mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-15 20:20:54 +00:00
559 lines
16 KiB
C++
559 lines
16 KiB
C++
/*
|
|
** sectorgeometry.cpp
|
|
**
|
|
** caches the triangle meshes used for rendering sector planes.
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2021 Christoph Oelckers
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
**
|
|
*/
|
|
|
|
#include "sectorgeometry.h"
|
|
#include "build.h"
|
|
#include "gamefuncs.h"
|
|
#include "texturemanager.h"
|
|
#include "earcut.hpp"
|
|
#include "hw_sections.h"
|
|
#include "nodebuilder/nodebuild.h"
|
|
|
|
SectorGeometry sectorGeometry;
|
|
|
|
//==========================================================================
|
|
//
|
|
// CalcPlane fixme - this should be stored in the sector, not be recalculated each frame.
|
|
//
|
|
//==========================================================================
|
|
|
|
static FVector3 CalcNormal(sectortype* sector, int plane)
|
|
{
|
|
FVector3 pt[3];
|
|
|
|
auto wal = &wall[sector->wallptr];
|
|
auto wal2 = &wall[wal->point2];
|
|
|
|
pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 };
|
|
pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 };
|
|
PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z);
|
|
PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z);
|
|
|
|
if (pt[0].X == pt[1].X)
|
|
{
|
|
if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f };
|
|
pt[2].X = pt[0].X + 4;
|
|
pt[2].Y = pt[0].Y;
|
|
}
|
|
else
|
|
{
|
|
pt[2].X = pt[0].X;
|
|
pt[2].Y = pt[0].Y + 4;
|
|
}
|
|
PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z);
|
|
|
|
auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]);
|
|
|
|
if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2];
|
|
return pt[2];
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// The math used here to calculate texture positioning was derived from
|
|
// Polymer but required several fixes for correctness.
|
|
//
|
|
//==========================================================================
|
|
class UVCalculator
|
|
{
|
|
sectortype* sect;
|
|
int myplane;
|
|
int stat;
|
|
float z1;
|
|
int ix1;
|
|
int iy1;
|
|
int ix2;
|
|
int iy2;
|
|
float sinalign, cosalign;
|
|
FGameTexture* tex;
|
|
float xpanning, ypanning;
|
|
float xscaled, yscaled;
|
|
FVector2 offset;
|
|
|
|
public:
|
|
|
|
// Moved in from pragmas.h
|
|
UVCalculator(sectortype* sec, int plane, FGameTexture* tx, const FVector2& off)
|
|
{
|
|
float xpan, ypan;
|
|
|
|
sect = sec;
|
|
tex = tx;
|
|
myplane = plane;
|
|
offset = off;
|
|
|
|
auto firstwall = &wall[sec->wallptr];
|
|
ix1 = firstwall->x;
|
|
iy1 = firstwall->y;
|
|
ix2 = wall[firstwall->point2].x;
|
|
iy2 = wall[firstwall->point2].y;
|
|
|
|
if (plane == 0)
|
|
{
|
|
stat = sec->floorstat;
|
|
xpan = sec->floorxpan_;
|
|
ypan = sec->floorypan_;
|
|
PlanesAtPoint(sec, ix1, iy1, nullptr, &z1);
|
|
}
|
|
else
|
|
{
|
|
stat = sec->ceilingstat;
|
|
xpan = sec->ceilingxpan_;
|
|
ypan = sec->ceilingypan_;
|
|
PlanesAtPoint(sec, ix1, iy1, &z1, nullptr);
|
|
}
|
|
|
|
DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) };
|
|
auto vang = dv.Angle() - 90.;
|
|
|
|
cosalign = float(vang.Cos());
|
|
sinalign = float(vang.Sin());
|
|
|
|
int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth());
|
|
if (pow2width < (int)tx->GetDisplayWidth()) pow2width *= 2;
|
|
|
|
int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight());
|
|
if (pow2height < (int)tx->GetDisplayHeight()) pow2height *= 2;
|
|
|
|
xpanning = pow2width * xpan / (256.f * tx->GetDisplayWidth());
|
|
ypanning = pow2height * ypan / (256.f * tx->GetDisplayHeight());
|
|
|
|
float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f;
|
|
|
|
if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN))
|
|
{
|
|
// This is necessary to adjust for some imprecisions in the math.
