for NT heap */
result2=header & mask2; /* Positive testing for dlmalloc */
if(result1==0x00000100 && result2!=0x00000102)
{ /* This is likely a NT heap block */
return 0;
}
#endif
#ifdef __linux__
/* On Linux glibc uses ptmalloc2 (really dlmalloc) just as we do, but prev_foot contains rubbish
when the preceding block is allocated because ptmalloc2 finds the local mstate by rounding the ptr
down to the nearest megabyte. It's like dlmalloc with FOOTERS disabled. */
mchunkptr p=mem2chunk(mem);
mstate fm=get_mstate_for(p);
/* If it's a ptmalloc2 block, fm is likely to be some crazy value */
if(!is_aligned(fm)) return 0;
if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
if(ok_magic(fm))
return fm;
else
return 0;
if(1) { }
#endif
else
{
mchunkptr p=mem2chunk(mem);
mstate fm=get_mstate_for(p);
assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
if(ok_magic(fm))
return fm;
}
#else
#ifdef _MSC_VER
__try
#endif
{
/* We try to return zero here if it isn't one of our own blocks, however
the current block annotation scheme used by dlmalloc makes it impossible
to be absolutely sure of avoiding a segfault.
mchunkptr->prev_foot = mem-(2*size_t) = mstate ^ mparams.magic for PRECEDING block;
mchunkptr->head = mem-(1*size_t) = 8 multiple size of this block with bottom three bits = FLAG_BITS
FLAG_BITS = bit 0 is CINUSE (currently in use unless is mmap), bit 1 is PINUSE (previous block currently
in use unless mmap), bit 2 is UNUSED and currently is always zero.
*/
register void *RESTRICT leastusedaddress_=leastusedaddress; /* Cache these to avoid register reloading */
register size_t largestusedblock_=largestusedblock;
if(!is_aligned(mem)) return 0; /* Would fail very rarely as all allocators return aligned blocks */
if(mem<leastusedaddress_) return 0; /* Simple but effective */
{
mchunkptr p=mem2chunk(mem);
mstate fm=0;
int ismmapped=is_mmapped(p);
if((!ismmapped && !is_inuse(p)) || (p->head & FLAG4_BIT)) return 0;
/* Reduced uncertainty by 0.5^2 = 25.0% */
/* size should never exceed largestusedblock */
if(chunksize(p)>largestusedblock_) return 0;
/* Reduced uncertainty by a minimum of 0.5^3 = 12.5%, maximum 0.5^16 = 0.0015% */
/* Having sanity checked prev_foot and head, check next block */
if(!ismmapped && (!next_pinuse(p) || (next_chunk(p)->head & FLAG4_BIT))) return 0;
/* Reduced uncertainty by 0.5^5 = 3.13% or 0.5^18 = 0.00038% */
#if 0
/* If previous block is free, check that its next block pointer equals us */
if(!ismmapped && !pinuse(p))
if(next_chunk(prev_chunk(p))!=p) return 0;
/* We could start comparing prev_foot's for similarity but it starts getting slow. */
#endif
fm = get_mstate_for(p);
if(!is_aligned(fm) || (void *)fm<leastusedaddress_) return 0;
if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
if(ok_magic(fm))
return fm;
}
}
#ifdef _MSC_VER
__except(1) { }
#endif
#endif
#endif
#endif
}
return 0;
}
NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC
{
if(mem)
{
if(isforeign) *isforeign=1;
#if USE_MAGIC_HEADERS
{
size_t *_mem=(size_t *) mem-3;
if(_mem[0]==*(size_t *) "NEDMALOC")
{
mstate mspace=(mstate) _mem[1];
size_t size=_mem[2];
if(isforeign) *isforeign=0;
return size;
}
}
#elif USE_ALLOCATOR==1
if(nedblkmstate(mem))
{
mchunkptr p=mem2chunk(mem);
if(isforeign) *isforeign=0;
return chunksize(p)-overhead_for(p);
}
#ifdef DEBUG
else
{
int a=1; /* Set breakpoints here if needed */
}
#endif
#endif
#if defined(ENABLE_TOLERANT_NEDMALLOC) || USE_ALLOCATOR==0
#ifdef WIN32
/* This is the MSVCRT equivalent */
return _msize(mem);
#elif defined(__linux__)
/* This is the glibc/ptmalloc2/dlmalloc equivalent. */
return malloc_usable_size(mem);
#elif defined(__FreeBSD__) || defined(__APPLE__)
/* This is the BSD libc equivalent. */
return malloc_size(mem);
#else
#error Cannot tolerate the memory allocator of an unknown system!
