mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-01 06:01:00 +00:00
718112a8fe
Currently none of these is being used, but eventually they will, once more code gets ported over. So it's better to have them right away and avoid editing the project file too much, only to revert that later.
1074 lines
22 KiB
C
1074 lines
22 KiB
C
/****************************************************************
|
|
|
|
The author of this software is David M. Gay.
|
|
|
|
Copyright (C) 1998-2001 by Lucent Technologies
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and
|
|
its documentation for any purpose and without fee is hereby
|
|
granted, provided that the above copyright notice appear in all
|
|
copies and that both that the copyright notice and this
|
|
permission notice and warranty disclaimer appear in supporting
|
|
documentation, and that the name of Lucent or any of its entities
|
|
not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific, written prior
|
|
permission.
|
|
|
|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
|
|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
|
|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
|
|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
|
THIS SOFTWARE.
|
|
|
|
****************************************************************/
|
|
|
|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
|
|
* with " at " changed at "@" and " dot " changed to "."). */
|
|
|
|
#include "gdtoaimp.h"
|
|
#if !defined(NO_FENV_H) && !defined(_MSC_VER)
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
#ifdef USE_LOCALE
|
|
#include "locale.h"
|
|
#endif
|
|
|
|
#ifdef IEEE_Arith
|
|
#ifndef NO_IEEE_Scale
|
|
#define Avoid_Underflow
|
|
#undef tinytens
|
|
/* The factor of 2^106 in tinytens[4] helps us avoid setting the underflow */
|
|
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
|
|
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
|
|
9007199254740992.*9007199254740992.e-256
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
#undef Check_FLT_ROUNDS
|
|
#define Check_FLT_ROUNDS
|
|
#else
|
|
#define Rounding Flt_Rounds
|
|
#endif
|
|
|
|
#ifdef Avoid_Underflow /*{*/
|
|
static double
|
|
sulp
|
|
#ifdef KR_headers
|
|
(x, scale) U *x; int scale;
|
|
#else
|
|
(U *x, int scale)
|
|
#endif
|
|
{
|
|
U u;
|
|
double rv;
|
|
int i;
|
|
|
|
rv = ulp(x);
|
|
if (!scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
|
|
return rv; /* Is there an example where i <= 0 ? */
|
|
word0(&u) = Exp_1 + (i << Exp_shift);
|
|
word1(&u) = 0;
|
|
return rv * u.d;
|
|
}
|
|
#endif /*}*/
|
|
|
|
double
|
|
strtod
|
|
#ifdef KR_headers
|
|
(s00, se) CONST char *s00; char **se;
|
|
#else
|
|
(CONST char *s00, char **se)
|
|
#endif
|
|
{
|
|
#ifdef Avoid_Underflow
|
|
int scale;
|
|
#endif
|
|
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, decpt, dsign,
|
|
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
|
|
CONST char *s, *s0, *s1;
|
|
double aadj;
|
|
Long L;
|
|
U adj, aadj1, rv, rv0;
|
|
ULong y, z;
|
|
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
|
#ifdef Avoid_Underflow
|
|
ULong Lsb, Lsb1;
|
|
#endif
|
|
#ifdef SET_INEXACT
|
|
int inexact, oldinexact;
|
|
#endif
|
|
#ifdef USE_LOCALE /*{{*/
|
|
#ifdef NO_LOCALE_CACHE
|
|
char *decimalpoint = localeconv()->decimal_point;
|
|
int dplen = strlen(decimalpoint);
|
|
#else
|
|
char *decimalpoint;
|
|
