raze/source/common/rendering/vulkan/shaders/vk_shader.cpp

495 lines
15 KiB
C++
Raw Normal View History

/*
** Vulkan backend
** Copyright (c) 2016-2020 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "vk_shader.h"
#include "vk_ppshader.h"
#include "zvulkan/vulkanbuilders.h"
#include "vulkan/system/vk_renderdevice.h"
#include "hw_shaderpatcher.h"
#include "filesystem.h"
#include "engineerrors.h"
#include "version.h"
bool VkShaderManager::CompileNextShader()
{
const char *mainvp = "shaders/glsl/main.vp";
const char *mainfp = "shaders/glsl/main.fp";
int i = compileIndex;
if (compileState == 0)
{
// regular material shaders
VkShaderProgram prog;
prog.vert = LoadVertShader(defaultshaders[i].ShaderName, mainvp, defaultshaders[i].Defines);
prog.frag = LoadFragShader(defaultshaders[i].ShaderName, mainfp, defaultshaders[i].gettexelfunc, defaultshaders[i].lightfunc, defaultshaders[i].Defines, true, compilePass == GBUFFER_PASS);
mMaterialShaders[compilePass].push_back(std::move(prog));
compileIndex++;
if (defaultshaders[compileIndex].ShaderName == nullptr)
{
compileIndex = 0;
compileState++;
}
}
else if (compileState == 1)
{
// NAT material shaders
VkShaderProgram natprog;
natprog.vert = LoadVertShader(defaultshaders[i].ShaderName, mainvp, defaultshaders[i].Defines);
natprog.frag = LoadFragShader(defaultshaders[i].ShaderName, mainfp, defaultshaders[i].gettexelfunc, defaultshaders[i].lightfunc, defaultshaders[i].Defines, false, compilePass == GBUFFER_PASS);
mMaterialShadersNAT[compilePass].push_back(std::move(natprog));
compileIndex++;
if (compileIndex == SHADER_NoTexture)
{
compileIndex = 0;
compileState++;
if (usershaders.Size() == 0) compileState++;
}
}
else if (compileState == 2)
{
// user shaders
const FString& name = ExtractFileBase(usershaders[i].shader);
FString defines = defaultshaders[usershaders[i].shaderType].Defines + usershaders[i].defines;
VkShaderProgram prog;
prog.vert = LoadVertShader(name, mainvp, defines);
prog.frag = LoadFragShader(name, mainfp, usershaders[i].shader, defaultshaders[usershaders[i].shaderType].lightfunc, defines, true, compilePass == GBUFFER_PASS);
mMaterialShaders[compilePass].push_back(std::move(prog));
compileIndex++;
if (compileIndex >= (int)usershaders.Size())
{
compileIndex = 0;
compileState++;
}
}
else if (compileState == 3)
{
// Effect shaders
VkShaderProgram prog;
prog.vert = LoadVertShader(effectshaders[i].ShaderName, effectshaders[i].vp, effectshaders[i].defines);
prog.frag = LoadFragShader(effectshaders[i].ShaderName, effectshaders[i].fp1, effectshaders[i].fp2, effectshaders[i].fp3, effectshaders[i].defines, true, compilePass == GBUFFER_PASS);
mEffectShaders[compilePass].push_back(std::move(prog));
compileIndex++;
if (compileIndex >= MAX_EFFECTS)
{
compileIndex = 0;
compilePass++;
if (compilePass == MAX_PASS_TYPES)
{
compileIndex = -1; // we're done.