#endif
#endif
}
return 0;
}
NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC { nedpsetvalue((nedpool *) 0, v); }
NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC { return nedpmalloc((nedpool *) 0, size); }
NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC { return nedpcalloc((nedpool *) 0, no, size); }
NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC { return nedprealloc((nedpool *) 0, mem, size); }
NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC { nedpfree((nedpool *) 0, mem); }
NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC { return nedpmemalign((nedpool *) 0, alignment, bytes); }
NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC { return nedpmallinfo((nedpool *) 0); }
NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC { return nedpmallopt((nedpool *) 0, parno, value); }
NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC { return nedpmalloc_trim((nedpool *) 0, pad); }
void nedmalloc_stats() THROWSPEC { nedpmalloc_stats((nedpool *) 0); }
NEDMALLOCNOALIASATTR size_t nedmalloc_footprint() THROWSPEC { return nedpmalloc_footprint((nedpool *) 0); }
NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC { return nedpindependent_calloc((nedpool *) 0, elemsno, elemsize, chunks); }
// NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC { return nedpindependent_comalloc((nedpool *) 0, elems, sizes, chunks); }
struct threadcacheblk_t;
typedef struct threadcacheblk_t threadcacheblk;
struct threadcacheblk_t
{ /* Keep less than 16 bytes on 32 bit systems and 32 bytes on 64 bit systems */
#ifdef FULLSANITYCHECKS
unsigned int magic;
#endif
unsigned int lastUsed, size;
threadcacheblk *next, *prev;
};
typedef struct threadcache_t
{
#ifdef FULLSANITYCHECKS
unsigned int magic1;
#endif
int mymspace; /* Last mspace entry this thread used */
long threadid;
unsigned int mallocs, frees, successes;
size_t freeInCache; /* How much free space is stored in this cache */
threadcacheblk *bins[(THREADCACHEMAXBINS+1)*2];
#ifdef FULLSANITYCHECKS
unsigned int magic2;
#endif
} threadcache;
struct nedpool_t
{
MLOCK_T mutex;
void *uservalue;
int threads; /* Max entries in m to use */
threadcache *caches[THREADCACHEMAXCACHES];
TLSVAR mycache; /* Thread cache for this thread. 0 for unset, negative for use mspace-1 directly, otherwise is cache-1 */
mstate m[MAXTHREADSINPOOL+1]; /* mspace entries for this pool */
};
static nedpool syspool;
static FORCEINLINE NEDMALLOCNOALIASATTR unsigned int size2binidx(size_t _size) THROWSPEC
{ /* 8=1000 16=10000 20=10100 24=11000 32=100000 48=110000 4096=1000000000000 */
unsigned int topbit, size=(unsigned int)(_size>>4);
/* 16=1 20=1 24=1 32=10 48=11 64=100 96=110 128=1000 4096=100000000 */
#if defined(__GNUC__)
topbit = sizeof(size)*__CHAR_BIT__ - 1 - __builtin_clz(size);
#elif defined(_MSC_VER) && _MSC_VER>=1300
{
unsigned long bsrTopBit;
_BitScanReverse(&bsrTopBit, size);
topbit = bsrTopBit;
}
#else
#if 0
union {
unsigned asInt[2];
double asDouble;
};
int n;
asDouble = (double)size + 0.5;
topbit = (asInt[!FOX_BIGENDIAN] >> 20) - 1023;
#else
{
unsigned int x=size;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >>16);
x = ~x;
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
topbit=31 - (x >> 24);
}
#endif
#endif
return topbit;
}
#ifdef FULLSANITYCHECKS
static void tcsanitycheck(threadcacheblk **ptr) THROWSPEC
{
assert((ptr[0] && ptr[1]) || (!ptr[0] && !ptr[1]));
if(ptr[0] && ptr[1])
{
