raze-gles/source/common/rendering/vulkan/system/vk_device.cpp
2021-07-11 09:50:36 +02:00

572 lines
18 KiB
C++

/*
** Vulkan backend
** Copyright (c) 2016-2020 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "volk/volk.h"
#ifdef _WIN32
#undef max
#undef min
#endif
#include <inttypes.h>
#include <vector>
#include <array>
#include <set>
#include <string>
#include <algorithm>
#include "vk_device.h"
#include "vk_swapchain.h"
#include "vk_objects.h"
#include "c_cvars.h"
#include "c_dispatch.h"
#include "i_system.h"
#include "version.h"
#include "engineerrors.h"
#include "v_text.h"
bool I_GetVulkanPlatformExtensions(unsigned int *count, const char **names);
bool I_CreateVulkanSurface(VkInstance instance, VkSurfaceKHR *surface);
FString JitCaptureStackTrace(int framesToSkip, bool includeNativeFrames);
// Physical device info
static std::vector<VulkanPhysicalDevice> AvailableDevices;
static std::vector<VulkanCompatibleDevice> SupportedDevices;
CUSTOM_CVAR(Bool, vk_debug, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CVAR_NOINITCALL)
{
Printf("This won't take effect until " GAMENAME " is restarted.\n");
}
CVAR(Bool, vk_debug_callstack, true, CVAR_ARCHIVE | CVAR_GLOBALCONFIG)
CUSTOM_CVAR(Int, vk_device, 0, CVAR_ARCHIVE | CVAR_GLOBALCONFIG | CVAR_NOINITCALL)
{
Printf("This won't take effect until " GAMENAME " is restarted.\n");
}
CCMD(vk_listdevices)
{
for (size_t i = 0; i < SupportedDevices.size(); i++)
{
Printf("#%d - %s\n", (int)i, SupportedDevices[i].device->Properties.deviceName);
}
}
VulkanDevice::VulkanDevice()
{
try
{
InitVolk();
CreateInstance();
CreateSurface();
SelectPhysicalDevice();
SelectFeatures();
CreateDevice();
CreateAllocator();
}
catch (...)
{
ReleaseResources();
throw;
}
}
VulkanDevice::~VulkanDevice()
{
ReleaseResources();
}
void VulkanDevice::SelectFeatures()
{
UsedDeviceFeatures.samplerAnisotropy = PhysicalDevice.Features.samplerAnisotropy;
UsedDeviceFeatures.fragmentStoresAndAtomics = PhysicalDevice.Features.fragmentStoresAndAtomics;
UsedDeviceFeatures.depthClamp = PhysicalDevice.Features.depthClamp;
UsedDeviceFeatures.shaderClipDistance = PhysicalDevice.Features.shaderClipDistance;
}
bool VulkanDevice::CheckRequiredFeatures(const VkPhysicalDeviceFeatures &f)
{
return
f.samplerAnisotropy == VK_TRUE &&
f.fragmentStoresAndAtomics == VK_TRUE;
}
void VulkanDevice::SelectPhysicalDevice()
{
AvailableDevices = GetPhysicalDevices(instance);
if (AvailableDevices.empty())
VulkanError("No Vulkan devices found. Either the graphics card has no vulkan support or the driver is too old.");
for (size_t idx = 0; idx < AvailableDevices.size(); idx++)
{
const auto &info = AvailableDevices[idx];
if (!CheckRequiredFeatures(info.Features))
continue;
std::set<std::string> requiredExtensionSearch(EnabledDeviceExtensions.begin(), EnabledDeviceExtensions.end());
for (const auto &ext : info.Extensions)
requiredExtensionSearch.erase(ext.extensionName);
if (!requiredExtensionSearch.empty())
continue;
VulkanCompatibleDevice dev;
dev.device = &AvailableDevices[idx];
// Figure out what can present
for (int i = 0; i < (int)info.QueueFamilies.size(); i++)
{
VkBool32 presentSupport = false;
VkResult result = vkGetPhysicalDeviceSurfaceSupportKHR(info.Device, i, surface, &presentSupport);
if (result == VK_SUCCESS && info.QueueFamilies[i].queueCount > 0 && presentSupport)
{
dev.presentFamily = i;
break;
}
}
// The vulkan spec states that graphics and compute queues can always do transfer.
// Furthermore the spec states that graphics queues always can do compute.
// Last, the spec makes it OPTIONAL whether the VK_QUEUE_TRANSFER_BIT is set for such queues, but they MUST support transfer.
