raze-gles/source/common/utility/m_png.cpp

1295 lines
31 KiB
C++

/*
** m_png.cpp
** Routines for manipulating PNG files.
**
**---------------------------------------------------------------------------
** Copyright 2002-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
// HEADER FILES ------------------------------------------------------------
#include <algorithm>
#include <stdlib.h>
#include <zlib.h>
#include <stdint.h>
#ifdef _MSC_VER
#include <malloc.h> // for alloca()
#endif
#include "basics.h"
#include "m_crc32.h"
#include "m_swap.h"
#include "c_cvars.h"
#include "m_png.h"
// MACROS ------------------------------------------------------------------
// The maximum size of an IDAT chunk ZDoom will write. This is also the
// size of the compression buffer it allocates on the stack.
#define PNG_WRITE_SIZE 32768
// Set this to 1 to use a simple heuristic to select the filter to apply
// for each row of RGB image saves. As it turns out, it seems no filtering
// is the best for Doom screenshots, no matter what the heuristic might
// determine, so that's why this is 0 here.
#define USE_FILTER_HEURISTIC 0
// TYPES -------------------------------------------------------------------
struct IHDR
{
uint32_t Width;
uint32_t Height;
uint8_t BitDepth;
uint8_t ColorType;
uint8_t Compression;
uint8_t Filter;
uint8_t Interlace;
};
PNGHandle::PNGHandle (FileReader &file) : bDeleteFilePtr(true), ChunkPt(0)
{
File = std::move(file);
}
PNGHandle::~PNGHandle ()
{
for (unsigned int i = 0; i < TextChunks.Size(); ++i)
{
delete[] TextChunks[i];
}
}
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
static inline void MakeChunk (void *where, uint32_t type, size_t len);
static inline void StuffPalette (const PalEntry *from, uint8_t *to);
static bool WriteIDAT (FileWriter *file, const uint8_t *data, int len);
static void UnfilterRow (int width, uint8_t *dest, uint8_t *stream, uint8_t *prev, int bpp);
static void UnpackPixels (int width, int bytesPerRow, int bitdepth, const uint8_t *rowin, uint8_t *rowout, bool grayscale);
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
// PUBLIC DATA DEFINITIONS -------------------------------------------------
CUSTOM_CVAR(Int, png_level, 5, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self < 0)
self = 0;
else if (self > 9)
self = 9;
}
CVAR(Float, png_gamma, 0.f, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// CODE --------------------------------------------------------------------
//==========================================================================
//
// M_CreatePNG
//
// Passed a newly-created file, writes the PNG signature and IHDR, gAMA, and
// PLTE chunks. Returns true if everything went as expected.
//
//==========================================================================
bool M_CreatePNG (FileWriter *file, const uint8_t *buffer, const PalEntry *palette,
ESSType color_type, int width, int height, int pitch, float gamma)
{
uint8_t work[8 + // signature
12+2*4+5 + // IHDR
12+4 + // gAMA
12+256*3]; // PLTE
uint32_t *const sig = (uint32_t *)&work[0];
IHDR *const ihdr = (IHDR *)&work[8 + 8];
uint32_t *const gama = (uint32_t *)((uint8_t *)ihdr + 2*4+5 + 12);
uint8_t *const plte = (uint8_t *)gama + 4 + 12;
size_t work_len;
sig[0] = MAKE_ID(137,'P','N','G');
sig[1] = MAKE_ID(13,10,26,10);
ihdr->Width = BigLong(width);
ihdr->Height = BigLong(height);
ihdr->BitDepth = 8;
ihdr->ColorType = color_type == SS_PAL ? 3 : 2;
ihdr->Compression = 0;
ihdr->Filter = 0;
ihdr->Interlace = 0;
MakeChunk (ihdr, MAKE_ID('I','H','D','R'), 2*4+5);
// Assume a display exponent of 2.2 (100000/2.2 ~= 45454.5)
*gama = BigLong (int (45454.5f * (png_gamma == 0.f ? gamma : png_gamma)));
MakeChunk (gama, MAKE_ID('g','A','M','A'), 4);
if (color_type == SS_PAL)
{
StuffPalette (palette, plte);
MakeChunk (plte, MAKE_ID('P','L','T','E'), 256*3);
work_len = sizeof(work);
}
else
{
work_len = sizeof(work) - (12+256*3);
}
if (file->Write (work, work_len) != work_len)
return false;
return M_SaveBitmap (buffer, color_type, width, height, pitch, file);
}
//==========================================================================
//
// M_CreateDummyPNG
//
// Like M_CreatePNG, but the image is always a grayscale 1x1 black square.
