mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-04 07:20:39 +00:00
718112a8fe
Currently none of these is being used, but eventually they will, once more code gets ported over. So it's better to have them right away and avoid editing the project file too much, only to revert that later.
1094 lines
30 KiB
C
1094 lines
30 KiB
C
|
|
/*-------------------------------------------------------------*/
|
|
/*--- Block sorting machinery ---*/
|
|
/*--- blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* ------------------------------------------------------------------
|
|
This file is part of bzip2/libbzip2, a program and library for
|
|
lossless, block-sorting data compression.
|
|
|
|
bzip2/libbzip2 version 1.0.8 of 13 July 2019
|
|
Copyright (C) 1996-2019 Julian Seward <jseward@acm.org>
|
|
|
|
Please read the WARNING, DISCLAIMER and PATENTS sections in the
|
|
README file.
|
|
|
|
This program is released under the terms of the license contained
|
|
in the file LICENSE.
|
|
------------------------------------------------------------------ */
|
|
|
|
|
|
#include "bzlib_private.h"
|
|
|
|
/*---------------------------------------------*/
|
|
/*--- Fallback O(N log(N)^2) sorting ---*/
|
|
/*--- algorithm, for repetitive blocks ---*/
|
|
/*---------------------------------------------*/
|
|
|
|
/*---------------------------------------------*/
|
|
static
|
|
__inline__
|
|
void fallbackSimpleSort ( UInt32* fmap,
|
|
UInt32* eclass,
|
|
Int32 lo,
|
|
Int32 hi )
|
|
{
|
|
Int32 i, j, tmp;
|
|
UInt32 ec_tmp;
|
|
|
|
if (lo == hi) return;
|
|
|
|
if (hi - lo > 3) {
|
|
for ( i = hi-4; i >= lo; i-- ) {
|
|
tmp = fmap[i];
|
|
ec_tmp = eclass[tmp];
|
|
for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 )
|
|
fmap[j-4] = fmap[j];
|
|
fmap[j-4] = tmp;
|
|
}
|
|
}
|
|
|
|
for ( i = hi-1; i >= lo; i-- ) {
|
|
tmp = fmap[i];
|
|
ec_tmp = eclass[tmp];
|
|
for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ )
|
|
fmap[j-1] = fmap[j];
|
|
fmap[j-1] = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
#define fswap(zz1, zz2) \
|
|
{ Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
|
|
|
|
#define fvswap(zzp1, zzp2, zzn) \
|
|
{ \
|
|
Int32 yyp1 = (zzp1); \
|
|
Int32 yyp2 = (zzp2); \
|
|
Int32 yyn = (zzn); \
|
|
while (yyn > 0) { \
|
|
fswap(fmap[yyp1], fmap[yyp2]); \
|
|
yyp1++; yyp2++; yyn--; \
|
|
} \
|
|
}
|
|
|
|
|
|
#define fmin(a,b) ((a) < (b)) ? (a) : (b)
|
|
|
|
#define fpush(lz,hz) { stackLo[sp] = lz; \
|
|
stackHi[sp] = hz; \
|
|
sp++; }
|
|
|
|
#define fpop(lz,hz) { sp--; \
|
|
lz = stackLo[sp]; \
|
|
hz = stackHi[sp]; }
|
|
|
|
#define FALLBACK_QSORT_SMALL_THRESH 10
|
|
#define FALLBACK_QSORT_STACK_SIZE 100
|
|
|
|
|
|
static
|
|
void fallbackQSort3 ( UInt32* fmap,
|
|
UInt32* eclass,
|
|
Int32 loSt,
|
|
Int32 hiSt )
|
|
{
|
|
Int32 unLo, unHi, ltLo, gtHi, n, m;
|
|
Int32 sp, lo, hi;
|
|
UInt32 med, r, r3;
|
|
Int32 stackLo[FALLBACK_QSORT_STACK_SIZE];
|
|
Int32 stackHi[FALLBACK_QSORT_STACK_SIZE];
|
|
|
|
r = 0;
|
|
|
|
sp = 0;
|
|
fpush ( loSt, hiSt );
|
|
|
|
while (sp > 0) {
|
|
|
|
AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 );
|
|
|
|
fpop ( lo, hi );
|
|
if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
|
|
fallbackSimpleSort ( fmap, eclass, lo, hi );
|
|
continue;
|
|
}
|
|
|
|
/* Random partitioning. Median of 3 sometimes fails to
|
|
avoid bad cases. Median of 9 seems to help but
|
|
looks rather expensive. This too seems to work but
|
|
is cheaper. Guidance for the magic constants
|
|
7621 and 32768 is taken from Sedgewick's algorithms
|
|
book, chapter 35.