//
// In short: pick the first graphics queue family for everything.
for (int i = 0; i < (int)info.QueueFamilies.size(); i++)
{
const auto &queueFamily = info.QueueFamilies[i];
if (queueFamily.queueCount > 0 && (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT))
{
dev.graphicsFamily = i;
dev.graphicsTimeQueries = queueFamily.timestampValidBits != 0;
break;
}
}
if (dev.graphicsFamily != -1 && dev.presentFamily != -1)
{
SupportedDevices.push_back(dev);
}
}
if (SupportedDevices.empty())
VulkanError("No Vulkan device supports the minimum requirements of this application");
// The device order returned by Vulkan can be anything. Prefer discrete > integrated > virtual gpu > cpu > other
std::stable_sort(SupportedDevices.begin(), SupportedDevices.end(), [&](const auto &a, const auto b) {
// Sort by GPU type first. This will ensure the "best" device is most likely to map to vk_device 0
static const int typeSort[] = { 4, 1, 0, 2, 3 };
int sortA = a.device->Properties.deviceType < 5 ? typeSort[a.device->Properties.deviceType] : (int)a.device->Properties.deviceType;
int sortB = b.device->Properties.deviceType < 5 ? typeSort[b.device->Properties.deviceType] : (int)b.device->Properties.deviceType;
if (sortA != sortB)
return sortA < sortB;
// Then sort by the device's unique ID so that vk_device uses a consistent order
int sortUUID = memcmp(a.device->Properties.pipelineCacheUUID, b.device->Properties.pipelineCacheUUID, VK_UUID_SIZE);
return sortUUID < 0;
});
size_t selected = vk_device;
if (selected >= SupportedDevices.size())
selected = 0;
// Enable optional extensions we are interested in, if they are available on this device
for (const auto &ext : SupportedDevices[selected].device->Extensions)
{
for (const auto &opt : OptionalDeviceExtensions)
{
if (strcmp(ext.extensionName, opt) == 0)
{
EnabledDeviceExtensions.push_back(opt);
}
}
}
PhysicalDevice = *SupportedDevices[selected].device;
graphicsFamily = SupportedDevices[selected].graphicsFamily;
presentFamily = SupportedDevices[selected].presentFamily;
graphicsTimeQueries = SupportedDevices[selected].graphicsTimeQueries;
}
bool VulkanDevice::SupportsDeviceExtension(const char *ext) const
{
return std::find(EnabledDeviceExtensions.begin(), EnabledDeviceExtensions.end(), ext) != EnabledDeviceExtensions.end();
}
void VulkanDevice::CreateAllocator()
{
VmaAllocatorCreateInfo allocinfo = {};
if (SupportsDeviceExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME) && SupportsDeviceExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME))
allocinfo.flags = VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
allocinfo.physicalDevice = PhysicalDevice.Device;
allocinfo.device = device;
allocinfo.preferredLargeHeapBlockSize = 64 * 1024 * 1024;
if (vmaCreateAllocator(&allocinfo, &allocator) != VK_SUCCESS)
VulkanError("Unable to create allocator");
}
void VulkanDevice::CreateDevice()
{
float queuePriority = 1.0f;
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<int> neededFamilies;
neededFamilies.insert(graphicsFamily);
neededFamilies.insert(presentFamily);
for (int index : neededFamilies)
{
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = index;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateInfo);
}
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = (uint32_t)queueCreateInfos.size();
deviceCreateInfo.pQueueCreateInfos = queueCreateInfos.data();
deviceCreateInfo.pEnabledFeatures = &UsedDeviceFeatures;
deviceCreateInfo.enabledExtensionCount = (uint32_t)EnabledDeviceExtensions.size();
deviceCreateInfo.ppEnabledExtensionNames = EnabledDeviceExtensions.data();
deviceCreateInfo.enabledLayerCount = 0;
VkResult result = vkCreateDevice(PhysicalDevice.Device, &deviceCreateInfo, nullptr, &device);
CheckVulkanError(result, "Could not create vulkan device");
volkLoadDevice(device);
vkGetDeviceQueue(device, graphicsFamily, 0, &graphicsQueue);
vkGetDeviceQueue(device, presentFamily, 0, &presentQueue);
}
void VulkanDevice::CreateSurface()
{
if (!I_CreateVulkanSurface(instance, &surface))
{
VulkanError("Could not create vulkan surface");
}
}
void VulkanDevice::CreateInstance()
{
AvailableLayers = GetAvailableLayers();
Extensions = GetExtensions();
EnabledExtensions = GetPlatformExtensions();
std::string debugLayer = "VK_LAYER_LUNARG_standard_validation";
bool wantDebugLayer = vk_debug;
