0
0
Fork 0
mirror of https://github.com/ZDoom/raze-gles.git synced 2025-01-18 21:31:37 +00:00
raze-gles/source/core/gamefuncs.cpp
2021-04-12 15:50:52 +02:00

326 lines
9.9 KiB
C++

//-------------------------------------------------------------------------
/*
Copyright (C) 2021 Christoph Oelckers & Mitchell Richters
This is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
//-------------------------------------------------------------------------
#include "gamefuncs.h"
#include "gamestruct.h"
#include "intvec.h"
//---------------------------------------------------------------------------
//
// Unified chasecam function for all games.
//
//---------------------------------------------------------------------------
int cameradist, cameraclock;
bool calcChaseCamPos(int* px, int* py, int* pz, spritetype* pspr, short *psectnum, binangle ang, fixedhoriz horiz, double const smoothratio)
{
hitdata_t hitinfo;
binangle daang;
short bakcstat;
int newdist;
assert(*psectnum >= 0 && *psectnum < MAXSECTORS);
// Calculate new pos to shoot backwards, using averaged values from the big three.
int nx = gi->chaseCamX(ang);
int ny = gi->chaseCamY(ang);
int nz = gi->chaseCamZ(horiz);
vec3_t pvect = { *px, *py, *pz };
bakcstat = pspr->cstat;
pspr->cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN);
updatesectorz(*px, *py, *pz, psectnum);
hitscan(&pvect, *psectnum, nx, ny, nz, &hitinfo, CLIPMASK1);
pspr->cstat = bakcstat;
int hx = hitinfo.pos.x - *px;
int hy = hitinfo.pos.y - *py;
if (*psectnum < 0)
{
return false;
}
assert(*psectnum >= 0 && *psectnum < MAXSECTORS);
// If something is in the way, make pp->camera_dist lower if necessary
if (abs(nx) + abs(ny) > abs(hx) + abs(hy))
{
if (hitinfo.wall >= 0)
{
// Push you a little bit off the wall
*psectnum = hitinfo.sect;
daang = bvectangbam(wall[wall[hitinfo.wall].point2].x - wall[hitinfo.wall].x,
wall[wall[hitinfo.wall].point2].y - wall[hitinfo.wall].y);
newdist = nx * daang.bsin() + ny * -daang.bcos();
if (abs(nx) > abs(ny))
hx -= MulScale(nx, newdist, 28);
else
hy -= MulScale(ny, newdist, 28);
}
else if (hitinfo.sprite < 0)
{
// Push you off the ceiling/floor
*psectnum = hitinfo.sect;
if (abs(nx) > abs(ny))
hx -= (nx >> 5);
else
hy -= (ny >> 5);
}
else
{
// If you hit a sprite that's not a wall sprite - try again.
spritetype* hspr = &sprite[hitinfo.sprite];
if (!(hspr->cstat & CSTAT_SPRITE_ALIGNMENT_WALL))
{
bakcstat = hspr->cstat;
hspr->cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN);
calcChaseCamPos(px, py, pz, pspr, psectnum, ang, horiz, smoothratio);
hspr->cstat = bakcstat;
return false;
}
else
{
// same as wall calculation.
daang = buildang(pspr->ang - 512);
newdist = nx * daang.bsin() + ny * -daang.bcos();
if (abs(nx) > abs(ny))
hx -= MulScale(nx, newdist, 28);
else
hy -= MulScale(ny, newdist, 28);
}
}
if (abs(nx) > abs(ny))
newdist = DivScale(hx, nx, 16);
else
newdist = DivScale(hy, ny, 16);
if (newdist < cameradist)
cameradist = newdist;
}
// Actually move you! (Camerdist is 65536 if nothing is in the way)
*px += MulScale(nx, cameradist, 16);
*py += MulScale(ny, cameradist, 16);
*pz += MulScale(nz, cameradist, 16);
// Caculate clock using GameTicRate so it increases the same rate on all speed computers.
int myclock = PlayClock + MulScale(120 / GameTicRate, smoothratio, 16);
if (cameraclock == INT_MIN)
{
// Third person view was just started.
cameraclock = myclock;
}
// Slowly increase cameradist until it reaches 65536.
cameradist = min(cameradist + ((myclock - cameraclock) << 10), 65536);
cameraclock = myclock;
// Make sure psectnum is correct.
updatesectorz(*px, *py, *pz, psectnum);
return true;
}
//==========================================================================
//
// note that this returns values in renderer coordinate space with inverted sign!