|
|
*/
|
|
r = ((r * 7621) + 1) % 32768;
|
|
r3 = r % 3;
|
|
if (r3 == 0) med = eclass[fmap[lo]]; else
|
|
if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else
|
|
med = eclass[fmap[hi]];
|
|
|
|
unLo = ltLo = lo;
|
|
unHi = gtHi = hi;
|
|
|
|
while (1) {
|
|
while (1) {
|
|
if (unLo > unHi) break;
|
|
n = (Int32)eclass[fmap[unLo]] - (Int32)med;
|
|
if (n == 0) {
|
|
fswap(fmap[unLo], fmap[ltLo]);
|
|
ltLo++; unLo++;
|
|
continue;
|
|
};
|
|
if (n > 0) break;
|
|
unLo++;
|
|
}
|
|
while (1) {
|
|
if (unLo > unHi) break;
|
|
n = (Int32)eclass[fmap[unHi]] - (Int32)med;
|
|
if (n == 0) {
|
|
fswap(fmap[unHi], fmap[gtHi]);
|
|
gtHi--; unHi--;
|
|
continue;
|
|
};
|
|
if (n < 0) break;
|
|
unHi--;
|
|
}
|
|
if (unLo > unHi) break;
|
|
fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
|
|
}
|
|
|
|
AssertD ( unHi == unLo-1, "fallbackQSort3(2)" );
|
|
|
|
if (gtHi < ltLo) continue;
|
|
|
|
n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n);
|
|
m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m);
|
|
|
|
n = lo + unLo - ltLo - 1;
|
|
m = hi - (gtHi - unHi) + 1;
|
|
|
|
if (n - lo > hi - m) {
|
|
fpush ( lo, n );
|
|
fpush ( m, hi );
|
|
} else {
|
|
fpush ( m, hi );
|
|
fpush ( lo, n );
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef fmin
|
|
#undef fpush
|
|
#undef fpop
|
|
#undef fswap
|
|
#undef fvswap
|
|
#undef FALLBACK_QSORT_SMALL_THRESH
|
|
#undef FALLBACK_QSORT_STACK_SIZE
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
nblock > 0
|
|
eclass exists for [0 .. nblock-1]
|
|
((UChar*)eclass) [0 .. nblock-1] holds block
|
|
ptr exists for [0 .. nblock-1]
|
|
|
|
Post:
|
|
((UChar*)eclass) [0 .. nblock-1] holds block
|
|
All other areas of eclass destroyed
|
|
fmap [0 .. nblock-1] holds sorted order
|
|
bhtab [ 0 .. 2+(nblock/32) ] destroyed
|
|
*/
|
|
|
|
#define SET_BH(zz) bhtab[(zz) >> 5] |= ((UInt32)1 << ((zz) & 31))
|
|
#define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~((UInt32)1 << ((zz) & 31))
|
|
#define ISSET_BH(zz) (bhtab[(zz) >> 5] & ((UInt32)1 << ((zz) & 31)))
|
|
#define WORD_BH(zz) bhtab[(zz) >> 5]
|
|
#define UNALIGNED_BH(zz) ((zz) & 0x01f)
|
|
|
|
static
|
|
void fallbackSort ( UInt32* fmap,
|
|
UInt32* eclass,
|
|
UInt32* bhtab,
|
|
Int32 nblock,
|
|
Int32 verb )
|
|
{
|
|
Int32 ftab[257];
|
|
Int32 ftabCopy[256];
|
|
Int32 H, i, j, k, l, r, cc, cc1;
|
|
Int32 nNotDone;
|
|
Int32 nBhtab;
|
|
UChar* eclass8 = (UChar*)eclass;
|
|
|
|
/*--
|
|
Initial 1-char radix sort to generate
|
|
initial fmap and initial BH bits.