return true;
}
compileState = 0;
}
}
return false;
}
VkShaderManager::VkShaderManager(VulkanRenderDevice* fb) : fb(fb)
{
CompileNextShader();
}
VkShaderManager::~VkShaderManager()
{
}
void VkShaderManager::Deinit()
{
while (!PPShaders.empty())
RemoveVkPPShader(PPShaders.back());
}
VkShaderProgram *VkShaderManager::GetEffect(int effect, EPassType passType)
{
if (compileIndex == -1 && effect >= 0 && effect < MAX_EFFECTS && mEffectShaders[passType][effect].frag)
{
return &mEffectShaders[passType][effect];
}
return nullptr;
}
VkShaderProgram *VkShaderManager::Get(unsigned int eff, bool alphateston, EPassType passType)
{
if (compileIndex != -1)
return &mMaterialShaders[0][0];
// indices 0-2 match the warping modes, 3 no texture, the following are custom
if (!alphateston && eff < SHADER_NoTexture)
{
return &mMaterialShadersNAT[passType][eff]; // Non-alphatest shaders are only created for default, warp1+2. The rest won't get used anyway
}
else if (eff < (unsigned int)mMaterialShaders[passType].size())
{
return &mMaterialShaders[passType][eff];
}
return nullptr;
}
static const char *shaderBindings = R"(
layout(set = 0, binding = 0) uniform sampler2D ShadowMap;
layout(set = 0, binding = 1) uniform sampler2DArray LightMap;
#ifdef SUPPORTS_RAYTRACING
layout(set = 0, binding = 2) uniform accelerationStructureEXT TopLevelAS;
#endif
// This must match the HWViewpointUniforms struct
layout(set = 1, binding = 0, std140) uniform ViewpointUBO {
mat4 ProjectionMatrix;
mat4 ViewMatrix;
mat4 NormalViewMatrix;
vec4 uCameraPos;
vec4 uClipLine;
float uGlobVis; // uGlobVis = R_GetGlobVis(r_visibility) / 32.0
int uPalLightLevels;
int uViewHeight; // Software fuzz scaling
float uClipHeight;
float uClipHeightDirection;
int uShadowmapFilter;
};
layout(set = 1, binding = 1, std140) uniform MatricesUBO {
mat4 ModelMatrix;
mat4 NormalModelMatrix;
mat4 TextureMatrix;
};
struct StreamData
{
vec4 uObjectColor;
vec4 uObjectColor2;
vec4 uDynLightColor;
vec4 uAddColor;
vec4 uTextureAddColor;
vec4 uTextureModulateColor;
vec4 uTextureBlendColor;
vec4 uFogColor;
float uDesaturationFactor;
float uInterpolationFactor;
float timer; // timer data for material shaders
int useVertexData;
vec4 uVertexColor;
vec4 uVertexNormal;
vec4 uGlowTopPlane;
vec4 uGlowTopColor;
vec4 uGlowBottomPlane;
vec4 uGlowBottomColor;
vec4 uGradientTopPlane;
vec4 uGradientBottomPlane;
vec4 uSplitTopPlane;
vec4 uSplitBottomPlane;
vec4 uDetailParms;
vec4 uNpotEmulation;
vec4 padding1, padding2, padding3;
};
layout(set = 1, binding = 2, std140) uniform StreamUBO {
StreamData data[MAX_STREAM_DATA];
};
// light buffers
layout(set = 1, binding = 3, std430) buffer LightBufferSSO
{
vec4 lights[];
};
// bone matrix buffers
layout(set = 1, binding = 4, std430) buffer BoneBufferSSO
{
mat4 bones[];
};
// textures
layout(set = 2, binding = 0) uniform sampler2D tex;
layout(set = 2, binding = 1) uniform sampler2D texture2;
layout(set = 2, binding = 2) uniform sampler2D texture3;
layout(set = 2, binding = 3) uniform sampler2D texture4;
layout(set = 2, binding = 4) uniform sampler2D texture5;
layout(set = 2, binding = 5) uniform sampler2D texture6;
layout(set = 2, binding = 6) uniform sampler2D texture7;
layout(set = 2, binding = 7) uniform sampler2D texture8;
layout(set = 2, binding = 8) uniform sampler2D texture9;
layout(set = 2, binding = 9) uniform sampler2D texture10;
layout(set = 2, binding = 10) uniform sampler2D texture11;
// This must match the PushConstants struct
layout(push_constant) uniform PushConstants
{
int uTextureMode;
float uAlphaThreshold;
vec2 uClipSplit;
// Lighting + Fog
float uLightLevel;
float uFogDensity;
float uLightFactor;
float uLightDist;
int uFogEnabled;
// dynamic lights
int uLightIndex;
// Blinn glossiness and specular level
vec2 uSpecularMaterial;
// bone animation
int uBoneIndexBase;
int uDataIndex;
int padding2, padding3;
};
// material types
#if defined(SPECULAR)
#define normaltexture texture2
#define speculartexture texture3
#define brighttexture texture4
#define detailtexture texture5
#define glowtexture texture6
#elif defined(PBR)
#define normaltexture texture2
#define metallictexture texture3
#define roughnesstexture texture4
#define aotexture texture5