bool debugLayerFound = false;
for (const VkLayerProperties &layer : AvailableLayers)
{
if (layer.layerName == debugLayer && wantDebugLayer)
{
EnabledValidationLayers.push_back(debugLayer.c_str());
EnabledExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
debugLayerFound = true;
}
}
// Enable optional instance extensions we are interested in
for (const auto &ext : Extensions)
{
for (const auto &opt : OptionalExtensions)
{
if (strcmp(ext.extensionName, opt) == 0)
{
EnabledExtensions.push_back(opt);
}
}
}
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "GZDoom";
appInfo.applicationVersion = VK_MAKE_VERSION(VER_MAJOR, VER_MINOR, VER_REVISION);
appInfo.pEngineName = "GZDoom";
appInfo.engineVersion = VK_MAKE_VERSION(ENG_MAJOR, ENG_MINOR, ENG_REVISION);
appInfo.apiVersion = VK_API_VERSION_1_0;
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledExtensionCount = (uint32_t)EnabledExtensions.size();
createInfo.enabledLayerCount = (uint32_t)EnabledValidationLayers.size();
createInfo.ppEnabledLayerNames = EnabledValidationLayers.data();
createInfo.ppEnabledExtensionNames = EnabledExtensions.data();
VkResult result = vkCreateInstance(&createInfo, nullptr, &instance);
CheckVulkanError(result, "Could not create vulkan instance");
volkLoadInstance(instance);
if (debugLayerFound)
{
VkDebugUtilsMessengerCreateInfoEXT createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
createInfo.messageSeverity =
//VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
//VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
createInfo.messageType =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
createInfo.pfnUserCallback = DebugCallback;
createInfo.pUserData = this;
result = vkCreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger);
CheckVulkanError(result, "vkCreateDebugUtilsMessengerEXT failed");
DebugLayerActive = true;
}
}
VkBool32 VulkanDevice::DebugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* callbackData, void* userData)
{
VulkanDevice *device = (VulkanDevice*)userData;
static std::mutex mtx;
static std::set<FString> seenMessages;
static int totalMessages;
std::unique_lock<std::mutex> lock(mtx);
FString msg = callbackData->pMessage;
// For patent-pending reasons the validation layer apparently can't do this itself..
for (uint32_t i = 0; i < callbackData->objectCount; i++)
{
if (callbackData->pObjects[i].pObjectName)
{
FString hexname;
hexname.Format("0x%" PRIx64, callbackData->pObjects[i].objectHandle);
msg.Substitute(hexname.GetChars(), callbackData->pObjects[i].pObjectName);
}
}
bool found = seenMessages.find(msg) != seenMessages.end();
if (!found)
{
if (totalMessages < 20)
{
totalMessages++;
seenMessages.insert(msg);
const char *typestr;
if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT)
{
typestr = "vulkan error";
}
else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT)
{
typestr = "vulkan warning";
}
else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT)
{
typestr = "vulkan info";
}
else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT)
{
typestr = "vulkan verbose";
}
else
{
typestr = "vulkan";
}
Printf("\n");
Printf(TEXTCOLOR_RED "[%s] ", typestr);
Printf(TEXTCOLOR_WHITE "%s\n", msg.GetChars());
if (vk_debug_callstack)
{
FString callstack = JitCaptureStackTrace(0, true);
if (!callstack.IsEmpty())
Printf("%s\n", callstack.GetChars());
}
}
}
return VK_FALSE;
}
std::vector<VkLayerProperties> VulkanDevice::GetAvailableLayers()
{
uint32_t layerCount;
VkResult result = vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
std::vector<VkLayerProperties> availableLayers(layerCount);
result = vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
return availableLayers;
}
std::vector<VkExtensionProperties> VulkanDevice::GetExtensions()
{
uint32_t extensionCount = 0;
VkResult result = vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> extensions(extensionCount);
result = vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data());
return extensions;
}
std::vector<VulkanPhysicalDevice> VulkanDevice::GetPhysicalDevices(VkInstance instance)
{
uint32_t deviceCount = 0;
VkResult result = vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
if (result == VK_ERROR_INITIALIZATION_FAILED) // Some drivers return this when a card does not support vulkan
return {};
CheckVulkanError(result, "vkEnumeratePhysicalDevices failed");