|
|
--*/
|
|
if (verb >= 4)
|
|
VPrintf0 ( " bucket sorting ...\n" );
|
|
for (i = 0; i < 257; i++) ftab[i] = 0;
|
|
for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
|
|
for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i];
|
|
for (i = 1; i < 257; i++) ftab[i] += ftab[i-1];
|
|
|
|
for (i = 0; i < nblock; i++) {
|
|
j = eclass8[i];
|
|
k = ftab[j] - 1;
|
|
ftab[j] = k;
|
|
fmap[k] = i;
|
|
}
|
|
|
|
nBhtab = 2 + (nblock / 32);
|
|
for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
|
|
for (i = 0; i < 256; i++) SET_BH(ftab[i]);
|
|
|
|
/*--
|
|
Inductively refine the buckets. Kind-of an
|
|
"exponential radix sort" (!), inspired by the
|
|
Manber-Myers suffix array construction algorithm.
|
|
--*/
|
|
|
|
/*-- set sentinel bits for block-end detection --*/
|
|
for (i = 0; i < 32; i++) {
|
|
SET_BH(nblock + 2*i);
|
|
CLEAR_BH(nblock + 2*i + 1);
|
|
}
|
|
|
|
/*-- the log(N) loop --*/
|
|
H = 1;
|
|
while (1) {
|
|
|
|
if (verb >= 4)
|
|
VPrintf1 ( " depth %6d has ", H );
|
|
|
|
j = 0;
|
|
for (i = 0; i < nblock; i++) {
|
|
if (ISSET_BH(i)) j = i;
|
|
k = fmap[i] - H; if (k < 0) k += nblock;
|
|
eclass[k] = j;
|
|
}
|
|
|
|
nNotDone = 0;
|
|
r = -1;
|
|
while (1) {
|
|
|
|
/*-- find the next non-singleton bucket --*/
|
|
k = r + 1;
|
|
while (ISSET_BH(k) && UNALIGNED_BH(k)) k++;
|
|
if (ISSET_BH(k)) {
|
|
while (WORD_BH(k) == 0xffffffff) k += 32;
|
|
while (ISSET_BH(k)) k++;
|
|
}
|
|
l = k - 1;
|
|
if (l >= nblock) break;
|
|
while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++;
|
|
if (!ISSET_BH(k)) {
|
|
while (WORD_BH(k) == 0x00000000) k += 32;
|
|
while (!ISSET_BH(k)) k++;
|
|
}
|
|
r = k - 1;
|
|
if (r >= nblock) break;
|
|
|
|
/*-- now [l, r] bracket current bucket --*/
|
|
if (r > l) {
|
|
nNotDone += (r - l + 1);
|
|
fallbackQSort3 ( fmap, eclass, l, r );
|
|
|
|
/*-- scan bucket and generate header bits-- */
|
|
cc = -1;
|
|
for (i = l; i <= r; i++) {
|
|
cc1 = eclass[fmap[i]];
|
|
if (cc != cc1) { SET_BH(i); cc = cc1; };
|
|
}
|
|
}
|
|
}
|
|
|
|
if (verb >= 4)
|
|
VPrintf1 ( "%6d unresolved strings\n", nNotDone );
|
|
|
|
H *= 2;
|
|
if (H > nblock || nNotDone == 0) break;
|
|
}
|
|
|
|
/*--
|
|
Reconstruct the original block in
|
|
eclass8 [0 .. nblock-1], since the
|
|
previous phase destroyed it.