static char *decimalpoint_cache;
|
|
static int dplen;
|
|
if (!(s0 = decimalpoint_cache)) {
|
|
s0 = localeconv()->decimal_point;
|
|
if ((decimalpoint_cache = (char*)MALLOC(strlen(s0) + 1))) {
|
|
strcpy(decimalpoint_cache, s0);
|
|
s0 = decimalpoint_cache;
|
|
}
|
|
dplen = strlen(s0);
|
|
}
|
|
decimalpoint = (char*)s0;
|
|
#endif /*NO_LOCALE_CACHE*/
|
|
#else /*USE_LOCALE}{*/
|
|
#define dplen 1
|
|
#endif /*USE_LOCALE}}*/
|
|
|
|
#ifdef Honor_FLT_ROUNDS /*{*/
|
|
int Rounding;
|
|
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
|
|
Rounding = Flt_Rounds;
|
|
#else /*}{*/
|
|
Rounding = 1;
|
|
switch(fegetround()) {
|
|
case FE_TOWARDZERO: Rounding = 0; break;
|
|
case FE_UPWARD: Rounding = 2; break;
|
|
case FE_DOWNWARD: Rounding = 3;
|
|
}
|
|
#endif /*}}*/
|
|
#endif /*}*/
|
|
|
|
sign = nz0 = nz = decpt = 0;
|
|
dval(&rv) = 0.;
|
|
for(s = s00;;s++) switch(*s) {
|
|
case '-':
|
|
sign = 1;
|
|
/* no break */
|
|
case '+':
|
|
if (*++s)
|
|
goto break2;
|
|
/* no break */
|
|
case 0:
|
|
goto ret0;
|
|
case '\t':
|
|
case '\n':
|
|
case '\v':
|
|
case '\f':
|
|
case '\r':
|
|
case ' ':
|
|
continue;
|
|
default:
|
|
goto break2;
|
|
}
|
|
break2:
|
|
if (*s == '0') {
|
|
#ifndef NO_HEX_FP /*{*/
|
|
{
|
|
static FPI fpi = { 53, 1-1023-53+1, 2046-1023-53+1, 1, SI };
|
|
Long exp;
|
|
ULong bits[2];
|
|
switch(s[1]) {
|
|
case 'x':
|
|
case 'X':
|
|
{
|
|
#ifdef Honor_FLT_ROUNDS
|
|
FPI fpi1 = fpi;
|
|
fpi1.rounding = Rounding;
|
|
#else
|
|
#define fpi1 fpi
|
|
#endif
|
|
switch((i = gethex(&s, &fpi1, &exp, &bb, sign)) & STRTOG_Retmask) {
|
|
case STRTOG_NoNumber:
|
|
s = s00;
|
|
sign = 0;
|
|
case STRTOG_Zero:
|
|
break;
|
|
default:
|
|
if (bb) {
|
|
copybits(bits, fpi.nbits, bb);
|
|
Bfree(bb);
|
|
}
|
|
ULtod(((U*)&rv)->L, bits, exp, i);
|
|
}}
|
|
goto ret;
|
|
}
|
|
}
|
|
#endif /*}*/
|
|
nz0 = 1;
|
|
while(*++s == '0') ;
|
|
if (!*s)
|
|
goto ret;
|
|
}
|
|
s0 = s;
|
|
y = z = 0;
|
|
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
|
if (nd < 9)
|
|
y = 10*y + c - '0';
|
|
else if (nd < 16)
|
|
z = 10*z + c - '0';
|
|
nd0 = nd;
|
|
#ifdef USE_LOCALE
|
|
if (c == *decimalpoint) {
|
|
for(i = 1; decimalpoint[i]; ++i)
|
|
if (s[i] != decimalpoint[i])
|
|
goto dig_done;
|
|
s += i;
|
|
c = *s;
|
|
#else
|
|
if (c == '.') {
|
|
c = *++s;
|
|
#endif
|
|
decpt = 1;
|
|
if (!nd) {
|
|
for(; c == '0'; c = *++s)
|
|
nz++;
|
|
if (c > '0' && c <= '9') {
|
|
s0 = s;
|
|
nf += nz;
|
|
nz = 0;
|
|
goto have_dig;
|
|
}
|
|
goto dig_done;
|
|
}
|
|
for(; c >= '0' && c <= '9'; c = *++s) {
|
|
have_dig:
|
|
nz++;
|
|
if (c -= '0') {
|
|
nf += nz;
|
|
for(i = 1; i < nz; i++)
|
|
if (nd++ < 9)
|
|
y *= 10;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z *= 10;
|
|
if (nd++ < 9)
|
|
y = 10*y + c;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z = 10*z + c;
|
|
nz = 0;
|
|
}
|
|
}
|
|
}/*}*/
|
|
dig_done:
|
|
e = 0;
|
|
if (c == 'e' || c == 'E') {
|
|
if (!nd && !nz && !nz0) {
|
|
goto ret0;
|
|
}
|
|
s00 = s;
|
|
esign = 0;
|
|
switch(c = *++s) {
|
|
case '-':
|
|
esign = 1;
|
|
case '+':
|
|
c = *++s;
|
|
}
|
|
if (c >= '0' && c <= '9') {
|
|
while(c == '0')
|
|
c = *++s;
|
|
if (c > '0' && c <= '9') {
|
|
L = c - '0';
|
|
s1 = s;
|
|
while((c = *++s) >= '0' && c <= '9')
|
|
L = 10*L + c - '0';
|
|
if (s - s1 > 8 || L > 19999)
|
|
/* Avoid confusion from exponents
|
|
* so large that e might overflow.