assert(nedblksize(ptr[0])>=sizeof(threadcacheblk));
assert(nedblksize(ptr[1])>=sizeof(threadcacheblk));
assert(*(unsigned int *) "NEDN"==ptr[0]->magic);
assert(*(unsigned int *) "NEDN"==ptr[1]->magic);
assert(!ptr[0]->prev);
assert(!ptr[1]->next);
if(ptr[0]==ptr[1])
{
assert(!ptr[0]->next);
assert(!ptr[1]->prev);
}
}
}
static void tcfullsanitycheck(threadcache *tc) THROWSPEC
{
threadcacheblk **tcbptr=tc->bins;
int n;
for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
{
threadcacheblk *b, *ob=0;
tcsanitycheck(tcbptr);
for(b=tcbptr[0]; b; ob=b, b=b->next)
{
assert(*(unsigned int *) "NEDN"==b->magic);
assert(!ob || ob->next==b);
assert(!ob || b->prev==ob);
}
}
}
#endif
static NOINLINE void RemoveCacheEntries(nedpool *RESTRICT p, threadcache *RESTRICT tc, unsigned int age) THROWSPEC
{
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
if(tc->freeInCache)
{
threadcacheblk **tcbptr=tc->bins;
int n;
for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
{
threadcacheblk **tcb=tcbptr+1; /* come from oldest end of list */
/*tcsanitycheck(tcbptr);*/
for(; *tcb && tc->frees-(*tcb)->lastUsed>=age; )
{
threadcacheblk *f=*tcb;
size_t blksize=f->size; /*nedblksize(f);*/
assert(blksize<=nedblksize(0, f));
assert(blksize);
#ifdef FULLSANITYCHECKS
assert(*(unsigned int *) "NEDN"==(*tcb)->magic);
#endif
*tcb=(*tcb)->prev;
if(*tcb)
(*tcb)->next=0;
else
*tcbptr=0;
tc->freeInCache-=blksize;
assert((long) tc->freeInCache>=0);
CallFree(0, f, 0);
/*tcsanitycheck(tcbptr);*/
}
}
}
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
}
static void DestroyCaches(nedpool *RESTRICT p) THROWSPEC
{
if(p->caches)
{
threadcache *tc;
int n;
for(n=0; n<THREADCACHEMAXCACHES; n++)
{
if((tc=p->caches[n]))
{
tc->frees++;
RemoveCacheEntries(p, tc, 0);
assert(!tc->freeInCache);
tc->mymspace=-1;
tc->threadid=0;
CallFree(0, tc, 0);
p->caches[n]=0;
}
}
}
}
static NOINLINE threadcache *AllocCache(nedpool *RESTRICT p) THROWSPEC
{
threadcache *tc=0;
int n, end;
ACQUIRE_LOCK(&p->mutex);
for(n=0; n<THREADCACHEMAXCACHES && p->caches[n]; n++);
if(THREADCACHEMAXCACHES==n)
{ /* List exhausted, so disable for this thread */
RELEASE_LOCK(&p->mutex);
return 0;
}
tc=p->caches[n]=(threadcache *) CallCalloc(p->m[0], sizeof(threadcache), 0);
if(!tc)
{
RELEASE_LOCK(&p->mutex);
return 0;
}
#ifdef FULLSANITYCHECKS
tc->magic1=*(unsigned int *)"NEDMALC1";
tc->magic2=*(unsigned int *)"NEDMALC2";
#endif
tc->threadid=(long)(size_t)CURRENT_THREAD;
for(end=0; p->m[end]; end++);
tc->mymspace=abs(tc->threadid) % end;
RELEASE_LOCK(&p->mutex);
if(TLSSET(p->mycache, (void *)(size_t)(n+1))) abort();
return tc;
}
static void *threadcache_malloc(nedpool *RESTRICT p, threadcache *RESTRICT tc, size_t *RESTRICT _size) THROWSPEC
{
void *RESTRICT ret=0;
size_t size=*_size, blksize=0;
unsigned int bestsize;
unsigned int idx=size2binidx(size);
threadcacheblk *RESTRICT blk, **RESTRICT binsptr;
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
/* Calculate best fit bin size */
bestsize=1<<(idx+4);
#ifdef FINEGRAINEDBINS
/* Finer grained bin fit */
idx<<=1;
if(size>bestsize)
{
idx++;
bestsize+=bestsize>>1;
}
if(size>bestsize)
{
idx++;
bestsize=1<<(4+(idx>>1));
}
#else
if(size>bestsize)
{
idx++;
bestsize<<=1;
}
#endif
assert(bestsize>=size);
if(size<bestsize) size=bestsize;
assert(size<=THREADCACHEMAX);
assert(idx<=THREADCACHEMAXBINS);
binsptr=&tc->bins[idx*2];
/* Try to match close, but move up a bin if necessary */
blk=*binsptr;
if(!blk || blk->size<size)
{ /* Bump it up a bin */