|
|
--*/
|
|
if (verb >= 4)
|
|
VPrintf0 ( " reconstructing block ...\n" );
|
|
j = 0;
|
|
for (i = 0; i < nblock; i++) {
|
|
while (ftabCopy[j] == 0) j++;
|
|
ftabCopy[j]--;
|
|
eclass8[fmap[i]] = (UChar)j;
|
|
}
|
|
AssertH ( j < 256, 1005 );
|
|
}
|
|
|
|
#undef SET_BH
|
|
#undef CLEAR_BH
|
|
#undef ISSET_BH
|
|
#undef WORD_BH
|
|
#undef UNALIGNED_BH
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--- The main, O(N^2 log(N)) sorting ---*/
|
|
/*--- algorithm. Faster for "normal" ---*/
|
|
/*--- non-repetitive blocks. ---*/
|
|
/*---------------------------------------------*/
|
|
|
|
/*---------------------------------------------*/
|
|
static
|
|
__inline__
|
|
Bool mainGtU ( UInt32 i1,
|
|
UInt32 i2,
|
|
UChar* block,
|
|
UInt16* quadrant,
|
|
UInt32 nblock,
|
|
Int32* budget )
|
|
{
|
|
Int32 k;
|
|
UChar c1, c2;
|
|
UInt16 s1, s2;
|
|
|
|
AssertD ( i1 != i2, "mainGtU" );
|
|
/* 1 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 2 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 3 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 4 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 5 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 6 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 7 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 8 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 9 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 10 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 11 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
/* 12 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
k = nblock + 8;
|
|
|
|
do {
|
|
/* 1 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 2 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 3 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 4 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 5 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 6 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 7 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
/* 8 */
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
|
|
if (i1 >= nblock) i1 -= nblock;
|
|
if (i2 >= nblock) i2 -= nblock;
|
|
|
|
k -= 8;
|
|
(*budget)--;
|
|
}
|
|
while (k >= 0);
|
|
|
|
return False;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--
|
|
Knuth's increments seem to work better
|
|
than Incerpi-Sedgewick here. Possibly
|
|
because the number of elems to sort is
|
|
usually small, typically <= 20.
|
|
--*/
|
|
static
|
|
Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
|
|
9841, 29524, 88573, 265720,
|
|
797161, 2391484 };
|
|
|
|
static
|
|
void mainSimpleSort ( UInt32* ptr,
|
|
UChar* block,
|
|
UInt16* quadrant,
|
|
Int32 nblock,
|
|
Int32 lo,
|
|
Int32 hi,
|
|
Int32 d,
|
|
Int32* budget )
|
|
{
|
|
Int32 i, j, h, bigN, hp;
|
|
UInt32 v;
|
|
|
|
bigN = hi - lo + 1;
|
|
if (bigN < 2) return;
|
|
|
|
hp = 0;
|
|
while (incs[hp] < bigN) hp++;
|
|
hp--;
|
|
|
|
for (; hp >= 0; hp--) {
|
|
h = incs[hp];
|
|
|
|
i = lo + h;
|
|
while (True) {
|
|
|
|
/*-- copy 1 --*/
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while ( mainGtU (
|
|
ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
|
) ) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
|
|
/*-- copy 2 --*/
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while ( mainGtU (
|
|
ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
|
) ) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
|
|
/*-- copy 3 --*/
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while ( mainGtU (
|
|
ptr[j-h]+d, v+d, block, quadrant, nblock, budget
|
|
) ) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
|
|
if (*budget < 0) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--
|
|