|
|
*/
|
|
e = 19999; /* safe for 16 bit ints */
|
|
else
|
|
e = (int)L;
|
|
if (esign)
|
|
e = -e;
|
|
}
|
|
else
|
|
e = 0;
|
|
}
|
|
else
|
|
s = s00;
|
|
}
|
|
if (!nd) {
|
|
if (!nz && !nz0) {
|
|
#ifdef INFNAN_CHECK
|
|
/* Check for Nan and Infinity */
|
|
ULong bits[2];
|
|
static FPI fpinan = /* only 52 explicit bits */
|
|
{ 52, 1-1023-53+1, 2046-1023-53+1, 1, SI };
|
|
if (!decpt)
|
|
switch(c) {
|
|
case 'i':
|
|
case 'I':
|
|
if (match(&s,"nf")) {
|
|
--s;
|
|
if (!match(&s,"inity"))
|
|
++s;
|
|
word0(&rv) = 0x7ff00000;
|
|
word1(&rv) = 0;
|
|
goto ret;
|
|
}
|
|
break;
|
|
case 'n':
|
|
case 'N':
|
|
if (match(&s, "an")) {
|
|
#ifndef No_Hex_NaN
|
|
if (*s == '(' /*)*/
|
|
&& hexnan(&s, &fpinan, bits)
|
|
== STRTOG_NaNbits) {
|
|
word0(&rv) = 0x7ff00000 | bits[1];
|
|
word1(&rv) = bits[0];
|
|
}
|
|
else {
|
|
#endif
|
|
word0(&rv) = NAN_WORD0;
|
|
word1(&rv) = NAN_WORD1;
|
|
#ifndef No_Hex_NaN
|
|
}
|
|
#endif
|
|
goto ret;
|
|
}
|
|
}
|
|
#endif /* INFNAN_CHECK */
|
|
ret0:
|
|
s = s00;
|
|
sign = 0;
|
|
}
|
|
goto ret;
|
|
}
|
|
e1 = e -= nf;
|
|
|
|
/* Now we have nd0 digits, starting at s0, followed by a
|
|
* decimal point, followed by nd-nd0 digits. The number we're
|
|
* after is the integer represented by those digits times
|
|
* 10**e */
|
|
|
|
if (!nd0)
|
|
nd0 = nd;
|
|
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
|
dval(&rv) = y;
|
|
if (k > 9) {
|
|
#ifdef SET_INEXACT
|
|
if (k > DBL_DIG)
|
|
oldinexact = get_inexact();
|
|
#endif
|
|
dval(&rv) = tens[k - 9] * dval(&rv) + z;
|
|
}
|
|
bd0 = 0;
|
|
if (nd <= DBL_DIG
|
|
#ifndef RND_PRODQUOT
|
|
#ifndef Honor_FLT_ROUNDS
|
|
&& Flt_Rounds == 1
|
|
#endif
|
|
#endif
|
|
) {
|
|
if (!e)
|
|
goto ret;
|
|
#ifndef ROUND_BIASED_without_Round_Up
|
|
if (e > 0) {
|
|
if (e <= Ten_pmax) {
|
|
#ifdef VAX
|
|
goto vax_ovfl_check;
|
|
#else
|
|
#ifdef Honor_FLT_ROUNDS
|
|
/* round correctly FLT_ROUNDS = 2 or 3 */
|
|
if (sign) {
|
|
rv.d = -rv.d;
|
|
sign = 0;
|
|
}
|
|
#endif
|
|
/* rv = */ rounded_product(dval(&rv), tens[e]);
|
|
goto ret;
|
|
#endif
|
|
}
|
|
i = DBL_DIG - nd;
|
|
if (e <= Ten_pmax + i) {
|
|
/* A fancier test would sometimes let us do
|
|
* this for larger i values.
|
|
*/
|
|
#ifdef Honor_FLT_ROUNDS
|
|
/* round correctly FLT_ROUNDS = 2 or 3 */
|
|
if (sign) {
|
|
rv.d = -rv.d;
|
|
sign = 0;
|
|
}
|
|
#endif
|
|
e -= i;
|
|
dval(&rv) *= tens[i];
|
|
#ifdef VAX
|
|
/* VAX exponent range is so narrow we must
|
|
* worry about overflow here...