#define brighttexture texture6
#define detailtexture texture7
#define glowtexture texture8
#else
#define brighttexture texture2
#define detailtexture texture3
#define glowtexture texture4
#endif
#define uObjectColor data[uDataIndex].uObjectColor
#define uObjectColor2 data[uDataIndex].uObjectColor2
#define uDynLightColor data[uDataIndex].uDynLightColor
#define uAddColor data[uDataIndex].uAddColor
#define uTextureBlendColor data[uDataIndex].uTextureBlendColor
#define uTextureModulateColor data[uDataIndex].uTextureModulateColor
#define uTextureAddColor data[uDataIndex].uTextureAddColor
#define uFogColor data[uDataIndex].uFogColor
#define uDesaturationFactor data[uDataIndex].uDesaturationFactor
#define uInterpolationFactor data[uDataIndex].uInterpolationFactor
#define timer data[uDataIndex].timer
#define useVertexData data[uDataIndex].useVertexData
#define uVertexColor data[uDataIndex].uVertexColor
#define uVertexNormal data[uDataIndex].uVertexNormal
#define uGlowTopPlane data[uDataIndex].uGlowTopPlane
#define uGlowTopColor data[uDataIndex].uGlowTopColor
#define uGlowBottomPlane data[uDataIndex].uGlowBottomPlane
#define uGlowBottomColor data[uDataIndex].uGlowBottomColor
#define uGradientTopPlane data[uDataIndex].uGradientTopPlane
#define uGradientBottomPlane data[uDataIndex].uGradientBottomPlane
#define uSplitTopPlane data[uDataIndex].uSplitTopPlane
#define uSplitBottomPlane data[uDataIndex].uSplitBottomPlane
#define uDetailParms data[uDataIndex].uDetailParms
#define uNpotEmulation data[uDataIndex].uNpotEmulation
#define SUPPORTS_SHADOWMAPS
#define VULKAN_COORDINATE_SYSTEM
#define HAS_UNIFORM_VERTEX_DATA
// GLSL spec 4.60, 8.15. Noise Functions
// https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
// "The noise functions noise1, noise2, noise3, and noise4 have been deprecated starting with version 4.4 of GLSL.
// When not generating SPIR-V they are defined to return the value 0.0 or a vector whose components are all 0.0.
// When generating SPIR-V the noise functions are not declared and may not be used."
// However, we need to support mods with custom shaders created for OpenGL renderer
float noise1(float) { return 0; }
vec2 noise2(vec2) { return vec2(0); }
vec3 noise3(vec3) { return vec3(0); }
vec4 noise4(vec4) { return vec4(0); }
)";
std::unique_ptr<VulkanShader> VkShaderManager::LoadVertShader(FString shadername, const char *vert_lump, const char *defines)
{
FString code = GetTargetGlslVersion();
code << defines;
code << "\n#define MAX_STREAM_DATA " << std::to_string(MAX_STREAM_DATA).c_str() << "\n";
#ifdef NPOT_EMULATION
code << "#define NPOT_EMULATION\n";
#endif
code << shaderBindings;
if (!fb->device->EnabledFeatures.Features.shaderClipDistance) code << "#define NO_CLIPDISTANCE_SUPPORT\n";
code << "#line 1\n";
code << LoadPrivateShaderLump(vert_lump).GetChars() << "\n";
return ShaderBuilder()
.VertexShader(code.GetChars())
.DebugName(shadername.GetChars())
.Create(shadername.GetChars(), fb->device.get());
}
std::unique_ptr<VulkanShader> VkShaderManager::LoadFragShader(FString shadername, const char *frag_lump, const char *material_lump, const char *light_lump, const char *defines, bool alphatest, bool gbufferpass)
{
FString code = GetTargetGlslVersion();
if (fb->RaytracingEnabled())
code << "\n#define SUPPORTS_RAYTRACING\n";
code << defines;
2020-05-31 19:25:52 +00:00
code << "\n$placeholder$"; // here the code can later add more needed #defines.
code << "\n#define MAX_STREAM_DATA " << std::to_string(MAX_STREAM_DATA).c_str() << "\n";
#ifdef NPOT_EMULATION
code << "#define NPOT_EMULATION\n";
#endif
code << shaderBindings;
2020-05-31 19:25:52 +00:00
FString placeholder = "\n";
if (!fb->device->EnabledFeatures.Features.shaderClipDistance) code << "#define NO_CLIPDISTANCE_SUPPORT\n";
if (!alphatest) code << "#define NO_ALPHATEST\n";
if (gbufferpass) code << "#define GBUFFER_PASS\n";
code << "\n#line 1\n";
code << LoadPrivateShaderLump(frag_lump).GetChars() << "\n";
if (material_lump)
{
if (material_lump[0] != '#')
{
FString pp_code = LoadPublicShaderLump(material_lump);
if (pp_code.IndexOf("ProcessMaterial") < 0 && pp_code.IndexOf("SetupMaterial") < 0)
{
// this looks like an old custom hardware shader.