The following is an implementation of
|
|
an elegant 3-way quicksort for strings,
|
|
described in a paper "Fast Algorithms for
|
|
Sorting and Searching Strings", by Robert
|
|
Sedgewick and Jon L. Bentley.
|
|
--*/
|
|
|
|
#define mswap(zz1, zz2) \
|
|
{ Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
|
|
|
|
#define mvswap(zzp1, zzp2, zzn) \
|
|
{ \
|
|
Int32 yyp1 = (zzp1); \
|
|
Int32 yyp2 = (zzp2); \
|
|
Int32 yyn = (zzn); \
|
|
while (yyn > 0) { \
|
|
mswap(ptr[yyp1], ptr[yyp2]); \
|
|
yyp1++; yyp2++; yyn--; \
|
|
} \
|
|
}
|
|
|
|
static
|
|
__inline__
|
|
UChar mmed3 ( UChar a, UChar b, UChar c )
|
|
{
|
|
UChar t;
|
|
if (a > b) { t = a; a = b; b = t; };
|
|
if (b > c) {
|
|
b = c;
|
|
if (a > b) b = a;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
#define mmin(a,b) ((a) < (b)) ? (a) : (b)
|
|
|
|
#define mpush(lz,hz,dz) { stackLo[sp] = lz; \
|
|
stackHi[sp] = hz; \
|
|
stackD [sp] = dz; \
|
|
sp++; }
|
|
|
|
#define mpop(lz,hz,dz) { sp--; \
|
|
lz = stackLo[sp]; \
|
|
hz = stackHi[sp]; \
|
|
dz = stackD [sp]; }
|
|
|
|
|
|
#define mnextsize(az) (nextHi[az]-nextLo[az])
|
|
|
|
#define mnextswap(az,bz) \
|
|
{ Int32 tz; \
|
|
tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
|
|
tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
|
|
tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; }
|
|
|
|
|
|
#define MAIN_QSORT_SMALL_THRESH 20
|
|
#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
|
|
#define MAIN_QSORT_STACK_SIZE 100
|
|
|
|
static
|
|
void mainQSort3 ( UInt32* ptr,
|
|
UChar* block,
|
|
UInt16* quadrant,
|
|
Int32 nblock,
|
|
Int32 loSt,
|
|
Int32 hiSt,
|
|
Int32 dSt,
|
|
Int32* budget )
|
|
{
|
|
Int32 unLo, unHi, ltLo, gtHi, n, m, med;
|
|
Int32 sp, lo, hi, d;
|
|
|
|
Int32 stackLo[MAIN_QSORT_STACK_SIZE];
|
|
Int32 stackHi[MAIN_QSORT_STACK_SIZE];
|
|
Int32 stackD [MAIN_QSORT_STACK_SIZE];
|
|
|
|
Int32 nextLo[3];
|
|
Int32 nextHi[3];
|
|
Int32 nextD [3];
|
|
|
|
sp = 0;
|
|
mpush ( loSt, hiSt, dSt );
|
|
|
|
while (sp > 0) {
|
|
|
|
AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 );
|
|
|
|
mpop ( lo, hi, d );
|
|
if (hi - lo < MAIN_QSORT_SMALL_THRESH ||
|
|
d > MAIN_QSORT_DEPTH_THRESH) {
|
|
mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget );
|
|
if (*budget < 0) return;
|
|
continue;
|
|
}
|
|
|
|
med = (Int32)
|
|
mmed3 ( block[ptr[ lo ]+d],
|
|
block[ptr[ hi ]+d],
|
|
block[ptr[ (lo+hi)>>1 ]+d] );
|
|
|
|
unLo = ltLo = lo;
|
|
unHi = gtHi = hi;
|
|
|
|
while (True) {
|
|
while (True) {
|
|
if (unLo > unHi) break;
|
|
n = ((Int32)block[ptr[unLo]+d]) - med;
|
|
if (n == 0) {
|
|
mswap(ptr[unLo], ptr[ltLo]);
|
|
ltLo++; unLo++; continue;
|
|
};
|
|
if (n > 0) break;
|
|
unLo++;
|
|
}
|
|
while (True) {
|
|
if (unLo > unHi) break;
|
|
n = ((Int32)block[ptr[unHi]+d]) - med;
|
|
if (n == 0) {
|
|
mswap(ptr[unHi], ptr[gtHi]);
|
|
gtHi--; unHi--; continue;
|
|
};
|
|
if (n < 0) break;
|
|
unHi--;
|
|
}
|
|
if (unLo > unHi) break;
|
|
mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--;
|
|
}
|
|
|
|
AssertD ( unHi == unLo-1, "mainQSort3(2)" );
|
|
|
|
if (gtHi < ltLo) {
|
|
mpush(lo, hi, d+1 );
|
|
continue;
|
|
}
|
|
|
|
n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n);
|
|
m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m);
|
|
|
|
n = lo + unLo - ltLo - 1;
|
|
m = hi - (gtHi - unHi) + 1;
|
|
|
|
nextLo[0] = lo; nextHi[0] = n; nextD[0] = d;
|
|
nextLo[1] = m; nextHi[1] = hi; nextD[1] = d;
|
|
nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
|
|
|
|
if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
|
|
if (mnextsize(1) < mnextsize(2)) mnextswap(1,2);
|
|
if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
|
|
|
|
AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" );
|
|
AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" );
|
|
|
|
mpush (nextLo[0], nextHi[0], nextD[0]);
|
|
mpush (nextLo[1], nextHi[1], nextD[1]);
|
|
mpush (nextLo[2], nextHi[2], nextD[2]);
|
|
}
|
|
}
|
|
|
|
#undef mswap
|
|
#undef mvswap
|
|
#undef mpush
|
|
#undef mpop
|
|
#undef mmin
|
|
#undef mnextsize
|
|
#undef mnextswap
|
|
#undef MAIN_QSORT_SMALL_THRESH
|
|
#undef MAIN_QSORT_DEPTH_THRESH
|
|
#undef MAIN_QSORT_STACK_SIZE
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
nblock > N_OVERSHOOT
|
|
block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
|
((UChar*)block32) [0 .. nblock-1] holds block
|
|
ptr exists for [0 .. nblock-1]
|
|
|
|
Post:
|
|
((UChar*)block32) [0 .. nblock-1] holds block
|
|
All other areas of block32 destroyed
|
|
ftab [0 .. 65536 ] destroyed
|
|
ptr [0 .. nblock-1] holds sorted order
|
|
if (*budget < 0), sorting was abandoned
|
|
*/
|
|
|
|
#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
|
|
#define SETMASK (1 << 21)
|
|
#define CLEARMASK (~(SETMASK))
|
|
|
|
static
|
|
void mainSort ( UInt32* ptr,
|
|
UChar* block,
|
|
UInt16* quadrant,
|
|
UInt32* ftab,
|
|
Int32 nblock,
|
|
Int32 verb,
|
|
Int32* budget )
|
|
{
|
|
Int32 i, j, k, ss, sb;
|
|
Int32 runningOrder[256];
|
|
Bool bigDone[256];
|
|
Int32 copyStart[256];
|
|
Int32 copyEnd [256];
|
|
UChar c1;
|
|
Int32 numQSorted;
|
|
UInt16 s;
|
|
if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" );
|
|
|
|
/*-- set up the 2-byte frequency table --*/
|
|
for (i = 65536; i >= 0; i--) ftab[i] = 0;
|
|
|
|
j = block[0] << 8;
|
|
i = nblock-1;
|
|
for (; i >= 3; i -= 4) {
|
|
quadrant[i] = 0;
|
|
j = (j >> 8) | ( ((UInt16)block[i]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-1] = 0;
|
|
j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-2] = 0;
|
|
j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-3] = 0;
|
|
j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
|
|
ftab[j]++;
|
|
}
|
|
for (; i >= 0; i--) {
|
|
quadrant[i] = 0;
|
|
j = (j >> 8) | ( ((UInt16)block[i]) << 8);
|
|
ftab[j]++;
|
|
}
|
|
|
|
/*-- (emphasises close relationship of block & quadrant) --*/
|
|
for (i = 0; i < BZ_N_OVERSHOOT; i++) {
|
|
block [nblock+i] = block[i];
|
|
quadrant[nblock+i] = 0;
|
|
}
|
|
|
|
if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" );
|
|
|
|
/*-- Complete the initial radix sort --*/
|
|
for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
|
|
|
|
s = block[0] << 8;
|
|
i = nblock-1;
|
|
for (; i >= 3; i -= 4) {
|
|
s = (s >> 8) | (block[i] << 8);
|
|
j = ftab[s] -1;
|
|
ftab[s] = j;
|
|
ptr[j] = i;
|
|
s = (s >> 8) | (block[i-1] << 8);
|
|
j = ftab[s] -1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-1;
|
|
s = (s >> 8) | (block[i-2] << 8);
|
|
j = ftab[s] -1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-2;
|
|
s = (s >> 8) | (block[i-3] << 8);
|
|
j = ftab[s] -1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-3;
|
|
}
|
|
for (; i >= 0; i--) {
|
|
s = (s >> 8) | (block[i] << 8);
|
|
j = ftab[s] -1;
|
|
ftab[s] = j;
|
|
ptr[j] = i;
|
|
}
|
|
|
|
/*--
|
|
Now ftab contains the first loc of every small bucket.
|
|
Calculate the running order, from smallest to largest
|
|
big bucket.
|
|
--*/
|
|
for (i = 0; i <= 255; i++) {
|
|
bigDone [i] = False;
|
|
runningOrder[i] = i;
|
|
}
|
|
|
|
{
|
|
Int32 vv;
|
|
Int32 h = 1;
|
|
do h = 3 * h + 1; while (h <= 256);
|
|
do {
|
|
h = h / 3;
|
|
for (i = h; i <= 255; i++) {
|
|
vv = runningOrder[i];
|
|
j = i;
|
|
while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
|
|
runningOrder[j] = runningOrder[j-h];
|
|
j = j - h;
|
|
if (j <= (h - 1)) goto zero;
|
|
}
|
|
zero:
|
|
runningOrder[j] = vv;
|
|
}
|
|
} while (h != 1);
|
|
}
|
|
|
|
/*--
|
|
The main sorting loop.