|
|
*/
|
|
vax_ovfl_check:
|
|
word0(&rv) -= P*Exp_msk1;
|
|
/* rv = */ rounded_product(dval(&rv), tens[e]);
|
|
if ((word0(&rv) & Exp_mask)
|
|
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
|
|
goto ovfl;
|
|
word0(&rv) += P*Exp_msk1;
|
|
#else
|
|
/* rv = */ rounded_product(dval(&rv), tens[e]);
|
|
#endif
|
|
goto ret;
|
|
}
|
|
}
|
|
#ifndef Inaccurate_Divide
|
|
else if (e >= -Ten_pmax) {
|
|
#ifdef Honor_FLT_ROUNDS
|
|
/* round correctly FLT_ROUNDS = 2 or 3 */
|
|
if (sign) {
|
|
rv.d = -rv.d;
|
|
sign = 0;
|
|
}
|
|
#endif
|
|
/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
|
|
goto ret;
|
|
}
|
|
#endif
|
|
#endif /* ROUND_BIASED_without_Round_Up */
|
|
}
|
|
e1 += nd - k;
|
|
|
|
#ifdef IEEE_Arith
|
|
#ifdef SET_INEXACT
|
|
inexact = 1;
|
|
if (k <= DBL_DIG)
|
|
oldinexact = get_inexact();
|
|
#endif
|
|
#ifdef Avoid_Underflow
|
|
scale = 0;
|
|
#endif
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (Rounding >= 2) {
|
|
if (sign)
|
|
Rounding = Rounding == 2 ? 0 : 2;
|
|
else
|
|
if (Rounding != 2)
|
|
Rounding = 0;
|
|
}
|
|
#endif
|
|
#endif /*IEEE_Arith*/
|
|
|
|
/* Get starting approximation = rv * 10**e1 */
|
|
|
|
if (e1 > 0) {
|
|
if ( (i = e1 & 15) !=0)
|
|
dval(&rv) *= tens[i];
|
|
if (e1 &= ~15) {
|
|
if (e1 > DBL_MAX_10_EXP) {
|
|
ovfl:
|
|
/* Can't trust HUGE_VAL */
|
|
#ifdef IEEE_Arith
|
|
#ifdef Honor_FLT_ROUNDS
|
|
switch(Rounding) {
|
|
case 0: /* toward 0 */
|
|
case 3: /* toward -infinity */
|
|
word0(&rv) = Big0;
|
|
word1(&rv) = Big1;
|
|
break;
|
|
default:
|
|
word0(&rv) = Exp_mask;
|
|
word1(&rv) = 0;
|
|
}
|
|
#else /*Honor_FLT_ROUNDS*/
|
|
word0(&rv) = Exp_mask;
|
|
word1(&rv) = 0;
|
|
#endif /*Honor_FLT_ROUNDS*/
|
|
#ifdef SET_INEXACT
|
|
/* set overflow bit */
|
|
dval(&rv0) = 1e300;
|
|
dval(&rv0) *= dval(&rv0);
|
|
#endif
|
|
#else /*IEEE_Arith*/
|
|
word0(&rv) = Big0;
|
|
word1(&rv) = Big1;
|
|
#endif /*IEEE_Arith*/
|
|
range_err:
|
|
if (bd0) {
|
|
Bfree(bb);
|
|
Bfree(bd);
|
|
Bfree(bs);
|
|
Bfree(bd0);
|
|
Bfree(delta);
|
|
}
|
|
#ifndef NO_ERRNO
|
|
errno = ERANGE;
|
|
#endif
|
|
goto ret;
|
|
}
|
|
e1 >>= 4;
|
|
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
dval(&rv) *= bigtens[j];
|
|
/* The last multiplication could overflow. */
|
|
word0(&rv) -= P*Exp_msk1;
|
|
dval(&rv) *= bigtens[j];
|
|
if ((z = word0(&rv) & Exp_mask)
|
|
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
|
|
goto ovfl;
|
|
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
|
|
/* set to largest number */
|
|
/* (Can't trust DBL_MAX) */
|
|
word0(&rv) = Big0;
|
|
word1(&rv) = Big1;
|
|
}
|
|
else
|
|
word0(&rv) += P*Exp_msk1;
|
|
}
|
|
}
|
|
else if (e1 < 0) {
|
|
e1 = -e1;
|
|
if ( (i = e1 & 15) !=0)
|
|
dval(&rv) /= tens[i];
|
|
if (e1 >>= 4) {
|
|
if (e1 >= 1 << n_bigtens)
|
|
goto undfl;
|
|
#ifdef Avoid_Underflow
|
|
if (e1 & Scale_Bit)
|
|
scale = 2*P;
|
|
for(j = 0; e1 > 0; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
dval(&rv) *= tinytens[j];
|
|
if (scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
|
|
>> Exp_shift)) > 0) {
|
|
/* scaled rv is denormal; zap j low bits */
|
|
if (j >= 32) {
|
|
word1(&rv) = 0;
|
|
if (j >= 53)
|
|
word0(&rv) = (P+2)*Exp_msk1;
|
|
else
|
|
word0(&rv) &= 0xffffffff << (j-32);
|
|
}
|
|
else
|
|
word1(&rv) &= 0xffffffff << j;
|
|
}
|
|
#else
|
|
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
dval(&rv) *= tinytens[j];
|
|
/* The last multiplication could underflow. */
|
|
dval(&rv0) = dval(&rv);
|
|
dval(&rv) *= tinytens[j];
|
|
if (!dval(&rv)) {
|
|
dval(&rv) = 2.*dval(&rv0);
|
|
dval(&rv) *= tinytens[j];
|
|
#endif
|
|
if (!dval(&rv)) {
|
|
undfl:
|
|
dval(&rv) = 0.;
|
|
goto range_err;
|
|
}
|
|
#ifndef Avoid_Underflow
|
|
word0(&rv) = Tiny0;
|
|
word1(&rv) = Tiny1;
|
|
/* The refinement below will clean
|
|
* this approximation up.