|
|
// To calculate the inverse Build performs an integer division with significant loss of precision
|
|
// that can cause the texture to be shifted by multiple pixels.
|
|
// The code below calculates the amount of this deviation so that it can be added back to the formula.
|
|
int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1));
|
|
if (len != 0)
|
|
{
|
|
int i = 1048576 / len;
|
|
scalefactor *= 1048576.f / (i * len);
|
|
}
|
|
}
|
|
|
|
xscaled = scalefactor * (int)tx->GetDisplayWidth();
|
|
yscaled = scalefactor * (int)tx->GetDisplayHeight();
|
|
}
|
|
|
|
FVector2 GetUV(int x, int y, float z)
|
|
{
|
|
float tv, tu;
|
|
|
|
if (stat & CSTAT_SECTOR_ALIGN)
|
|
{
|
|
float dx = (float)(x - ix1);
|
|
float dy = (float)(y - iy1);
|
|
|
|
tu = -(dx * sinalign + dy * cosalign);
|
|
tv = (dx * cosalign - dy * sinalign);
|
|
|
|
if (stat & CSTAT_SECTOR_SLOPE)
|
|
{
|
|
float dz = (z - z1) * 16;
|
|
float newtv = sqrt(tv * tv + dz * dz);
|
|
tv = tv < 0 ? -newtv : newtv;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tu = x - offset.X;
|
|
tv = -y - offset.Y;
|
|
}
|
|
|
|
if (stat & CSTAT_SECTOR_SWAPXY)
|
|
std::swap(tu, tv);
|
|
|
|
if (stat & CSTAT_SECTOR_XFLIP) tu = -tu;
|
|
if (stat & CSTAT_SECTOR_YFLIP) tv = -tv;
|
|
|
|
|
|
|
|
return { tu / xscaled + xpanning, tv / yscaled + ypanning };
|
|
|
|
}
|
|
};
|
|
|
|
|
|
//==========================================================================
|
|
//
|
|
//
|
|
//
|
|
//==========================================================================
|
|
|
|
bool SectorGeometry::MakeVertices(unsigned int secnum, int plane, const FVector2& offset)
|
|
{
|
|
auto sec = §ions[secnum];
|
|
auto sectorp = §or[sec->sector];
|
|
int numvertices = sec->lines.Size();
|
|
|
|
TArray<FVector3> points(numvertices, true);
|
|
using Point = std::pair<float, float>;
|
|
std::vector<std::vector<Point>> polygon;
|
|
std::vector<Point>* curPoly;
|
|
|
|
polygon.resize(1);
|
|
curPoly = &polygon.back();
|
|
FixedBitArray<MAXWALLSB> done;
|
|
|
|
int fz = sectorp->floorz, cz = sectorp->ceilingz;
|
|
|
|
int vertstoadd = numvertices;
|
|
|
|
done.Zero();
|
|
while (vertstoadd > 0)
|
|
{
|
|
int start = 0;
|
|
while (done[start] && start < numvertices) start++;
|
|
int s = start;
|
|
if (start < numvertices)
|
|
{
|
|
while (!done[start])
|
|
{
|
|
auto sline = §ionLines[sec->lines[start]];
|
|
auto wallp = &wall[sline->startpoint];
|
|
float X = float(WallStartX(wallp));
|
|
float Y = float(WallStartY(wallp));
|
|
if (fabs(X) > 32768.f || fabs(Y) > 32768.f)
|
|
{
|
|
// If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign.
|
|
// Do not try alternative methods if this happens.
|
|
return true;
|
|
}
|
|
curPoly->push_back(std::make_pair(X, Y));
|
|
done.Set(start);
|
|
vertstoadd--;
|
|
start = sline->point2index;
|
|
}
|
|
polygon.resize(polygon.size() + 1);
|
|
curPoly = &polygon.back();
|
|
if (start != s) return false; // means the sector is badly defined. RRRA'S E1L3 triggers this.