if(idx<THREADCACHEMAXBINS)
{
idx++;
binsptr+=2;
blk=*binsptr;
}
}
if(blk)
{
blksize=blk->size; /*nedblksize(blk);*/
assert(nedblksize(0, blk)>=blksize);
assert(blksize>=size);
if(blk->next)
blk->next->prev=0;
*binsptr=blk->next;
if(!*binsptr)
binsptr[1]=0;
#ifdef FULLSANITYCHECKS
blk->magic=0;
#endif
assert(binsptr[0]!=blk && binsptr[1]!=blk);
assert(nedblksize(0, blk)>=sizeof(threadcacheblk) && nedblksize(0, blk)<=THREADCACHEMAX+CHUNK_OVERHEAD);
/*printf("malloc: %p, %p, %p, %lu\n", p, tc, blk, (long) _size);*/
ret=(void *) blk;
}
++tc->mallocs;
if(ret)
{
assert(blksize>=size);
++tc->successes;
tc->freeInCache-=blksize;
assert((long) tc->freeInCache>=0);
}
#if defined(DEBUG) && 0
if(!(tc->mallocs & 0xfff))
{
printf("*** threadcache=%u, mallocs=%u (%f), free=%u (%f), freeInCache=%u\n", (unsigned int) tc->threadid, tc->mallocs,
(float) tc->successes/tc->mallocs, tc->frees, (float) tc->successes/tc->frees, (unsigned int) tc->freeInCache);
}
#endif
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
*_size=size;
return ret;
}
static NOINLINE void ReleaseFreeInCache(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace) THROWSPEC
{
unsigned int age=THREADCACHEMAXFREESPACE/8192;
/*ACQUIRE_LOCK(&p->m[mymspace]->mutex);*/
while(age && tc->freeInCache>=THREADCACHEMAXFREESPACE)
{
RemoveCacheEntries(p, tc, age);
/*printf("*** Removing cache entries older than %u (%u)\n", age, (unsigned int) tc->freeInCache);*/
age>>=1;
}
/*RELEASE_LOCK(&p->m[mymspace]->mutex);*/
}
static void threadcache_free(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, void *RESTRICT mem, size_t size) THROWSPEC
{
unsigned int bestsize;
unsigned int idx=size2binidx(size);
threadcacheblk **RESTRICT binsptr, *RESTRICT tck=(threadcacheblk *) mem;
assert(size>=sizeof(threadcacheblk) && size<=THREADCACHEMAX+CHUNK_OVERHEAD);
#ifdef DEBUG
/* Make sure this is a valid memory block */
assert(nedblksize(0, mem));
#endif
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
/* Calculate best fit bin size */
bestsize=1<<(idx+4);
#ifdef FINEGRAINEDBINS
/* Finer grained bin fit */
idx<<=1;
if(size>bestsize)
{
unsigned int biggerbestsize=(bestsize+bestsize)<<1;
if(size>=biggerbestsize)
{
idx++;
bestsize=biggerbestsize;
}
}
#endif
if(bestsize!=size) /* dlmalloc can round up, so we round down to preserve indexing */
size=bestsize;
binsptr=&tc->bins[idx*2];
assert(idx<=THREADCACHEMAXBINS);
if(tck==*binsptr)
{
fprintf(stderr, "nedmalloc: Attempt to free already freed memory block %p - aborting!\n", tck);
abort();
}
#ifdef FULLSANITYCHECKS
tck->magic=*(unsigned int *) "NEDN";
#endif
tck->lastUsed=++tc->frees;
tck->size=(unsigned int) size;
tck->next=*binsptr;
tck->prev=0;
if(tck->next)
tck->next->prev=tck;
else
binsptr[1]=tck;
assert(!*binsptr || (*binsptr)->size==tck->size);
*binsptr=tck;
assert(tck==tc->bins[idx*2]);
assert(tc->bins[idx*2+1]==tck || binsptr[0]->next->prev==tck);
/*printf("free: %p, %p, %p, %lu\n", p, tc, mem, (long) size);*/
tc->freeInCache+=size;
#ifdef FULLSANITYCHECKS
tcfullsanitycheck(tc);
#endif
#if 1
if(tc->freeInCache>=THREADCACHEMAXFREESPACE)
ReleaseFreeInCache(p, tc, mymspace);
#endif
}
static NOINLINE int InitPool(nedpool *RESTRICT p, size_t capacity, int threads) THROWSPEC
{ /* threads is -1 for system pool */
ensure_initialization();
ACQUIRE_MALLOC_GLOBAL_LOCK();
if(p->threads) goto done;
if(INITIAL_LOCK(&p->mutex)) goto err;
if(TLSALLOC(&p->mycache)) goto err;
#if USE_ALLOCATOR==0