|
|
*/
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Now the hard part -- adjusting rv to the correct value.*/
|
|
|
|
/* Put digits into bd: true value = bd * 10^e */
|
|
|
|
bd0 = s2b(s0, nd0, nd, y, dplen);
|
|
|
|
for(;;) {
|
|
bd = Balloc(bd0->k);
|
|
Bcopy(bd, bd0);
|
|
bb = d2b(dval(&rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
|
|
bs = i2b(1);
|
|
|
|
if (e >= 0) {
|
|
bb2 = bb5 = 0;
|
|
bd2 = bd5 = e;
|
|
}
|
|
else {
|
|
bb2 = bb5 = -e;
|
|
bd2 = bd5 = 0;
|
|
}
|
|
if (bbe >= 0)
|
|
bb2 += bbe;
|
|
else
|
|
bd2 -= bbe;
|
|
bs2 = bb2;
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (Rounding != 1)
|
|
bs2++;
|
|
#endif
|
|
#ifdef Avoid_Underflow
|
|
Lsb = LSB;
|
|
Lsb1 = 0;
|
|
j = bbe - scale;
|
|
i = j + bbbits - 1; /* logb(rv) */
|
|
j = P + 1 - bbbits;
|
|
if (i < Emin) { /* denormal */
|
|
i = Emin - i;
|
|
j -= i;
|
|
if (i < 32)
|
|
Lsb <<= i;
|
|
else
|
|
Lsb1 = Lsb << (i-32);
|
|
}
|
|
#else /*Avoid_Underflow*/
|
|
#ifdef Sudden_Underflow
|
|
#ifdef IBM
|
|
j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
|
|
#else
|
|
j = P + 1 - bbbits;
|
|
#endif
|
|
#else /*Sudden_Underflow*/
|
|
j = bbe;
|
|
i = j + bbbits - 1; /* logb(&rv) */
|
|
if (i < Emin) /* denormal */
|
|
j += P - Emin;
|
|
else
|
|
j = P + 1 - bbbits;
|
|
#endif /*Sudden_Underflow*/
|
|
#endif /*Avoid_Underflow*/
|
|
bb2 += j;
|
|
bd2 += j;
|
|
#ifdef Avoid_Underflow
|
|
bd2 += scale;
|
|
#endif
|
|
i = bb2 < bd2 ? bb2 : bd2;
|
|
if (i > bs2)
|
|
i = bs2;
|
|
if (i > 0) {
|
|
bb2 -= i;
|
|
bd2 -= i;
|
|
bs2 -= i;
|
|
}
|
|
if (bb5 > 0) {
|
|
bs = pow5mult(bs, bb5);
|
|
bb1 = mult(bs, bb);
|
|
Bfree(bb);
|
|
bb = bb1;
|
|
}
|
|
if (bb2 > 0)
|
|
bb = lshift(bb, bb2);
|
|
if (bd5 > 0)
|
|
bd = pow5mult(bd, bd5);
|
|
if (bd2 > 0)
|
|
bd = lshift(bd, bd2);
|
|
if (bs2 > 0)
|
|
bs = lshift(bs, bs2);
|
|
delta = diff(bb, bd);
|
|
dsign = delta->sign;
|
|
delta->sign = 0;
|
|
i = cmp(delta, bs);
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (Rounding != 1) {
|
|
if (i < 0) {
|
|
/* Error is less than an ulp */
|
|
if (!delta->x[0] && delta->wds <= 1) {
|
|
/* exact */
|
|
#ifdef SET_INEXACT
|
|
inexact = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
if (Rounding) {
|
|
if (dsign) {
|
|
dval(&adj) = 1.;
|
|
goto apply_adj;
|
|
}
|
|
}
|
|
else if (!dsign) {
|
|
dval(&adj) = -1.;
|
|
if (!word1(&rv)
|
|
&& !(word0(&rv) & Frac_mask)) {
|
|
y = word0(&rv) & Exp_mask;
|
|
#ifdef Avoid_Underflow
|
|
if (!scale || y > 2*P*Exp_msk1)
|
|
#else
|
|
if (y)
|
|
#endif
|
|
{
|
|
delta = lshift(delta,Log2P);
|
|
if (cmp(delta, bs) <= 0)
|
|
dval(&adj) = -0.5;
|
|
}
|
|
}
|
|
apply_adj:
|
|
#ifdef Avoid_Underflow
|
|
if (scale && (y = word0(&rv) & Exp_mask)
|
|
<= 2*P*Exp_msk1)
|
|
word0(&adj) += (2*P+1)*Exp_msk1 - y;
|
|
#else
|
|
#ifdef Sudden_Underflow
|
|
if ((word0(&rv) & Exp_mask) <=
|
|
P*Exp_msk1) {
|
|
word0(&rv) += P*Exp_msk1;
|
|
dval(&rv) += adj*ulp(&rv);
|
|
word0(&rv) -= P*Exp_msk1;
|
|
}
|
|
else
|
|
#endif /*Sudden_Underflow*/
|
|
#endif /*Avoid_Underflow*/
|
|
dval(&rv) += adj.d*ulp(&rv);
|
|
}
|
|
break;
|
|
}
|
|
dval(&adj) = ratio(delta, bs);
|
|
if (adj.d < 1.)