//
//==========================================================================
bool M_CreateDummyPNG (FileWriter *file)
{
static const uint8_t dummyPNG[] =
{
137,'P','N','G',13,10,26,10,
0,0,0,13,'I','H','D','R',
0,0,0,1,0,0,0,1,8,0,0,0,0,0x3a,0x7e,0x9b,0x55,
0,0,0,10,'I','D','A','T',
104,222,99,96,0,0,0,2,0,1,0x9f,0x65,0x0e,0x18
};
return file->Write (dummyPNG, sizeof(dummyPNG)) == sizeof(dummyPNG);
}
//==========================================================================
//
// M_FinishPNG
//
// Writes an IEND chunk to a PNG file. The file is left opened.
//
//==========================================================================
bool M_FinishPNG (FileWriter *file)
{
static const uint8_t iend[12] = { 0,0,0,0,73,69,78,68,174,66,96,130 };
return file->Write (iend, 12) == 12;
}
//==========================================================================
//
// M_AppendPNGChunk
//
// Writes a PNG-compliant chunk to the file.
//
//==========================================================================
bool M_AppendPNGChunk (FileWriter *file, uint32_t chunkID, const uint8_t *chunkData, uint32_t len)
{
uint32_t head[2] = { BigLong((unsigned int)len), chunkID };
uint32_t crc;
if (file->Write (head, 8) == 8 &&
(len == 0 || file->Write (chunkData, len) == len))
{
crc = CalcCRC32 ((uint8_t *)&head[1], 4);
if (len != 0)
{
crc = AddCRC32 (crc, chunkData, len);
}
crc = BigLong((unsigned int)crc);
return file->Write (&crc, 4) == 4;
}
return false;
}
//==========================================================================
//
// M_AppendPNGText
//
// Appends a PNG tEXt chunk to the file
//
//==========================================================================
bool M_AppendPNGText (FileWriter *file, const char *keyword, const char *text)
{
struct { uint32_t len, id; char key[80]; } head;
int len = (int)strlen (text);
int keylen = std::min ((int)strlen (keyword), 79);
uint32_t crc;
head.len = BigLong(len + keylen + 1);
head.id = MAKE_ID('t','E','X','t');
memset (&head.key, 0, sizeof(head.key));
strncpy (head.key, keyword, keylen);
head.key[keylen] = 0;
if ((int)file->Write (&head, keylen + 9) == keylen + 9 &&
(int)file->Write (text, len) == len)
{
crc = CalcCRC32 ((uint8_t *)&head+4, keylen + 5);
if (len != 0)
{
crc = AddCRC32 (crc, (uint8_t *)text, len);
}
crc = BigLong(crc);
return file->Write (&crc, 4) == 4;
}
return false;
}
//==========================================================================
//
// M_FindPNGChunk
//
// Finds a chunk in a PNG file. The file pointer will be positioned at the
// beginning of the chunk data, and its length will be returned. A return
// value of 0 indicates the chunk was either not present or had 0 length.
// This means there is no way to conclusively determine if a chunk is not
// present in a PNG file with this function, but since we're only
// interested in chunks with content, that's okay. The file pointer will
// be left sitting at the start of the chunk's data if it was found.
//
//==========================================================================
unsigned int M_FindPNGChunk (PNGHandle *png, uint32_t id)
{
png->ChunkPt = 0;
return M_NextPNGChunk (png, id);
}
//==========================================================================
//
// M_NextPNGChunk
//
// Like M_FindPNGChunk, but it starts it search at the current chunk.