// add ProcessMaterial function that calls the older ProcessTexel function
if (pp_code.IndexOf("GetTexCoord") >= 0)
{
code << "\n" << LoadPrivateShaderLump("shaders/glsl/func_defaultmat2.fp").GetChars() << "\n";
}
else
{
code << "\n" << LoadPrivateShaderLump("shaders/glsl/func_defaultmat.fp").GetChars() << "\n";
if (pp_code.IndexOf("ProcessTexel") < 0)
{
// this looks like an even older custom hardware shader.
// We need to replace the ProcessTexel call to make it work.
code.Substitute("material.Base = ProcessTexel();", "material.Base = Process(vec4(1.0));");
}
}
if (pp_code.IndexOf("ProcessLight") >= 0)
{
// The ProcessLight signatured changed. Forward to the old one.
code << "\nvec4 ProcessLight(vec4 color);\n";
code << "\nvec4 ProcessLight(Material material, vec4 color) { return ProcessLight(color); }\n";
}
}
code << "\n#line 1\n";
code << RemoveLegacyUserUniforms(pp_code).GetChars();
code.Substitute("gl_TexCoord[0]", "vTexCoord"); // fix old custom shaders.
if (pp_code.IndexOf("ProcessLight") < 0)
{
code << "\n" << LoadPrivateShaderLump("shaders/glsl/func_defaultlight.fp").GetChars() << "\n";
}
// ProcessMaterial must be considered broken because it requires the user to fill in data they possibly cannot know all about.
if (pp_code.IndexOf("ProcessMaterial") >= 0 && pp_code.IndexOf("SetupMaterial") < 0)
{
// This reactivates the old logic and disables all features that cannot be supported with that method.
2020-05-31 19:25:52 +00:00
placeholder << "#define LEGACY_USER_SHADER\n";
}
}
else
{
// material_lump is not a lump name but the source itself (from generated shaders)
code << (material_lump + 1) << "\n";
}
}
2020-05-31 19:25:52 +00:00
code.Substitute("$placeholder$", placeholder);
if (light_lump)
{
code << "\n#line 1\n";
code << LoadPrivateShaderLump(light_lump).GetChars();
}
return ShaderBuilder()
.FragmentShader(code.GetChars())
.DebugName(shadername.GetChars())
.Create(shadername.GetChars(), fb->device.get());
}
FString VkShaderManager::GetTargetGlslVersion()
{
if (fb->device->Instance->ApiVersion == VK_API_VERSION_1_2)
{
return "#version 460\n#extension GL_EXT_ray_query : enable\n";
}
else
{
return "#version 450 core\n";
}
}
FString VkShaderManager::LoadPublicShaderLump(const char *lumpname)
{
int lump = fileSystem.CheckNumForFullName(lumpname, 0);
if (lump == -1) lump = fileSystem.CheckNumForFullName(lumpname);
if (lump == -1) I_Error("Unable to load '%s'", lumpname);
FileData data = fileSystem.ReadFile(lump);
return data.GetString();
}
FString VkShaderManager::LoadPrivateShaderLump(const char *lumpname)
{
int lump = fileSystem.CheckNumForFullName(lumpname, 0);
if (lump == -1) I_Error("Unable to load '%s'", lumpname);
FileData data = fileSystem.ReadFile(lump);
return data.GetString();
}
VkPPShader* VkShaderManager::GetVkShader(PPShader* shader)
{
if (!shader->Backend)
shader->Backend = std::make_unique<VkPPShader>(fb, shader);
return static_cast<VkPPShader*>(shader->Backend.get());
}
void VkShaderManager::AddVkPPShader(VkPPShader* shader)
{
shader->it = PPShaders.insert(PPShaders.end(), shader);
}
void VkShaderManager::RemoveVkPPShader(VkPPShader* shader)
{
shader->Reset();
shader->fb = nullptr;
PPShaders.erase(shader->it);
}