|
|
dval(&adj) = 1.;
|
|
if (adj.d <= 0x7ffffffe) {
|
|
/* dval(&adj) = Rounding ? ceil(&adj) : floor(&adj); */
|
|
y = adj.d;
|
|
if (y != adj.d) {
|
|
if (!((Rounding>>1) ^ dsign))
|
|
y++;
|
|
dval(&adj) = y;
|
|
}
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
if (scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
|
|
word0(&adj) += (2*P+1)*Exp_msk1 - y;
|
|
#else
|
|
#ifdef Sudden_Underflow
|
|
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
|
|
word0(&rv) += P*Exp_msk1;
|
|
dval(&adj) *= ulp(&rv);
|
|
if (dsign)
|
|
dval(&rv) += adj;
|
|
else
|
|
dval(&rv) -= adj;
|
|
word0(&rv) -= P*Exp_msk1;
|
|
goto cont;
|
|
}
|
|
#endif /*Sudden_Underflow*/
|
|
#endif /*Avoid_Underflow*/
|
|
dval(&adj) *= ulp(&rv);
|
|
if (dsign) {
|
|
if (word0(&rv) == Big0 && word1(&rv) == Big1)
|
|
goto ovfl;
|
|
dval(&rv) += adj.d;
|
|
}
|
|
else
|
|
dval(&rv) -= adj.d;
|
|
goto cont;
|
|
}
|
|
#endif /*Honor_FLT_ROUNDS*/
|
|
|
|
if (i < 0) {
|
|
/* Error is less than half an ulp -- check for
|
|
* special case of mantissa a power of two.
|
|
*/
|
|
if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
|
|
#ifdef IEEE_Arith
|
|
#ifdef Avoid_Underflow
|
|
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
|
|
#else
|
|
|| (word0(&rv) & Exp_mask) <= Exp_msk1
|
|
#endif
|
|
#endif
|
|
) {
|
|
#ifdef SET_INEXACT
|
|
if (!delta->x[0] && delta->wds <= 1)
|
|
inexact = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
if (!delta->x[0] && delta->wds <= 1) {
|
|
/* exact result */
|
|
#ifdef SET_INEXACT
|
|
inexact = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
delta = lshift(delta,Log2P);
|
|
if (cmp(delta, bs) > 0)
|
|
goto drop_down;
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
/* exactly half-way between */
|
|
if (dsign) {
|
|
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
|
|
&& word1(&rv) == (
|
|
#ifdef Avoid_Underflow
|
|
(scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
|
|
? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
|
|
#endif
|
|
0xffffffff)) {
|
|
/*boundary case -- increment exponent*/
|
|
if (word0(&rv) == Big0 && word1(&rv) == Big1)
|
|
goto ovfl;
|
|
word0(&rv) = (word0(&rv) & Exp_mask)
|
|
+ Exp_msk1
|
|
#ifdef IBM
|
|
| Exp_msk1 >> 4
|
|
#endif
|
|
;
|
|
word1(&rv) = 0;
|
|
#ifdef Avoid_Underflow
|
|
dsign = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
|
|
drop_down:
|
|
/* boundary case -- decrement exponent */
|
|
#ifdef Sudden_Underflow /*{{*/
|
|
L = word0(&rv) & Exp_mask;
|
|
#ifdef IBM
|
|
if (L < Exp_msk1)
|
|
#else
|
|
#ifdef Avoid_Underflow
|
|
if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
|
|
#else
|
|
if (L <= Exp_msk1)
|
|
#endif /*Avoid_Underflow*/
|
|
#endif /*IBM*/
|
|
goto undfl;
|
|
L -= Exp_msk1;
|
|
#else /*Sudden_Underflow}{*/
|
|
#ifdef Avoid_Underflow
|
|
if (scale) {
|
|