|
|
--*/
|
|
|
|
numQSorted = 0;
|
|
|
|
for (i = 0; i <= 255; i++) {
|
|
|
|
/*--
|
|
Process big buckets, starting with the least full.
|
|
Basically this is a 3-step process in which we call
|
|
mainQSort3 to sort the small buckets [ss, j], but
|
|
also make a big effort to avoid the calls if we can.
|
|
--*/
|
|
ss = runningOrder[i];
|
|
|
|
/*--
|
|
Step 1:
|
|
Complete the big bucket [ss] by quicksorting
|
|
any unsorted small buckets [ss, j], for j != ss.
|
|
Hopefully previous pointer-scanning phases have already
|
|
completed many of the small buckets [ss, j], so
|
|
we don't have to sort them at all.
|
|
--*/
|
|
for (j = 0; j <= 255; j++) {
|
|
if (j != ss) {
|
|
sb = (ss << 8) + j;
|
|
if ( ! (ftab[sb] & SETMASK) ) {
|
|
Int32 lo = ftab[sb] & CLEARMASK;
|
|
Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
|
|
if (hi > lo) {
|
|
if (verb >= 4)
|
|
VPrintf4 ( " qsort [0x%x, 0x%x] "
|
|
"done %d this %d\n",
|
|
ss, j, numQSorted, hi - lo + 1 );
|
|
mainQSort3 (
|
|
ptr, block, quadrant, nblock,
|
|
lo, hi, BZ_N_RADIX, budget
|
|
);
|
|
numQSorted += (hi - lo + 1);
|
|
if (*budget < 0) return;
|
|
}
|
|
}
|
|
ftab[sb] |= SETMASK;
|
|
}
|
|
}
|
|
|
|
AssertH ( !bigDone[ss], 1006 );
|
|
|
|
/*--
|
|
Step 2:
|
|
Now scan this big bucket [ss] so as to synthesise the
|
|
sorted order for small buckets [t, ss] for all t,
|
|
including, magically, the bucket [ss,ss] too.
|
|
This will avoid doing Real Work in subsequent Step 1's.
|
|
--*/
|
|
{
|
|
for (j = 0; j <= 255; j++) {
|
|
copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
|
|
copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
|
|
}
|
|
for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
|
|
k = ptr[j]-1; if (k < 0) k += nblock;
|
|
c1 = block[k];
|
|
if (!bigDone[c1])
|
|
ptr[ copyStart[c1]++ ] = k;
|
|
}
|
|
for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
|
|
k = ptr[j]-1; if (k < 0) k += nblock;
|
|
c1 = block[k];
|
|
if (!bigDone[c1])
|
|
ptr[ copyEnd[c1]-- ] = k;
|
|
}
|
|
}
|
|
|
|
AssertH ( (copyStart[ss]-1 == copyEnd[ss])
|
|
||
|
|
/* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
|
|
Necessity for this case is demonstrated by compressing
|
|
a sequence of approximately 48.5 million of character
|
|
251; 1.0.0/1.0.1 will then die here. */
|
|
(copyStart[ss] == 0 && copyEnd[ss] == nblock-1),
|
|
1007 )
|
|
|
|
for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
|
|
|
|
/*--
|
|
Step 3:
|
|
The [ss] big bucket is now done. Record this fact,
|
|
and update the quadrant descriptors. Remember to
|
|
update quadrants in the overshoot area too, if
|
|
necessary. The "if (i < 255)" test merely skips
|
|
this updating for the last bucket processed, since
|
|
updating for the last bucket is pointless.
|
|
|
|
The quadrant array provides a way to incrementally
|
|
cache sort orderings, as they appear, so as to
|
|
make subsequent comparisons in fullGtU() complete
|
|
faster. For repetitive blocks this makes a big
|
|
difference (but not big enough to be able to avoid
|
|
the fallback sorting mechanism, exponential radix sort).
|
|
|
|
The precise meaning is: at all times:
|
|
|
|
for 0 <= i < nblock and 0 <= j <= nblock
|
|
|
|
if block[i] != block[j],
|
|
|
|
then the relative values of quadrant[i] and
|
|
quadrant[j] are meaningless.