p->m[0]=(mstate) mspacecounter++;
#elif USE_ALLOCATOR==1
if(!(p->m[0]=(mstate) create_mspace(capacity, 1))) goto err;
p->m[0]->extp=p;
#endif
p->threads=(threads<1 || threads>MAXTHREADSINPOOL) ? MAXTHREADSINPOOL : threads;
done:
RELEASE_MALLOC_GLOBAL_LOCK();
return 1;
err:
if(threads<0)
abort(); /* If you can't allocate for system pool, we're screwed */
DestroyCaches(p);
if(p->m[0])
{
#if USE_ALLOCATOR==1
destroy_mspace(p->m[0]);
#endif
p->m[0]=0;
}
if(p->mycache)
{
if(TLSFREE(p->mycache)) abort();
p->mycache=0;
}
RELEASE_MALLOC_GLOBAL_LOCK();
return 0;
}
static NOINLINE mstate FindMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int *RESTRICT lastUsed, size_t size) THROWSPEC
{ /* Gets called when thread's last used mspace is in use. The strategy
is to run through the list of all available mspaces looking for an
unlocked one and if we fail, we create a new one so long as we don't
exceed p->threads */
int n, end;
for(n=end=*lastUsed+1; p->m[n]; end=++n)
{
if(TRY_LOCK(&p->m[n]->mutex)) goto found;
}
for(n=0; n<*lastUsed && p->m[n]; n++)
{
if(TRY_LOCK(&p->m[n]->mutex)) goto found;
}
if(end<p->threads)
{
mstate temp;
#if USE_ALLOCATOR==0
temp=(mstate) mspacecounter++;
#elif USE_ALLOCATOR==1
if(!(temp=(mstate) create_mspace(size, 1)))
goto badexit;
#endif
/* Now we're ready to modify the lists, we lock */
ACQUIRE_LOCK(&p->mutex);
while(p->m[end] && end<p->threads)
end++;
if(end>=p->threads)
{ /* Drat, must destroy it now */
RELEASE_LOCK(&p->mutex);
#if USE_ALLOCATOR==1
destroy_mspace((mstate) temp);
#endif
goto badexit;
}
/* We really want to make sure this goes into memory now but we
have to be careful of breaking aliasing rules, so write it twice */
*((volatile struct malloc_state **) &p->m[end])=p->m[end]=temp;
ACQUIRE_LOCK(&p->m[end]->mutex);
/*printf("Created mspace idx %d\n", end);*/
RELEASE_LOCK(&p->mutex);
n=end;
goto found;
}
/* Let it lock on the last one it used */
badexit:
ACQUIRE_LOCK(&p->m[*lastUsed]->mutex);
return p->m[*lastUsed];
found:
*lastUsed=n;
if(tc)
tc->mymspace=n;
else
{
if(TLSSET(p->mycache, (void *)(size_t)(-(n+1)))) abort();
}
return p->m[n];
}
typedef struct PoolList_t
{
size_t size; /* Size of list */
size_t length; /* Actual entries in list */
#ifdef DEBUG
nedpool *list[1]; /* Force testing of list expansion */
#else
nedpool *list[16];
#endif
} PoolList;
static MLOCK_T poollistlock;
static PoolList *poollist;
NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC
{
nedpool *ret=0;
if(!poollist)
{
PoolList *newpoollist=0;
if(!(newpoollist=(PoolList *) nedpcalloc(0, 1, sizeof(PoolList)+sizeof(nedpool *)))) return 0;
INITIAL_LOCK(&poollistlock);
ACQUIRE_LOCK(&poollistlock);
poollist=newpoollist;
poollist->size=sizeof(poollist->list)/sizeof(nedpool *);
}
else
ACQUIRE_LOCK(&poollistlock);
if(poollist->length==poollist->size)
{
PoolList *newpoollist=0;
size_t newsize=0;
newsize=sizeof(PoolList)+(poollist->size+1)*sizeof(nedpool *);
if(!(newpoollist=(PoolList *) nedprealloc(0, poollist, newsize))) goto badexit;
poollist=newpoollist;
memset(&poollist->list[poollist->size], 0, newsize-((size_t)&poollist->list[poollist->size]-(size_t)&poollist->list[0]));
poollist->size=((newsize-((char *)&poollist->list[0]-(char *)poollist))/sizeof(nedpool *))-1;
assert(poollist->size>poollist->length);
}
if(!(ret=(nedpool *) nedpcalloc(0, 1, sizeof(nedpool)))) goto badexit;
if(!InitPool(ret, capacity, threads))
{
nedpfree(0, ret);
goto badexit;
}
poollist->list[poollist->length++]=ret;