L = word0(&rv) & Exp_mask;
|
|
if (L <= (2*P+1)*Exp_msk1) {
|
|
if (L > (P+2)*Exp_msk1)
|
|
/* round even ==> */
|
|
/* accept rv */
|
|
break;
|
|
/* rv = smallest denormal */
|
|
goto undfl;
|
|
}
|
|
}
|
|
#endif /*Avoid_Underflow*/
|
|
L = (word0(&rv) & Exp_mask) - Exp_msk1;
|
|
#endif /*Sudden_Underflow}}*/
|
|
word0(&rv) = L | Bndry_mask1;
|
|
word1(&rv) = 0xffffffff;
|
|
#ifdef IBM
|
|
goto cont;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
#ifndef ROUND_BIASED
|
|
#ifdef Avoid_Underflow
|
|
if (Lsb1) {
|
|
if (!(word0(&rv) & Lsb1))
|
|
break;
|
|
}
|
|
else if (!(word1(&rv) & Lsb))
|
|
break;
|
|
#else
|
|
if (!(word1(&rv) & LSB))
|
|
break;
|
|
#endif
|
|
#endif
|
|
if (dsign)
|
|
#ifdef Avoid_Underflow
|
|
dval(&rv) += sulp(&rv, scale);
|
|
#else
|
|
dval(&rv) += ulp(&rv);
|
|
#endif
|
|
#ifndef ROUND_BIASED
|
|
else {
|
|
#ifdef Avoid_Underflow
|
|
dval(&rv) -= sulp(&rv, scale);
|
|
#else
|
|
dval(&rv) -= ulp(&rv);
|
|
#endif
|
|
#ifndef Sudden_Underflow
|
|
if (!dval(&rv))
|
|
goto undfl;
|
|
#endif
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
dsign = 1 - dsign;
|
|
#endif
|
|
#endif
|
|
break;
|
|
}
|
|
if ((aadj = ratio(delta, bs)) <= 2.) {
|
|
if (dsign)
|
|
aadj = dval(&aadj1) = 1.;
|
|
else if (word1(&rv) || word0(&rv) & Bndry_mask) {
|
|
#ifndef Sudden_Underflow
|
|
if (word1(&rv) == Tiny1 && !word0(&rv))
|
|
goto undfl;
|
|
#endif
|
|
aadj = 1.;
|
|
dval(&aadj1) = -1.;
|
|
}
|
|
else {
|
|
/* special case -- power of FLT_RADIX to be */
|
|
/* rounded down... */
|
|
|
|
if (aadj < 2./FLT_RADIX)
|
|
aadj = 1./FLT_RADIX;
|
|
else
|
|
aadj *= 0.5;
|
|
dval(&aadj1) = -aadj;
|
|
}
|
|
}
|
|
else {
|
|
aadj *= 0.5;
|
|
dval(&aadj1) = dsign ? aadj : -aadj;
|
|
#ifdef Check_FLT_ROUNDS
|
|
switch(Rounding) {
|
|
case 2: /* towards +infinity */
|
|
dval(&aadj1) -= 0.5;
|
|
break;
|
|
case 0: /* towards 0 */
|
|
case 3: /* towards -infinity */
|
|
dval(&aadj1) += 0.5;
|
|
}
|
|
#else
|
|
if (Flt_Rounds == 0)
|
|
dval(&aadj1) += 0.5;
|
|
#endif /*Check_FLT_ROUNDS*/
|
|
}
|
|
y = word0(&rv) & Exp_mask;
|
|
|
|
/* Check for overflow */
|
|
|
|
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
|
|
dval(&rv0) = dval(&rv);
|
|
word0(&rv) -= P*Exp_msk1;
|
|
dval(&adj) = dval(&aadj1) * ulp(&rv);
|
|
dval(&rv) += dval(&adj);
|
|
if ((word0(&rv) & Exp_mask) >=
|
|
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
|
|
if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
|
|
goto ovfl;
|
|
word0(&rv) = Big0;
|
|
word1(&rv) = Big1;
|
|
goto cont;
|
|
}
|
|
else
|
|
word0(&rv) += P*Exp_msk1;
|
|
}
|
|
else {
|
|
#ifdef Avoid_Underflow
|
|
if (scale && y <= 2*P*Exp_msk1) {
|
|
if (aadj <= 0x7fffffff) {
|
|
if ((z = (ULong)aadj) <= 0)
|
|
z = 1;
|
|
aadj = z;
|
|
dval(&aadj1) = dsign ? aadj : -aadj;
|
|
}
|
|
word0(&aadj1) += (2*P+1)*Exp_msk1 - y;
|
|
}
|
|