|
|
|
|
else {
|
|
if quadrant[i] < quadrant[j]
|
|
then the string starting at i lexicographically
|
|
precedes the string starting at j
|
|
|
|
else if quadrant[i] > quadrant[j]
|
|
then the string starting at j lexicographically
|
|
precedes the string starting at i
|
|
|
|
else
|
|
the relative ordering of the strings starting
|
|
at i and j has not yet been determined.
|
|
}
|
|
--*/
|
|
bigDone[ss] = True;
|
|
|
|
if (i < 255) {
|
|
Int32 bbStart = ftab[ss << 8] & CLEARMASK;
|
|
Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
|
|
Int32 shifts = 0;
|
|
|
|
while ((bbSize >> shifts) > 65534) shifts++;
|
|
|
|
for (j = bbSize-1; j >= 0; j--) {
|
|
Int32 a2update = ptr[bbStart + j];
|
|
UInt16 qVal = (UInt16)(j >> shifts);
|
|
quadrant[a2update] = qVal;
|
|
if (a2update < BZ_N_OVERSHOOT)
|
|
quadrant[a2update + nblock] = qVal;
|
|
}
|
|
AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
|
|
}
|
|
|
|
}
|
|
|
|
if (verb >= 4)
|
|
VPrintf3 ( " %d pointers, %d sorted, %d scanned\n",
|
|
nblock, numQSorted, nblock - numQSorted );
|
|
}
|
|
|
|
#undef BIGFREQ
|
|
#undef SETMASK
|
|
#undef CLEARMASK
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
nblock > 0
|
|
arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
|
((UChar*)arr2) [0 .. nblock-1] holds block
|
|
arr1 exists for [0 .. nblock-1]
|
|
|
|
Post:
|
|
((UChar*)arr2) [0 .. nblock-1] holds block
|
|
All other areas of block destroyed
|
|
ftab [ 0 .. 65536 ] destroyed
|
|
arr1 [0 .. nblock-1] holds sorted order
|
|
*/
|
|
void BZ2_blockSort ( EState* s )
|
|
{
|
|
UInt32* ptr = s->ptr;
|
|
UChar* block = s->block;
|
|
UInt32* ftab = s->ftab;
|
|
Int32 nblock = s->nblock;
|
|
Int32 verb = s->verbosity;
|
|
Int32 wfact = s->workFactor;
|
|
UInt16* quadrant;
|
|
Int32 budget;
|
|
Int32 budgetInit;
|
|
Int32 i;
|
|
|
|
if (nblock < 10000) {
|
|
fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
|
|
} else {
|
|
/* Calculate the location for quadrant, remembering to get
|
|
the alignment right. Assumes that &(block[0]) is at least
|
|
2-byte aligned -- this should be ok since block is really
|
|
the first section of arr2.
|
|
*/
|
|
i = nblock+BZ_N_OVERSHOOT;
|
|
if (i & 1) i++;
|
|
quadrant = (UInt16*)(&(block[i]));
|
|
|
|
/* (wfact-1) / 3 puts the default-factor-30
|
|
transition point at very roughly the same place as
|
|
with v0.1 and v0.9.0.
|
|
Not that it particularly matters any more, since the
|
|
resulting compressed stream is now the same regardless
|
|
of whether or not we use the main sort or fallback sort.
|
|
*/
|
|
if (wfact < 1 ) wfact = 1;
|
|
if (wfact > 100) wfact = 100;
|
|
budgetInit = nblock * ((wfact-1) / 3);
|
|
budget = budgetInit;
|
|
|
|
mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
|
|
if (verb >= 3)
|
|
VPrintf3 ( " %d work, %d block, ratio %5.2f\n",
|
|
budgetInit - budget,
|
|
nblock,
|
|
(float)(budgetInit - budget) /
|
|
(float)(nblock==0 ? 1 : nblock) );
|
|
if (budget < 0) {
|
|
if (verb >= 2)
|
|
VPrintf0 ( " too repetitive; using fallback"
|
|
" sorting algorithm\n" );
|
|
fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
|
|
}
|
|
}
|
|
|
|
s->origPtr = -1;
|
|
for (i = 0; i < s->nblock; i++)
|
|
if (ptr[i] == 0)
|
|
{ s->origPtr = i; break; };
|
|
|
|
AssertH( s->origPtr != -1, 1003 );
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- end blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|