badexit:
RELEASE_LOCK(&poollistlock);
return ret;
}
void neddestroypool(nedpool *p) THROWSPEC
{
unsigned int n;
ACQUIRE_LOCK(&p->mutex);
DestroyCaches(p);
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1
destroy_mspace(p->m[n]);
#endif
p->m[n]=0;
}
RELEASE_LOCK(&p->mutex);
if(TLSFREE(p->mycache)) abort();
nedpfree(0, p);
ACQUIRE_LOCK(&poollistlock);
assert(poollist);
for(n=0; n<poollist->length && poollist->list[n]!=p; n++);
assert(n!=poollist->length);
memmove(&poollist->list[n], &poollist->list[n+1], (size_t)&poollist->list[poollist->length]-(size_t)&poollist->list[n]);
if(!--poollist->length)
{
assert(!poollist->list[0]);
nedpfree(0, poollist);
poollist=0;
}
RELEASE_LOCK(&poollistlock);
}
void neddestroysyspool() THROWSPEC
{
nedpool *p=&syspool;
int n;
ACQUIRE_LOCK(&p->mutex);
DestroyCaches(p);
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1
destroy_mspace(p->m[n]);
#endif
p->m[n]=0;
}
/* Render syspool unusable */
for(n=0; n<THREADCACHEMAXCACHES; n++)
p->caches[n]=(threadcache *)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
for(n=0; n<MAXTHREADSINPOOL+1; n++)
p->m[n]=(mstate)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
if(TLSFREE(p->mycache)) abort();
RELEASE_LOCK(&p->mutex);
}
nedpool **nedpoollist() THROWSPEC
{
nedpool **ret=0;
if(poollist)
{
ACQUIRE_LOCK(&poollistlock);
if(!(ret=(nedpool **) nedmalloc((poollist->length+1)*sizeof(nedpool *)))) goto badexit;
memcpy(ret, poollist->list, (poollist->length+1)*sizeof(nedpool *));
badexit:
RELEASE_LOCK(&poollistlock);
}
return ret;
}
void nedpsetvalue(nedpool *p, void *v) THROWSPEC
{
if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
p->uservalue=v;
}
void *nedgetvalue(nedpool **p, void *mem) THROWSPEC
{
nedpool *np=0;
mstate fm=nedblkmstate(mem);
if(!fm || !fm->extp) return 0;
np=(nedpool *) fm->extp;
if(p) *p=np;
return np->uservalue;
}
void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC
{
int mycache;
if(!p)
{
p=&syspool;
if(!syspool.threads) InitPool(&syspool, 0, -1);
}
mycache=(int)(size_t) TLSGET(p->mycache);
if(!mycache)
{ /* Set to mspace 0 */
if(disable && TLSSET(p->mycache, (void *)(size_t)-1)) abort();
}
else if(mycache>0)
{ /* Set to last used mspace */
threadcache *tc=p->caches[mycache-1];
#if defined(DEBUG)
printf("Threadcache utilisation: %lf%% in cache with %lf%% lost to other threads\n",
100.0*tc->successes/tc->mallocs, 100.0*((double) tc->mallocs-tc->frees)/tc->mallocs);
#endif
if(disable && TLSSET(p->mycache, (void *)(size_t)(-tc->mymspace))) abort();
tc->frees++;
RemoveCacheEntries(p, tc, 0);
assert(!tc->freeInCache);
if(disable)
{
tc->mymspace=-1;
tc->threadid=0;
CallFree(0, p->caches[mycache-1], 0);
p->caches[mycache-1]=0;
}
}
}
void neddisablethreadcache(nedpool *p) THROWSPEC
{
nedtrimthreadcache(p, 1);
}
#define GETMSPACE(m,p,tc,ms,s,action) \
do \
{ \
mstate m = GetMSpace((p),(tc),(ms),(s)); \
action; \
if(USE_ALLOCATOR==1) { RELEASE_LOCK(&m->mutex); } \
} while (0)
static FORCEINLINE mstate GetMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, size_t size) THROWSPEC
{ /* Returns a locked and ready for use mspace */
mstate m=p->m[mymspace];
assert(m);
#if USE_ALLOCATOR==1
if(!TRY_LOCK(&p->m[mymspace]->mutex)) m=FindMSpace(p, tc, &mymspace, size);
/*assert(IS_LOCKED(&p->m[mymspace]->mutex));*/
#endif
return m;
}
static NOINLINE void GetThreadCache_cold1(nedpool *RESTRICT *RESTRICT p) THROWSPEC
{
*p=&syspool;
if(!syspool.threads) InitPool(&syspool, 0, -1);
}