|
|
}
|
|
}
|
|
// Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible.
|
|
int outer = 0;
|
|
float minx = FLT_MAX;
|
|
float miny = FLT_MAX;
|
|
for (size_t a = 0; a < polygon.size(); a++)
|
|
{
|
|
for (auto& pt : polygon[a])
|
|
{
|
|
if (pt.first < minx || (pt.first == minx && pt.second < miny))
|
|
{
|
|
minx = pt.first;
|
|
miny = pt.second;
|
|
outer = int(a);
|
|
}
|
|
}
|
|
}
|
|
if (outer != 0) std::swap(polygon[0], polygon[outer]);
|
|
auto indices = mapbox::earcut(polygon);
|
|
if (indices.size() < 3 * (sec->lines.Size() - 2))
|
|
{
|
|
// this means that full triangulation failed.
|
|
return false;
|
|
}
|
|
sectorp->floorz = sectorp->ceilingz = 0;
|
|
|
|
int p = 0;
|
|
for (size_t a = 0; a < polygon.size(); a++)
|
|
{
|
|
for (auto& pt : polygon[a])
|
|
{
|
|
float planez;
|
|
PlanesAtPoint(sectorp, (pt.first * 16), (pt.second * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr);
|
|
FVector3 point = { pt.first, pt.second, planez };
|
|
points[p++] = point;
|
|
}
|
|
}
|
|
|
|
auto& entry = data[secnum].planes[plane];
|
|
entry.vertices.Resize((unsigned)indices.size());
|
|
entry.texcoords.Resize((unsigned)indices.size());
|
|
entry.normal = CalcNormal(sectorp, plane);
|
|
|
|
auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum);
|
|
|
|
UVCalculator uvcalc(sectorp, plane, texture, offset);
|
|
|
|
for(unsigned i = 0; i < entry.vertices.Size(); i++)
|
|
{
|
|
auto& pt = points[indices[i]];
|
|
entry.vertices[i] = pt;
|
|
entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16), int(pt.Y * -16), pt.Z);
|
|
}
|
|
|
|
sectorp->floorz = fz;
|
|
sectorp->ceilingz = cz;
|
|
return true;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
// Use ZDoom's node builder if the simple approach fails.
|
|
// This will create something usable in the vast majority of cases,
|
|
// even if the result is less efficient.
|
|
//
|
|
//==========================================================================
|
|
|
|
bool SectorGeometry::MakeVertices2(unsigned int secnum, int plane, const FVector2& offset)
|
|
{
|
|
auto sec = §ions[secnum];
|
|
auto sectorp = §or[sec->sector];
|
|
int numvertices = sec->lines.Size();
|
|
|
|
// Convert our sector into something the node builder understands
|
|
TArray<vertex_t> vertexes(sectorp->wallnum, true);
|
|
TArray<line_t> lines(numvertices, true);
|
|
TArray<side_t> sides(numvertices, true);
|
|
int j = 0;
|
|
|
|
for (int i = 0; i < numvertices; i++)
|
|
{
|
|
auto sline = §ionLines[sec->lines[i]];
|
|
|
|
auto wallp = &wall[sline->startpoint];
|
|
vertexes[j].p = { wallp->x * (1 / 16.), wallp->y * (1 / -16.) };
|
|
|
|
lines[j].backsector = nullptr;
|
|
lines[j].frontsector = sectorp;
|
|
lines[j].linenum = j;
|
|
lines[j].wallnum = sline->wall;
|
|
lines[j].sidedef[0] = &sides[j];
|
|
lines[j].sidedef[1] = nullptr;
|
|
lines[j].v1 = &vertexes[i];
|
|
lines[j].v2 = &vertexes[sline->point2index];
|
|
|
|
sides[j].sidenum = j;
|
|
sides[j].sector = sectorp;
|
|
j++;
|
|
}
|
|
lines.Resize(j);
|
|
sides.Resize(j);
|
|
// Weed out any overlaps. These often happen with door setups and can lead to bad subsectors
|
|
for (unsigned i = 0; i < lines.Size(); i++)
|
|
{
|
|
auto p1 = lines[i].v1->p, p2 = lines[i].v2->p;
|
|
for (unsigned j = i + 1; j < lines.Size(); j++)
|
|
{
|
|
auto pp1 = lines[j].v1->p, pp2 = lines[j].v2->p;
|
|
|
|
if (pp1 == p2 && pp2 == p1)
|
|
{
|
|
// handle the simple case first, i.e. line j is the inverse of line i.