//
//==========================================================================
unsigned int M_NextPNGChunk (PNGHandle *png, uint32_t id)
{
for ( ; png->ChunkPt < png->Chunks.Size(); ++png->ChunkPt)
{
if (png->Chunks[png->ChunkPt].ID == id)
{ // Found the chunk
png->File.Seek (png->Chunks[png->ChunkPt++].Offset, FileReader::SeekSet);
return png->Chunks[png->ChunkPt - 1].Size;
}
}
return 0;
}
//==========================================================================
//
// M_GetPNGText
//
// Finds a PNG text chunk with the given signature and returns a pointer
// to a NULL-terminated string if present. Returns NULL on failure.
//
//==========================================================================
char *M_GetPNGText (PNGHandle *png, const char *keyword)
{
unsigned int i;
size_t keylen, textlen;
for (i = 0; i < png->TextChunks.Size(); ++i)
{
if (strncmp (keyword, png->TextChunks[i], 80) == 0)
{
// Woo! A match was found!
keylen = std::min<size_t> (80, strlen (keyword) + 1);
textlen = strlen (png->TextChunks[i] + keylen) + 1;
char *str = new char[textlen];
strcpy (str, png->TextChunks[i] + keylen);
return str;
}
}
return NULL;
}
// This version copies it to a supplied buffer instead of allocating a new one.
bool M_GetPNGText (PNGHandle *png, const char *keyword, char *buffer, size_t buffsize)
{
unsigned int i;
size_t keylen;
for (i = 0; i < png->TextChunks.Size(); ++i)
{
if (strncmp (keyword, png->TextChunks[i], 80) == 0)
{
// Woo! A match was found!
keylen = std::min<size_t> (80, strlen (keyword) + 1);
strncpy (buffer, png->TextChunks[i] + keylen, buffsize);
return true;
}
}
return false;
}
//==========================================================================
//
// M_VerifyPNG
//
// Returns a PNGHandle if the file is a PNG or NULL if not. CRC checking of
// chunks is not done in order to save time.
//
//==========================================================================
PNGHandle *M_VerifyPNG (FileReader &filer)
{
PNGHandle::Chunk chunk;
PNGHandle *png;
uint32_t data[2];
bool sawIDAT = false;
if (filer.Read(&data, 8) != 8)
{
return NULL;
}
if (data[0] != MAKE_ID(137,'P','N','G') || data[1] != MAKE_ID(13,10,26,10))
{ // Does not have PNG signature
return NULL;
}
if (filer.Read (&data, 8) != 8)
{
return NULL;
}
if (data[1] != MAKE_ID('I','H','D','R'))
{ // IHDR must be the first chunk
return NULL;
}
// It looks like a PNG so far, so start creating a PNGHandle for it
png = new PNGHandle (filer);
// filer is no longer valid after the above line!
chunk.ID = data[1];
chunk.Offset = 16;
chunk.Size = BigLong((unsigned int)data[0]);
png->Chunks.Push (chunk);
png->File.Seek (16, FileReader::SeekSet);
while (png->File.Seek (chunk.Size + 4, FileReader::SeekCur) == 0)
{
// If the file ended before an IEND was encountered, it's not a PNG.
if (png->File.Read (&data, 8) != 8)
{
break;
}
// An IEND chunk terminates the PNG and must be empty
if (data[1] == MAKE_ID('I','E','N','D'))
{
if (data[0] == 0 && sawIDAT)
{
return png;
}
break;
}
// A PNG must include an IDAT chunk
if (data[1] == MAKE_ID('I','D','A','T'))
{
sawIDAT = true;
}
chunk.ID = data[1];
chunk.Offset = (uint32_t)png->File.Tell();
chunk.Size = BigLong((unsigned int)data[0]);
png->Chunks.Push (chunk);
// If this is a text chunk, also record its contents.
if (data[1] == MAKE_ID('t','E','X','t'))
{
char *str = new char[chunk.Size + 1];
if (png->File.Read (str, chunk.Size) != chunk.Size)
{
delete[] str;
break;
}
str[chunk.Size] = 0;
png->TextChunks.Push (str);
chunk.Size = 0; // Don't try to seek past its contents again.
}
}
filer = std::move(png->File); // need to get the reader back if this function failed.
delete png;
return NULL;
}
//==========================================================================
//
// M_FreePNG
//
// Just deletes the PNGHandle. The file is not closed.