static NOINLINE void GetThreadCache_cold2(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, int mycache) THROWSPEC
{
if(!mycache)
{ /* Need to allocate a new cache */
*tc=AllocCache(*p);
if(!*tc)
{ /* Disable */
if(TLSSET((*p)->mycache, (void *)(size_t)-1)) abort();
*mymspace=0;
}
else
*mymspace=(*tc)->mymspace;
}
else
{ /* Cache disabled, but we do have an assigned thread pool */
*tc=0;
*mymspace=-mycache-1;
}
}
static FORCEINLINE void GetThreadCache(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, size_t *RESTRICT size) THROWSPEC
{
int mycache;
if(size && *size<sizeof(threadcacheblk)) *size=sizeof(threadcacheblk);
if(!*p)
GetThreadCache_cold1(p);
mycache=(int)(size_t) TLSGET((*p)->mycache);
if(mycache>0)
{ /* Already have a cache */
*tc=(*p)->caches[mycache-1];
*mymspace=(*tc)->mymspace;
}
else GetThreadCache_cold2(p, tc, mymspace, mycache);
assert(*mymspace>=0);
assert(!(*tc) || (long)(size_t)CURRENT_THREAD==(*tc)->threadid);
#ifdef FULLSANITYCHECKS
if(*tc)
{
if(*(unsigned int *)"NEDMALC1"!=(*tc)->magic1 || *(unsigned int *)"NEDMALC2"!=(*tc)->magic2)
{
abort();
}
}
#endif
}
NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC
{
void *ret=0;
threadcache *tc;
int mymspace;
GetThreadCache(&p, &tc, &mymspace, &size);
#if THREADCACHEMAX
if(tc && size<=THREADCACHEMAX)
{ /* Use the thread cache */
ret=threadcache_malloc(p, tc, &size);
}
#endif
if(!ret)
{ /* Use this thread's mspace */
GETMSPACE(m, p, tc, mymspace, size,
ret=CallMalloc(m, size, 0));
}
return ret;
}
NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC
{
size_t rsize=size*no;
void *ret=0;
threadcache *tc;
int mymspace;
GetThreadCache(&p, &tc, &mymspace, &rsize);
#if THREADCACHEMAX
if(tc && rsize<=THREADCACHEMAX)
{ /* Use the thread cache */
if((ret=threadcache_malloc(p, tc, &rsize)))
memset(ret, 0, rsize);
}
#endif
if(!ret)
{ /* Use this thread's mspace */
GETMSPACE(m, p, tc, mymspace, rsize,
ret=CallCalloc(m, rsize, 0));
}
return ret;
}
NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC
{
void *ret=0;
threadcache *tc;
int mymspace, isforeign=1;
size_t memsize;
if(!mem) return nedpmalloc(p, size);
memsize=nedblksize(&isforeign, mem);
assert(memsize);
if(!memsize)
{
fprintf(stderr, "nedmalloc: nedprealloc() called with a block not created by nedmalloc!\n");
abort();
}
else if(size<=memsize && memsize-size<
#ifdef DEBUG
32
#else
1024
#endif
) /* If realloc size is within 1Kb smaller than existing, noop it */
return mem;
GetThreadCache(&p, &tc, &mymspace, &size);
#if THREADCACHEMAX
if(tc && size && size<=THREADCACHEMAX)
{ /* Use the thread cache */
if((ret=threadcache_malloc(p, tc, &size)))
{
memcpy(ret, mem, memsize<size ? memsize : size);
if(memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
threadcache_free(p, tc, mymspace, mem, memsize);
else
CallFree(0, mem, isforeign);
}
}
#endif
if(!ret)
{ /* Reallocs always happen in the mspace they happened in, so skip
locking the preferred mspace for this thread */
ret=CallRealloc(p->m[mymspace], mem, isforeign, memsize, size);
}
return ret;
}
void nedpfree(nedpool *p, void *mem) THROWSPEC
{ /* Frees always happen in the mspace they happened in, so skip
locking the preferred mspace for this thread */
threadcache *tc;
int mymspace, isforeign=1;
size_t memsize;
if(!mem)
{ /* If you tried this on FreeBSD you'd be sorry! */
#ifdef DEBUG
fprintf(stderr, "nedmalloc: WARNING nedpfree() called with zero. This is not portable behaviour!\n");
#endif
return;
}