dval(&adj) = dval(&aadj1) * ulp(&rv);
|
|
dval(&rv) += dval(&adj);
|
|
#else
|
|
#ifdef Sudden_Underflow
|
|
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
|
|
dval(&rv0) = dval(&rv);
|
|
word0(&rv) += P*Exp_msk1;
|
|
dval(&adj) = dval(&aadj1) * ulp(&rv);
|
|
dval(&rv) += adj;
|
|
#ifdef IBM
|
|
if ((word0(&rv) & Exp_mask) < P*Exp_msk1)
|
|
#else
|
|
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
|
|
#endif
|
|
{
|
|
if (word0(&rv0) == Tiny0
|
|
&& word1(&rv0) == Tiny1)
|
|
goto undfl;
|
|
word0(&rv) = Tiny0;
|
|
word1(&rv) = Tiny1;
|
|
goto cont;
|
|
}
|
|
else
|
|
word0(&rv) -= P*Exp_msk1;
|
|
}
|
|
else {
|
|
dval(&adj) = dval(&aadj1) * ulp(&rv);
|
|
dval(&rv) += adj;
|
|
}
|
|
#else /*Sudden_Underflow*/
|
|
/* Compute dval(&adj) so that the IEEE rounding rules will
|
|
* correctly round rv + dval(&adj) in some half-way cases.
|
|
* If rv * ulp(&rv) is denormalized (i.e.,
|
|
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
|
* trouble from bits lost to denormalization;
|
|
* example: 1.2e-307 .
|
|
*/
|
|
if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
|
|
dval(&aadj1) = (double)(int)(aadj + 0.5);
|
|
if (!dsign)
|
|
dval(&aadj1) = -dval(&aadj1);
|
|
}
|
|
dval(&adj) = dval(&aadj1) * ulp(&rv);
|
|
dval(&rv) += adj;
|
|
#endif /*Sudden_Underflow*/
|
|
#endif /*Avoid_Underflow*/
|
|
}
|
|
z = word0(&rv) & Exp_mask;
|
|
#ifndef SET_INEXACT
|
|
#ifdef Avoid_Underflow
|
|
if (!scale)
|
|
#endif
|
|
if (y == z) {
|
|
/* Can we stop now? */
|
|
L = (Long)aadj;
|
|
aadj -= L;
|
|
/* The tolerances below are conservative. */
|
|
if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
|
|
if (aadj < .4999999 || aadj > .5000001)
|
|
break;
|
|
}
|
|
else if (aadj < .4999999/FLT_RADIX)
|
|
break;
|
|
}
|
|
#endif
|
|
cont:
|
|
Bfree(bb);
|
|
Bfree(bd);
|
|
Bfree(bs);
|
|
Bfree(delta);
|
|
}
|
|
Bfree(bb);
|
|
Bfree(bd);
|
|
Bfree(bs);
|
|
Bfree(bd0);
|
|
Bfree(delta);
|
|
#ifdef SET_INEXACT
|
|
if (inexact) {
|
|
if (!oldinexact) {
|
|
word0(&rv0) = Exp_1 + (70 << Exp_shift);
|
|
word1(&rv0) = 0;
|
|
dval(&rv0) += 1.;
|
|
}
|
|
}
|
|
else if (!oldinexact)
|
|
clear_inexact();
|
|
#endif
|
|
#ifdef Avoid_Underflow
|
|
if (scale) {
|
|
word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
|
|
word1(&rv0) = 0;
|
|
dval(&rv) *= dval(&rv0);
|
|
#ifndef NO_ERRNO
|
|
/* try to avoid the bug of testing an 8087 register value */
|
|
#ifdef IEEE_Arith
|
|
if (!(word0(&rv) & Exp_mask))
|
|
#else
|
|
if (word0(&rv) == 0 && word1(&rv) == 0)
|
|
#endif
|
|
errno = ERANGE;
|
|
#endif
|
|
}
|
|
#endif /* Avoid_Underflow */
|
|
#ifdef SET_INEXACT
|
|
if (inexact && !(word0(&rv) & Exp_mask)) {
|
|
/* set underflow bit */
|
|
dval(&rv0) = 1e-300;
|
|
dval(&rv0) *= dval(&rv0);
|
|
}
|
|
#endif
|
|
ret:
|
|
if (se)
|
|
*se = (char *)s;
|
|
return sign ? -dval(&rv) : dval(&rv);
|
|
}
|
|
|