|
|
// in this case both lines need to be deleted.
|
|
lines.Delete(i);
|
|
lines.Delete(j);
|
|
i--;
|
|
goto nexti;
|
|
}
|
|
else if (pp1 == p2)
|
|
{
|
|
// only the second line's start point matches.
|
|
// In this case we have to delete the shorter line and truncate the other one.
|
|
|
|
// check if the second line's end point is on the line we are checking
|
|
double d1 = PointOnLineSide(pp2, p1, p2);
|
|
if (fabs(d1) > FLT_EPSILON) continue; // not colinear
|
|
bool vert = p1.X == p2.X;
|
|
double p1x = vert ? p1.X : p1.Y;
|
|
double p2x = vert ? p2.X : p2.Y;
|
|
double pp1x = vert ? pp1.X : pp1.Y;
|
|
double pp2x = vert ? pp2.X : pp2.Y;
|
|
|
|
if (pp2x > min(p1x, p2x) && pp2x < max(p1x, p2x))
|
|
{
|
|
// pp2 is on line i.
|
|
lines[i].v2 = lines[j].v2;
|
|
lines.Delete(j);
|
|
continue;
|
|
}
|
|
else if (p1x > min(pp1x, pp2x) && p1x < max(pp1x, pp2x))
|
|
{
|
|
// p1 is on line j
|
|
lines[j].v1 = lines[j].v2;
|
|
lines.Delete(i);
|
|
goto nexti;
|
|
}
|
|
}
|
|
else if (pp2 == p1)
|
|
{
|
|
// only the second line's start point matches.
|
|
// In this case we have to delete the shorter line and truncate the other one.
|
|
|
|
// check if the second line's end point is on the line we are checking
|
|
double d1 = PointOnLineSide(pp1, p1, p2);
|
|
if (fabs(d1) > FLT_EPSILON) continue; // not colinear
|
|
bool vert = p1.X == p2.X;
|
|
double p1x = vert ? p1.X : p1.Y;
|
|
double p2x = vert ? p2.X : p2.Y;
|
|
double pp1x = vert ? pp1.X : pp1.Y;
|
|
double pp2x = vert ? pp2.X : pp2.Y;
|
|
|
|
if (pp1x > min(p1x, p2x) && pp2x < max(p1x, p2x))
|
|
{
|
|
// pp1 is on line i.
|
|
lines[i].v1 = lines[j].v1;
|
|
lines.Delete(j);
|
|
continue;
|
|
}
|
|
else if (p2x > min(pp1x, pp2x) && p2x < max(pp1x, pp2x))
|
|
{
|
|
// p2 is on line j
|
|
lines[j].v2 = lines[j].v1;
|
|
lines.Delete(i);
|
|
goto nexti;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// no idea if we should do further checks here. Blood's doors do not need them. We'll see.