//
//==========================================================================
void M_FreePNG (PNGHandle *png)
{
delete png;
}
//==========================================================================
//
// ReadIDAT
//
// Reads image data out of a PNG
//
//==========================================================================
bool M_ReadIDAT (FileReader &file, uint8_t *buffer, int width, int height, int pitch,
uint8_t bitdepth, uint8_t colortype, uint8_t interlace, unsigned int chunklen)
{
// Uninterlaced images are treated as a conceptual eighth pass by these tables.
static const uint8_t passwidthshift[8] = { 3, 3, 2, 2, 1, 1, 0, 0 };
static const uint8_t passheightshift[8] = { 3, 3, 3, 2, 2, 1, 1, 0 };
static const uint8_t passrowoffset[8] = { 0, 0, 4, 0, 2, 0, 1, 0 };
static const uint8_t passcoloffset[8] = { 0, 4, 0, 2, 0, 1, 0, 0 };
Byte *inputLine, *prev, *curr, *adam7buff[3], *bufferend;
Byte chunkbuffer[4096];
z_stream stream;
int err;
int i, pass, passbuff, passpitch, passwidth;
bool lastIDAT;
int bytesPerRowIn, bytesPerRowOut;
int bytesPerPixel;
bool initpass;
switch (colortype)
{
case 2: bytesPerPixel = 3; break; // RGB
case 4: bytesPerPixel = 2; break; // LA
case 6: bytesPerPixel = 4; break; // RGBA
default: bytesPerPixel = 1; break;
}
bytesPerRowOut = width * bytesPerPixel;
i = 4 + bytesPerRowOut * 2;
if (interlace)
{
i += bytesPerRowOut * 2;
}
inputLine = (Byte *)alloca (i);
adam7buff[0] = inputLine + 4 + bytesPerRowOut;
adam7buff[1] = adam7buff[0] + bytesPerRowOut;
adam7buff[2] = adam7buff[1] + bytesPerRowOut;
bufferend = buffer + pitch * height;
stream.next_in = Z_NULL;
stream.avail_in = 0;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
err = inflateInit (&stream);
if (err != Z_OK)
{
return false;
}
lastIDAT = false;
initpass = true;
pass = interlace ? 0 : 7;
// Silence GCC warnings. Due to initpass being true, these will be set
// before they're used, but it doesn't know that.
curr = prev = 0;
passwidth = passpitch = bytesPerRowIn = 0;
passbuff = 0;
while (err != Z_STREAM_END && pass < 8 - interlace)
{
if (initpass)
{
int rowoffset, coloffset;
initpass = false;
pass--;
do
{
pass++;
rowoffset = passrowoffset[pass];
coloffset = passcoloffset[pass];
}
while ((rowoffset >= height || coloffset >= width) && pass < 7);
if (pass == 7 && interlace)
{
break;
}
passwidth = (width + (1 << passwidthshift[pass]) - 1 - coloffset) >> passwidthshift[pass];
prev = adam7buff[0];
passbuff = 1;
memset (prev, 0, passwidth * bytesPerPixel);
switch (bitdepth)
{
case 8: bytesPerRowIn = passwidth * bytesPerPixel; break;
case 4: bytesPerRowIn = (passwidth+1)/2; break;
case 2: bytesPerRowIn = (passwidth+3)/4; break;
case 1: bytesPerRowIn = (passwidth+7)/8; break;
default: return false;
}
curr = buffer + rowoffset*pitch + coloffset*bytesPerPixel;
passpitch = pitch << passheightshift[pass];
stream.next_out = inputLine;
stream.avail_out = bytesPerRowIn + 1;
}
if (stream.avail_in == 0 && chunklen > 0)
{
stream.next_in = chunkbuffer;
stream.avail_in = (uInt)file.Read (chunkbuffer, std::min<uint32_t>(chunklen,sizeof(chunkbuffer)));
chunklen -= stream.avail_in;
}
err = inflate (&stream, Z_SYNC_FLUSH);
if (err != Z_OK && err != Z_STREAM_END)
{ // something unexpected happened
inflateEnd (&stream);
return false;
}
if (stream.avail_out == 0)
{
if (pass >= 6)
{
// Store pixels directly into the output buffer
UnfilterRow (bytesPerRowIn, curr, inputLine, prev, bytesPerPixel);