if (deviceCount == 0)
return {};
std::vector<VkPhysicalDevice> devices(deviceCount);
result = vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
CheckVulkanError(result, "vkEnumeratePhysicalDevices failed (2)");
std::vector<VulkanPhysicalDevice> devinfo(deviceCount);
for (size_t i = 0; i < devices.size(); i++)
{
auto &dev = devinfo[i];
dev.Device = devices[i];
vkGetPhysicalDeviceMemoryProperties(dev.Device, &dev.MemoryProperties);
vkGetPhysicalDeviceProperties(dev.Device, &dev.Properties);
vkGetPhysicalDeviceFeatures(dev.Device, &dev.Features);
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(dev.Device, &queueFamilyCount, nullptr);
dev.QueueFamilies.resize(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(dev.Device, &queueFamilyCount, dev.QueueFamilies.data());
uint32_t deviceExtensionCount = 0;
vkEnumerateDeviceExtensionProperties(dev.Device, nullptr, &deviceExtensionCount, nullptr);
dev.Extensions.resize(deviceExtensionCount);
vkEnumerateDeviceExtensionProperties(dev.Device, nullptr, &deviceExtensionCount, dev.Extensions.data());
}
return devinfo;
}
std::vector<const char *> VulkanDevice::GetPlatformExtensions()
{
uint32_t extensionCount = 0;
if (!I_GetVulkanPlatformExtensions(&extensionCount, nullptr))
VulkanError("Cannot obtain number of Vulkan extensions");
std::vector<const char *> extensions(extensionCount);
if (!I_GetVulkanPlatformExtensions(&extensionCount, extensions.data()))
VulkanError("Cannot obtain list of Vulkan extensions");
return extensions;
}
void VulkanDevice::InitVolk()
{
if (volkInitialize() != VK_SUCCESS)
{
VulkanError("Unable to find Vulkan");
}
auto iver = volkGetInstanceVersion();
if (iver == 0)
{
VulkanError("Vulkan not supported");
}
}
void VulkanDevice::ReleaseResources()
{
if (device)
vkDeviceWaitIdle(device);
if (allocator)
vmaDestroyAllocator(allocator);
if (device)
vkDestroyDevice(device, nullptr);
device = nullptr;
if (surface)
vkDestroySurfaceKHR(instance, surface, nullptr);
surface = 0;
if (debugMessenger)
vkDestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
if (instance)
vkDestroyInstance(instance, nullptr);
instance = nullptr;
}
uint32_t VulkanDevice::FindMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties)
{
for (uint32_t i = 0; i < PhysicalDevice.MemoryProperties.memoryTypeCount; i++)
{
if ((typeFilter & (1 << i)) && (PhysicalDevice.MemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
return i;
}
VulkanError("failed to find suitable memory type!");
return 0;
}
FString VkResultToString(VkResult result)
{
switch (result)
{
case VK_SUCCESS: return "success";
case VK_NOT_READY: return "not ready";
case VK_TIMEOUT: return "timeout";
case VK_EVENT_SET: return "event set";
case VK_EVENT_RESET: return "event reset";
case VK_INCOMPLETE: return "incomplete";
case VK_ERROR_OUT_OF_HOST_MEMORY: return "out of host memory";
case VK_ERROR_OUT_OF_DEVICE_MEMORY: return "out of device memory";
case VK_ERROR_INITIALIZATION_FAILED: return "initialization failed";
case VK_ERROR_DEVICE_LOST: return "device lost";
case VK_ERROR_MEMORY_MAP_FAILED: return "memory map failed";
case VK_ERROR_LAYER_NOT_PRESENT: return "layer not present";
case VK_ERROR_EXTENSION_NOT_PRESENT: return "extension not present";
case VK_ERROR_FEATURE_NOT_PRESENT: return "feature not present";
case VK_ERROR_INCOMPATIBLE_DRIVER: return "incompatible driver";
case VK_ERROR_TOO_MANY_OBJECTS: return "too many objects";
case VK_ERROR_FORMAT_NOT_SUPPORTED: return "format not supported";
case VK_ERROR_FRAGMENTED_POOL: return "fragmented pool";
case VK_ERROR_OUT_OF_POOL_MEMORY: return "out of pool memory";
case VK_ERROR_INVALID_EXTERNAL_HANDLE: return "invalid external handle";
case VK_ERROR_SURFACE_LOST_KHR: return "surface lost";
case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR: return "native window in use";
case VK_SUBOPTIMAL_KHR: return "suboptimal";
case VK_ERROR_OUT_OF_DATE_KHR: return "out of date";
case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR: return "incompatible display";
case VK_ERROR_VALIDATION_FAILED_EXT: return "validation failed";
case VK_ERROR_INVALID_SHADER_NV: return "invalid shader";
case VK_ERROR_FRAGMENTATION_EXT: return "fragmentation";
case VK_ERROR_NOT_PERMITTED_EXT: return "not permitted";
default: break;
}
FString res;
res.Format("vkResult %d", (int)result);
return result;
}