|
|
}
|
|
}
|
|
nexti:;
|
|
}
|
|
|
|
|
|
|
|
FNodeBuilder::FLevel leveldata =
|
|
{
|
|
&vertexes[0], (int)vertexes.Size(),
|
|
&sides[0], (int)sides.Size(),
|
|
&lines[0], (int)lines.Size(),
|
|
0, 0, 0, 0
|
|
};
|
|
leveldata.FindMapBounds();
|
|
FNodeBuilder builder(leveldata);
|
|
|
|
FLevelLocals Level;
|
|
builder.Extract(Level);
|
|
|
|
// Now turn the generated subsectors into triangle meshes
|
|
|
|
auto& entry = data[secnum].planes[plane];
|
|
entry.vertices.Clear();
|
|
entry.texcoords.Clear();
|
|
|
|
int fz = sectorp->floorz, cz = sectorp->ceilingz;
|
|
sectorp->floorz = sectorp->ceilingz = 0;
|
|
|
|
for (auto& sub : Level.subsectors)
|
|
{
|
|
if (sub.numlines <= 2) continue;
|
|
auto v0 = sub.firstline->v1;
|
|
for (unsigned i = 1; i < sub.numlines - 1; i++)
|
|
{
|
|
auto v1 = sub.firstline[i].v1;
|
|
auto v2 = sub.firstline[i].v2;
|
|
|
|
entry.vertices.Push({ (float)v0->fX(), (float)v0->fY(), 0 });
|
|
entry.vertices.Push({ (float)v1->fX(), (float)v1->fY(), 0 });
|
|
entry.vertices.Push({ (float)v2->fX(), (float)v2->fY(), 0 });
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// calculate the rest.
|
|
auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum);
|
|
|
|
UVCalculator uvcalc(sectorp, plane, texture, offset);
|
|
|
|
entry.texcoords.Resize(entry.vertices.Size());
|
|
for (unsigned i = 0; i < entry.vertices.Size(); i++)
|
|
{
|
|
auto& pt = entry.vertices[i];
|
|
|
|
float planez;
|
|
PlanesAtPoint(sectorp, (pt.X * 16), (pt.Y * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr);
|
|
entry.vertices[i].Z = planez;
|
|
entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16.), int(pt.Y * -16.), pt.Z);
|
|
}
|
|
entry.normal = CalcNormal(sectorp, plane);
|
|
sectorp->floorz = fz;
|
|
sectorp->ceilingz = cz;
|
|
return true;
|
|
}
|
|
|
|
//==========================================================================
|
|
//
|
|
//
|
|
//
|
|
//==========================================================================
|
|
|
|
void SectorGeometry::ValidateSector(unsigned int secnum, int plane, const FVector2& offset)
|
|
{
|
|
auto sec = §or[sections[secnum].sector];
|
|
|
|
auto compare = &data[secnum].compare[plane];
|
|
if (plane == 0)
|
|
{
|
|
if (sec->floorheinum == compare->floorheinum &&
|
|
sec->floorpicnum == compare->floorpicnum &&
|
|
((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
|
|
sec->floorxpan_ == compare->floorxpan_ &&
|
|
sec->floorypan_ == compare->floorypan_ &&
|
|
wall[sec->wallptr].pos == data[secnum].poscompare[0] &&
|
|
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[0] &&
|
|
!(sec->dirty & 1) && data[secnum].planes[plane].vertices.Size() ) return;
|
|
|
|
sec->dirty &= ~1;
|
|
}
|
|
else
|
|
{
|
|
if (sec->ceilingheinum == compare->ceilingheinum &&
|
|
sec->ceilingpicnum == compare->ceilingpicnum &&
|
|
((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
|
|
sec->ceilingxpan_ == compare->ceilingxpan_ &&
|
|
sec->ceilingypan_ == compare->ceilingypan_ &&
|
|
wall[sec->wallptr].pos == data[secnum].poscompare[1] &&
|
|
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[1] &&
|
|
!(sec->dirty & 2) && data[secnum].planes[1].vertices.Size()) return;
|
|
|
|
sec->dirty &= ~2;
|
|
}
|
|
*compare = *sec;
|
|
data[secnum].poscompare[plane] = wall[sec->wallptr].pos;
|
|
data[secnum].poscompare2[plane] = wall[wall[sec->wallptr].point2].pos;
|
|
if (data[secnum].degenerate || !MakeVertices(secnum, plane, offset))
|
|
{
|
|
data[secnum].degenerate = true;
|
|
//Printf(TEXTCOLOR_YELLOW "Normal triangulation failed for sector %d. Retrying with alternative approach\n", secnum);
|
|
MakeVertices2(secnum, plane, offset);
|
|
}
|
|
}
|