prev = curr;
}
else
{
const uint8_t *in;
uint8_t *out;
int colstep, x;
// Store pixels into a temporary buffer
UnfilterRow (bytesPerRowIn, adam7buff[passbuff], inputLine, prev, bytesPerPixel);
prev = adam7buff[passbuff];
passbuff ^= 1;
in = prev;
if (bitdepth < 8)
{
UnpackPixels (passwidth, bytesPerRowIn, bitdepth, in, adam7buff[2], colortype == 0);
in = adam7buff[2];
}
// Distribute pixels into the output buffer
out = curr;
colstep = bytesPerPixel << passwidthshift[pass];
switch (bytesPerPixel)
{
case 1:
for (x = passwidth; x > 0; --x)
{
*out = *in;
out += colstep;
in += 1;
}
break;
case 2:
for (x = passwidth; x > 0; --x)
{
*(uint16_t *)out = *(uint16_t *)in;
out += colstep;
in += 2;
}
break;
case 3:
for (x = passwidth; x > 0; --x)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out += colstep;
in += 3;
}
break;
case 4:
for (x = passwidth; x > 0; --x)
{
*(uint32_t *)out = *(uint32_t *)in;
out += colstep;
in += 4;
}
break;
}
}
if ((curr += passpitch) >= bufferend)
{
++pass;
initpass = true;
}
stream.next_out = inputLine;
stream.avail_out = bytesPerRowIn + 1;
}
if (chunklen == 0 && !lastIDAT)
{
uint32_t x[3];
if (file.Read (x, 12) != 12)
{
lastIDAT = true;
}
else if (x[2] != MAKE_ID('I','D','A','T'))
{
lastIDAT = true;
}
else
{
chunklen = BigLong((unsigned int)x[1]);
}
}
}
inflateEnd (&stream);
if (bitdepth < 8)
{
// Noninterlaced images must be unpacked completely.
// Interlaced images only need their final pass unpacked.
passpitch = pitch << interlace;
for (curr = buffer + pitch * interlace; curr <= prev; curr += passpitch)
{
UnpackPixels (width, bytesPerRowIn, bitdepth, curr, curr, colortype == 0);
}
}
return true;
}
// PRIVATE CODE ------------------------------------------------------------
//==========================================================================
//
// MakeChunk
//
// Prepends the chunk length and type and appends the chunk's CRC32.
// There must be 8 bytes available before the chunk passed and 4 bytes
// after the chunk.
//
//==========================================================================
static inline void MakeChunk (void *where, uint32_t type, size_t len)
{
uint8_t *const data = (uint8_t *)where;
*(uint32_t *)(data - 8) = BigLong ((unsigned int)len);
*(uint32_t *)(data - 4) = type;
*(uint32_t *)(data + len) = BigLong ((unsigned int)CalcCRC32 (data-4, (unsigned int)(len+4)));
}
//==========================================================================
//
// StuffPalette
//
// Converts 256 4-byte palette entries to 3 bytes each.
//
//==========================================================================
static void StuffPalette (const PalEntry *from, uint8_t *to)
{
for (int i = 256; i > 0; --i)
{
to[0] = from->r;
to[1] = from->g;
to[2] = from->b;
from += 1;
to += 3;
}
}
//==========================================================================
//
// CalcSum
//
//
//==========================================================================
uint32_t CalcSum(Byte *row, int len)
{
uint32_t sum = 0;
while (len-- != 0)
{
sum += (char)*row++;
}
return sum;
}
//==========================================================================
//
// SelectFilter
//
// Performs the heuristic recommended by the PNG spec to decide the
// (hopefully) best filter to use for this row. To quate:
//
// Select the filter that gives the smallest sum of absolute values of
// outputs. (Consider the output bytes as signed differences for this
// test.)
//
//==========================================================================
#if USE_FILTER_HEURISTIC
static int SelectFilter(Byte **row, Byte *prior, int width)
{
// As it turns out, it seems no filtering is the best for Doom screenshots,
// no matter what the heuristic might determine.
return 0;
uint32_t sum;
uint32_t bestsum;
int bestfilter;
int x;
width *= 3;
// The first byte of each row holds the filter type, filled in by the caller.
// However, the prior row does not contain a filter type, since it's always 0.
bestsum = 0;
bestfilter = 0;
// None
for (x = 1; x <= width; ++x)
{
bestsum += abs((char)row[0][x]);
}
// Sub
row[1][1] = row[0][1];
row[1][2] = row[0][2];
row[1][3] = row[0][3];
sum = abs((char)row[0][1]) + abs((char)row[0][2]) + abs((char)row[0][3]);
for (x = 4; x <= width; ++x)
{
row[1][x] = row[0][x] - row[0][x - 3];
sum += abs((char)row[1][x]);
if (sum >= bestsum)
{ // This isn't going to be any better.
break;
}
}
if (sum < bestsum)
{
bestsum = sum;
bestfilter = 1;
}
// Up
sum = 0;
for (x = 1; x <= width; ++x)
{
row[2][x] = row[0][x] - prior[x - 1];
sum += abs((char)row[2][x]);
if (sum >= bestsum)
{ // This isn't going to be any better.
break;
}
}
if (sum < bestsum)
{
bestsum = sum;
bestfilter = 2;
}
// Average
row[3][1] = row[0][1] - prior[0] / 2;
row[3][2] = row[0][2] - prior[1] / 2;
row[3][3] = row[0][3] - prior[2] / 2;
sum = abs((char)row[3][1]) + abs((char)row[3][2]) + abs((char)row[3][3]);
for (x = 4; x <= width; ++x)
{
row[3][x] = row[0][x] - (row[0][x - 3] + prior[x - 1]) / 2;
sum += (char)row[3][x];
if (sum >= bestsum)
{ // This isn't going to be any better.
break;
}
}
if (sum < bestsum)
{
bestsum = sum;
bestfilter = 3;
}
// Paeth
row[4][1] = row[0][1] - prior[0];
row[4][2] = row[0][2] - prior[1];
row[4][3] = row[0][3] - prior[2];
sum = abs((char)row[4][1]) + abs((char)row[4][2]) + abs((char)row[4][3]);
for (x = 4; x <= width; ++x)
{
Byte a = row[0][x - 3];
Byte b = prior[x - 1];
Byte c = prior[x - 4];
int p = a + b - c;
int pa = abs(p - a);
int pb = abs(p - b);
int pc = abs(p - c);
if (pa <= pb && pa <= pc)
{
row[4][x] = row[0][x] - a;
}
else if (pb <= pc)
{
row[4][x] = row[0][x] - b;
}
else
{
row[4][x] = row[0][x] - c;
}
sum += (char)row[4][x];
if (sum >= bestsum)
{ // This isn't going to be any better.
break;
}
}
if (sum < bestsum)
{
bestfilter = 4;
}
return bestfilter;
}
#else
#define SelectFilter(x,y,z) 0
#endif
//==========================================================================
//
// M_SaveBitmap
//
// Given a bitmap, creates one or more IDAT chunks in the given file.
// Returns true on success.
//
//==========================================================================
bool M_SaveBitmap(const uint8_t *from, ESSType color_type, int width, int height, int pitch, FileWriter *file)
{
TArray<Byte> temprow_storage;
#if USE_FILTER_HEURISTIC
static const unsigned temprow_count = 5;
TArray<Byte> prior_storage(width * 3, true);
Byte *prior = &prior_storage[0];
#else
static const unsigned temprow_count = 1;
#endif
const unsigned temprow_size = 1 + width * 3;
temprow_storage.Resize(temprow_size * temprow_count);
Byte* temprow[temprow_count];
for (unsigned i = 0; i < temprow_count; ++i)
{
temprow[i] = &temprow_storage[temprow_size * i];
}
Byte buffer[PNG_WRITE_SIZE];
z_stream stream;
int err;
int y;
stream.next_in = Z_NULL;
stream.avail_in = 0;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
err = deflateInit (&stream, png_level);
if (err != Z_OK)
{
return false;
}
y = height;
stream.next_out = buffer;
stream.avail_out = sizeof(buffer);
temprow[0][0] = 0;
#if USE_FILTER_HEURISTIC
temprow[1][0] = 1;
temprow[2][0] = 2;
temprow[3][0] = 3;
temprow[4][0] = 4;
// Fill the prior row with 0 for RGB images. Paletted is always filter 0,
// so it doesn't need this.
if (color_type != SS_PAL)
{
memset(prior, 0, width * 3);
}
#endif
while (y-- > 0 && err == Z_OK)
{
switch (color_type)
{
case SS_PAL:
memcpy(&temprow[0][1], from, width);
// always use filter type 0 for paletted images
stream.next_in = temprow[0];
stream.avail_in = width + 1;
break;
case SS_RGB:
memcpy(&temprow[0][1], from, width*3);
stream.next_in = temprow[SelectFilter(temprow, prior, width)];
stream.avail_in = width * 3 + 1;
break;
case SS_BGRA:
for (int x = 0; x < width; ++x)
{
temprow[0][x*3 + 1] = from[x*4 + 2];
temprow[0][x*3 + 2] = from[x*4 + 1];
temprow[0][x*3 + 3] = from[x*4];
}
stream.next_in = temprow[SelectFilter(temprow, prior, width)];
stream.avail_in = width * 3 + 1;
break;
}
#if USE_FILTER_HEURISTIC
if (color_type != SS_PAL)
{
// Save this row for filter calculations on the next row.
memcpy (prior, &temprow[0][1], stream.avail_in - 1);
}
#endif
from += pitch;
err = deflate (&stream, (y == 0) ? Z_FINISH : 0);
if (err != Z_OK)
{
break;
}
while (stream.avail_out == 0)
{
if (!WriteIDAT (file, buffer, sizeof(buffer)))
{
return false;
}
stream.next_out = buffer;
stream.avail_out = sizeof(buffer);
if (stream.avail_in != 0)
{
err = deflate (&stream, (y == 0) ? Z_FINISH : 0);
if (err != Z_OK)
{
break;
}
}
}
}
while (err == Z_OK)
{
err = deflate (&stream, Z_FINISH);
if (err != Z_OK)
{
break;
}
if (stream.avail_out == 0)
{
if (!WriteIDAT (file, buffer, sizeof(buffer)))
{
return false;
}
stream.next_out = buffer;
stream.avail_out = sizeof(buffer);
}
}
deflateEnd (&stream);
if (err != Z_STREAM_END)
{
return false;
}
return WriteIDAT (file, buffer, sizeof(buffer)-stream.avail_out);
}
//==========================================================================
//
// WriteIDAT
//
// Writes a single IDAT chunk to the file. Returns true on success.
//
//==========================================================================
static bool WriteIDAT (FileWriter *file, const uint8_t *data, int len)
{
uint32_t foo[2], crc;
foo[0] = BigLong (len);
foo[1] = MAKE_ID('I','D','A','T');
crc = CalcCRC32 ((uint8_t *)&foo[1], 4);
crc = BigLong ((unsigned int)AddCRC32 (crc, data, len));
if (file->Write (foo, 8) != 8 ||
file->Write (data, len) != (size_t)len ||
file->Write (&crc, 4) != 4)
{
return false;
}
return true;
}
//==========================================================================
//
// UnfilterRow
//
// Unfilters the given row. Unknown filter types are silently ignored.
// bpp is bytes per pixel, not bits per pixel.
// width is in bytes, not pixels.
//
//==========================================================================
void UnfilterRow (int width, uint8_t *dest, uint8_t *row, uint8_t *prev, int bpp)
{
int x;
switch (*row++)
{
case 1: // Sub
x = bpp;
do
{
*dest++ = *row++;
}
while (--x);
for (x = width - bpp; x > 0; --x)
{
*dest = *row++ + *(dest - bpp);
dest++;
}
break;
case 2: // Up
x = width;
do
{
*dest++ = *row++ + *prev++;
}
while (--x);
break;
case 3: // Average
x = bpp;
do
{
*dest++ = *row++ + (*prev++)/2;
}
while (--x);
for (x = width - bpp; x > 0; --x)
{
*dest = *row++ + (uint8_t)((unsigned(*(dest - bpp)) + unsigned(*prev++)) >> 1);
dest++;
}
break;
case 4: // Paeth
x = bpp;
do
{
*dest++ = *row++ + *prev++;
}
while (--x);
for (x = width - bpp; x > 0; --x)
{
int a, b, c, pa, pb, pc;
a = *(dest - bpp);
b = *(prev);
c = *(prev - bpp);
pa = b - c;
pb = a - c;
pc = abs (pa + pb);
pa = abs (pa);
pb = abs (pb);
*dest = *row + (uint8_t)((pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c);
dest++;
row++;
prev++;
}
break;
default: // Treat everything else as filter type 0 (none)
memcpy (dest, row, width);
break;
}
}
//==========================================================================
//
// UnpackPixels
//
// Unpacks a row of pixels whose depth is less than 8 so that each pixel
// occupies a single byte. The outrow must be "width" bytes long.
// "bytesPerRow" is the number of bytes for the packed row. The in and out
// rows may overlap, but only if rowin == rowout.
//
//==========================================================================
static void UnpackPixels (int width, int bytesPerRow, int bitdepth, const uint8_t *rowin, uint8_t *rowout, bool grayscale)
{
const uint8_t *in;
uint8_t *out;
uint8_t pack;
int lastbyte;
assert(bitdepth == 1 || bitdepth == 2 || bitdepth == 4);
out = rowout + width;
in = rowin + bytesPerRow;
switch (bitdepth)
{
case 1:
lastbyte = width & 7;
if (lastbyte != 0)
{
in--;
pack = *in;
out -= lastbyte;
out[0] = (pack >> 7) & 1;
if (lastbyte >= 2) out[1] = (pack >> 6) & 1;
if (lastbyte >= 3) out[2] = (pack >> 5) & 1;
if (lastbyte >= 4) out[3] = (pack >> 4) & 1;
if (lastbyte >= 5) out[4] = (pack >> 3) & 1;
if (lastbyte >= 6) out[5] = (pack >> 2) & 1;
if (lastbyte == 7) out[6] = (pack >> 1) & 1;
}
while (in-- > rowin)
{
pack = *in;
out -= 8;
out[0] = (pack >> 7) & 1;
out[1] = (pack >> 6) & 1;
out[2] = (pack >> 5) & 1;
out[3] = (pack >> 4) & 1;
out[4] = (pack >> 3) & 1;
out[5] = (pack >> 2) & 1;
out[6] = (pack >> 1) & 1;
out[7] = pack & 1;
}
break;
case 2:
lastbyte = width & 3;
if (lastbyte != 0)
{
in--;
pack = *in;
out -= lastbyte;
out[0] = pack >> 6;
if (lastbyte >= 2) out[1] = (pack >> 4) & 3;
if (lastbyte == 3) out[2] = (pack >> 2) & 3;
}
while (in-- > rowin)
{
pack = *in;
out -= 4;
out[0] = pack >> 6;
out[1] = (pack >> 4) & 3;
out[2] = (pack >> 2) & 3;
out[3] = pack & 3;
}
break;
case 4:
lastbyte = width & 1;
if (lastbyte != 0)
{
in--;
pack = *in;
out -= lastbyte;
out[0] = pack >> 4;
}
while (in-- > rowin)
{
pack = *in;
out -= 2;
out[0] = pack >> 4;
out[1] = pack & 15;
}
break;
}
// Expand grayscale to 8bpp
if (grayscale)
{
// Put the 2-bit lookup table on the stack, since it's probably already
// in a cache line.
union
{
uint32_t bits2l;
uint8_t bits2[4];
};
out = rowout + width;
switch (bitdepth)
{
case 1:
while (--out >= rowout)
{
// 1 becomes -1 (0xFF), and 0 remains untouched.
*out = 0 - *out;
}
break;
case 2:
bits2l = MAKE_ID(0x00,0x55,0xAA,0xFF);
while (--out >= rowout)
{
*out = bits2[*out];
}
break;
case 4:
while (--out >= rowout)
{
*out |= (*out << 4);
}
break;
}
}
}