//
//==========================================================================
void PlanesAtPoint(const sectortype* sec, float dax, float day, float* pceilz, float* pflorz)
{
float ceilz = float(sec->ceilingz);
float florz = float(sec->floorz);
if (((sec->ceilingstat | sec->floorstat) & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE)
{
auto wal = &wall[sec->wallptr];
auto wal2 = &wall[wal->point2];
float dx = wal2->x - wal->x;
float dy = wal2->y - wal->y;
int i = (int)sqrt(dx * dx + dy * dy) << 5; // length of sector's first wall.
if (i != 0)
{
float const j = (dx * (day - wal->y) - dy * (dax - wal->x)) * (1.f / 8.f);
if (sec->ceilingstat & CSTAT_SECTOR_SLOPE) ceilz += (sec->ceilingheinum * j) / i;
if (sec->floorstat & CSTAT_SECTOR_SLOPE) florz += (sec->floorheinum * j) / i;
}
}
// Scale to render coordinates.
if (pceilz) *pceilz = ceilz * -(1.f / 256.f);
if (pflorz) *pflorz = florz * -(1.f / 256.f);
}
//==========================================================================
//
// Calculate the position of a wall sprite in the world
//
//==========================================================================
void GetWallSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render)
{
auto tex = tileGetTexture(spr->picnum);
int width, leftofs;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize;
leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset);
}
else
{
width = (int)tex->GetDisplayWidth();
leftofs = ((int)tex->GetDisplayLeftOffset() + spr->xoffset);
}
int x = bsin(spr->ang) * spr->xrepeat;
int y = -bcos(spr->ang) * spr->xrepeat;
int xoff = leftofs;
if (spr->cstat & CSTAT_SPRITE_XFLIP) xoff = -xoff;
int origin = (width >> 1) + xoff;
out[0].x = pos.x - MulScale(x, origin, 16);
out[0].y = pos.y - MulScale(y, origin, 16);
out[1].x = out[0].x + MulScale(x, width, 16);
out[1].y = out[0].y + MulScale(y, width, 16);
}
//==========================================================================
//
// Calculate the position of a wall sprite in the world
//
//==========================================================================
void GetFlatSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render)
{
auto tex = tileGetTexture(spr->picnum);
int width, height, leftofs, topofs;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize * spr->xrepeat;
height = TileFiles.tiledata[spr->picnum].hiofs.ysize * spr->yrepeat;
leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset) * spr->xrepeat;
topofs = (TileFiles.tiledata[spr->picnum].hiofs.yoffs + spr->yoffset) * spr->yrepeat;
}
else
{
width = (int)tex->GetDisplayWidth() * spr->xrepeat;
height = (int)tex->GetDisplayHeight() * spr->yrepeat;
leftofs = ((int)tex->GetDisplayLeftOffset() + spr->xoffset) * spr->xrepeat;
topofs = ((int)tex->GetDisplayTopOffset() + spr->yoffset) * spr->yrepeat;
}
if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs;
if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs;
int sprcenterx = (width >> 1) + leftofs;
int sprcentery = (height >> 1) + topofs;
int cosang = bcos(spr->ang);
int sinang = bsin(spr->ang);
out[0].x = pos.x + DMulScale(sinang, sprcenterx, cosang, sprcentery, 16);
out[0].y = pos.y + DMulScale(sinang, sprcentery, -cosang, sprcenterx, 16);
out[1].x = out[0].x - MulScale(sinang, width, 16);
out[1].y = out[0].y + MulScale(cosang, width, 16);
vec2_t sub = { MulScale(cosang, height, 16), MulScale(sinang, height, 16) };
out[2] = out[1] - sub;
out[3] = out[0] - sub;
}
//==========================================================================
//
// Check if some walls are set to use rotated textures.
// Ideally this should just have been done with texture rotation,
// but the effects on the render code would be too severe due to the alignment mess.
//
//==========================================================================
void checkRotatedWalls()
{
for (int i = 0; i < numwalls; ++i)
{
if (wall[i].cstat & CSTAT_WALL_ROTATE_90)
{
auto& w = wall[i];
auto& tile = RotTile(w.picnum + animateoffs(w.picnum, 16384));
if (tile.newtile == -1 && tile.owner == -1)
{
auto owner = w.picnum + animateoffs(w.picnum, 16384);
tile.newtile = TileFiles.tileCreateRotated(owner);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = w.picnum + animateoffs(w.picnum, 16384);
}
}
}
}
//==========================================================================
//
// vector serializers
//
//==========================================================================
FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def)
{
if (def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.x, def ? &def->x : nullptr)
("y", c.y, def ? &def->y : nullptr)
.EndObject();
}
return arc;
}
FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def)
{
if (def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.x, def ? &def->x : nullptr)
("y", c.y, def ? &def->y : nullptr)
("z", c.z, def ? &def->z : nullptr)
.EndObject();
}
return arc;
}