memsize=nedblksize(&isforeign, mem);
assert(memsize);
if(!memsize)
{
fprintf(stderr, "nedmalloc: nedpfree() called with a block not created by nedmalloc!\n");
abort();
}
GetThreadCache(&p, &tc, &mymspace, 0);
#if THREADCACHEMAX
if(mem && tc && memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
threadcache_free(p, tc, mymspace, mem, memsize);
else
#endif
CallFree(0, mem, isforeign);
}
NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC
{
void *ret;
threadcache *tc;
int mymspace;
GetThreadCache(&p, &tc, &mymspace, &bytes);
{ /* Use this thread's mspace */
GETMSPACE(m, p, tc, mymspace, bytes,
ret=CallMalloc(m, bytes, alignment));
}
return ret;
}
struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC
{
int n;
struct nedmallinfo ret={0};
if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1 && !NO_MALLINFO
struct mallinfo t=mspace_mallinfo(p->m[n]);
ret.arena+=t.arena;
ret.ordblks+=t.ordblks;
ret.hblkhd+=t.hblkhd;
ret.usmblks+=t.usmblks;
ret.uordblks+=t.uordblks;
ret.fordblks+=t.fordblks;
ret.keepcost+=t.keepcost;
#endif
}
return ret;
}
int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC
{
#if USE_ALLOCATOR==1
return mspace_mallopt(parno, value);
#else
return 0;
#endif
}
NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC
{
#if USE_ALLOCATOR==1
if(granularity) *granularity=mparams.granularity;
if(magic) *magic=mparams.magic;
return (void *) &syspool;
#else
if(granularity) *granularity=0;
if(magic) *magic=0;
return 0;
#endif
}
int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC
{
int n, ret=0;
if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1
ret+=mspace_trim(p->m[n], pad);
#endif
}
return ret;
}
void nedpmalloc_stats(nedpool *p) THROWSPEC
{
int n;
if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1
mspace_malloc_stats(p->m[n]);
#endif
}
}
size_t nedpmalloc_footprint(nedpool *p) THROWSPEC
{
size_t ret=0;
int n;
if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
for(n=0; p->m[n]; n++)
{
#if USE_ALLOCATOR==1
ret+=mspace_footprint(p->m[n]);
#endif
}
return ret;
}
NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC
{
void **ret;
threadcache *tc;
int mymspace;
GetThreadCache(&p, &tc, &mymspace, &elemsize);
#if USE_ALLOCATOR==0
GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
ret=unsupported_operation("independent_calloc"));
#elif USE_ALLOCATOR==1
GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
ret=mspace_independent_calloc(m, elemsno, elemsize, chunks));
#endif
return ret;
}
#if 0
NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC
{
void **ret;
threadcache *tc;
int mymspace;
size_t i, *adjustedsizes=(size_t *) alloca(elems*sizeof(size_t));
if(!adjustedsizes) return 0;
for(i=0; i<elems; i++)
adjustedsizes[i]=sizes[i]<sizeof(threadcacheblk) ? sizeof(threadcacheblk) : sizes[i];
GetThreadCache(&p, &tc, &mymspace, 0);
#if USE_ALLOCATOR==0
GETMSPACE(m, p, tc, mymspace, 0,
ret=unsupported_operation("independent_comalloc"));
#elif USE_ALLOCATOR==1
GETMSPACE(m, p, tc, mymspace, 0,
ret=mspace_independent_comalloc(m, elems, adjustedsizes, chunks));
#endif
return ret;
}
#endif // 0
// cheap replacement for strdup so we aren't feeding system allocated blocks into nedmalloc
NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR char *nedstrdup(const char *str) THROWSPEC
{
int n = strlen(str) + 1;
char *dup = nedmalloc(n);
return dup ? memcpy(dup, str, n) : NULL;
}
#if defined(__cplusplus)
}
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif