raze-gles/source/core/sectorgeometry.cpp
Christoph Oelckers 716b8840af - when using the node builder to triangulate sectors we must delete overlapping walls.
The node builder can create bad geometry from them because it does bad ordering when two lines facing in opposite directions overlap.
2021-05-21 14:32:01 +02:00

558 lines
16 KiB
C++

/*
** sectorgeometry.cpp
**
** caches the triangle meshes used for rendering sector planes.
**
**---------------------------------------------------------------------------
** Copyright 2021 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
**
*/
#include "sectorgeometry.h"
#include "build.h"
#include "gamefuncs.h"
#include "texturemanager.h"
#include "earcut.hpp"
#include "hw_sections.h"
#include "nodebuilder/nodebuild.h"
SectorGeometry sectorGeometry;
//==========================================================================
//
// CalcPlane fixme - this should be stored in the sector, not be recalculated each frame.
//
//==========================================================================
static FVector3 CalcNormal(sectortype* sector, int plane)
{
FVector3 pt[3];
auto wal = &wall[sector->wallptr];
auto wal2 = &wall[wal->point2];
pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 };
pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 };
PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z);
PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z);
if (pt[0].X == pt[1].X)
{
if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f };
pt[2].X = pt[0].X + 4;
pt[2].Y = pt[0].Y;
}
else
{
pt[2].X = pt[0].X;
pt[2].Y = pt[0].Y + 4;
}
PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z);
auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]);
if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2];
return pt[2];
}
//==========================================================================
//
// The math used here to calculate texture positioning was derived from
// Polymer but required several fixes for correctness.
//
//==========================================================================
class UVCalculator
{
sectortype* sect;
int myplane;
int stat;
float z1;
int ix1;
int iy1;
int ix2;
int iy2;
float sinalign, cosalign;
FGameTexture* tex;
float xpanning, ypanning;
float xscaled, yscaled;
FVector2 offset;
public:
// Moved in from pragmas.h
UVCalculator(sectortype* sec, int plane, FGameTexture* tx, const FVector2& off)
{
float xpan, ypan;
sect = sec;
tex = tx;
myplane = plane;
offset = off;
auto firstwall = &wall[sec->wallptr];
ix1 = firstwall->x;
iy1 = firstwall->y;
ix2 = wall[firstwall->point2].x;
iy2 = wall[firstwall->point2].y;
if (plane == 0)
{
stat = sec->floorstat;
xpan = sec->floorxpan_;
ypan = sec->floorypan_;
PlanesAtPoint(sec, ix1, iy1, nullptr, &z1);
}
else
{
stat = sec->ceilingstat;
xpan = sec->ceilingxpan_;
ypan = sec->ceilingypan_;
PlanesAtPoint(sec, ix1, iy1, &z1, nullptr);
}
DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) };
auto vang = dv.Angle() - 90.;
cosalign = float(vang.Cos());
sinalign = float(vang.Sin());
int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth());
if (pow2width < (int)tx->GetDisplayWidth()) pow2width *= 2;
int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight());
if (pow2height < (int)tx->GetDisplayHeight()) pow2height *= 2;
xpanning = pow2width * xpan / (256.f * tx->GetDisplayWidth());
ypanning = pow2height * ypan / (256.f * tx->GetDisplayHeight());
float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f;
if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN))
{
// This is necessary to adjust for some imprecisions in the math.
// To calculate the inverse Build performs an integer division with significant loss of precision
// that can cause the texture to be shifted by multiple pixels.
// The code below calculates the amount of this deviation so that it can be added back to the formula.
int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1));
if (len != 0)
{
int i = 1048576 / len;
scalefactor *= 1048576.f / (i * len);
}
}
xscaled = scalefactor * (int)tx->GetDisplayWidth();
yscaled = scalefactor * (int)tx->GetDisplayHeight();
}
FVector2 GetUV(int x, int y, float z)
{
float tv, tu;
if (stat & CSTAT_SECTOR_ALIGN)
{
float dx = (float)(x - ix1);
float dy = (float)(y - iy1);
tu = -(dx * sinalign + dy * cosalign);
tv = (dx * cosalign - dy * sinalign);
if (stat & CSTAT_SECTOR_SLOPE)
{
float dz = (z - z1) * 16;
float newtv = sqrt(tv * tv + dz * dz);
tv = tv < 0 ? -newtv : newtv;
}
}
else
{
tu = x - offset.X;
tv = -y - offset.Y;
}
if (stat & CSTAT_SECTOR_SWAPXY)
std::swap(tu, tv);
if (stat & CSTAT_SECTOR_XFLIP) tu = -tu;
if (stat & CSTAT_SECTOR_YFLIP) tv = -tv;
return { tu / xscaled + xpanning, tv / yscaled + ypanning };
}
};
//==========================================================================
//
//
//
//==========================================================================
bool SectorGeometry::MakeVertices(unsigned int secnum, int plane, const FVector2& offset)
{
auto sec = &sections[secnum];
auto sectorp = &sector[sec->sector];
int numvertices = sec->lines.Size();
TArray<FVector3> points(numvertices, true);
using Point = std::pair<float, float>;
std::vector<std::vector<Point>> polygon;
std::vector<Point>* curPoly;
polygon.resize(1);
curPoly = &polygon.back();
FixedBitArray<MAXWALLSB> done;
int fz = sectorp->floorz, cz = sectorp->ceilingz;
int vertstoadd = numvertices;
done.Zero();
while (vertstoadd > 0)
{
int start = 0;
while (done[start] && start < numvertices) start++;
int s = start;
if (start < numvertices)
{
while (!done[start])
{
auto sline = &sectionLines[sec->lines[start]];
auto wallp = &wall[sline->startpoint];
float X = float(WallStartX(wallp));
float Y = float(WallStartY(wallp));
if (fabs(X) > 32768.f || fabs(Y) > 32768.f)
{
// If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign.
// Do not try alternative methods if this happens.
return true;
}
curPoly->push_back(std::make_pair(X, Y));
done.Set(start);
vertstoadd--;
start = sline->point2index;
}
polygon.resize(polygon.size() + 1);
curPoly = &polygon.back();
if (start != s) return false; // means the sector is badly defined. RRRA'S E1L3 triggers this.
}
}
// Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible.
int outer = 0;
float minx = FLT_MAX;
float miny = FLT_MAX;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
if (pt.first < minx || (pt.first == minx && pt.second < miny))
{
minx = pt.first;
miny = pt.second;
outer = int(a);
}
}
}
if (outer != 0) std::swap(polygon[0], polygon[outer]);
auto indices = mapbox::earcut(polygon);
if (indices.size() < 3 * (sec->lines.Size() - 2))
{
// this means that full triangulation failed.
return false;
}
sectorp->floorz = sectorp->ceilingz = 0;
int p = 0;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
float planez;
PlanesAtPoint(sectorp, (pt.first * 16), (pt.second * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr);
FVector3 point = { pt.first, pt.second, planez };
points[p++] = point;
}
}
auto& entry = data[secnum].planes[plane];
entry.vertices.Resize((unsigned)indices.size());
entry.texcoords.Resize((unsigned)indices.size());
entry.normal = CalcNormal(sectorp, plane);
auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum);
UVCalculator uvcalc(sectorp, plane, texture, offset);
for(unsigned i = 0; i < entry.vertices.Size(); i++)
{
auto& pt = points[indices[i]];
entry.vertices[i] = pt;
entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16), int(pt.Y * -16), pt.Z);
}
sectorp->floorz = fz;
sectorp->ceilingz = cz;
return true;
}
//==========================================================================
//
// Use ZDoom's node builder if the simple approach fails.
// This will create something usable in the vast majority of cases,
// even if the result is less efficient.
//
//==========================================================================
bool SectorGeometry::MakeVertices2(unsigned int secnum, int plane, const FVector2& offset)
{
auto sec = &sections[secnum];
auto sectorp = &sector[sec->sector];
int numvertices = sec->lines.Size();
// Convert our sector into something the node builder understands
TArray<vertex_t> vertexes(sectorp->wallnum, true);
TArray<line_t> lines(numvertices, true);
TArray<side_t> sides(numvertices, true);
int j = 0;
for (int i = 0; i < numvertices; i++)
{
auto sline = &sectionLines[sec->lines[i]];
auto wallp = &wall[sline->startpoint];
vertexes[j].p = { wallp->x * (1 / 16.), wallp->y * (1 / -16.) };
lines[j].backsector = nullptr;
lines[j].frontsector = sectorp;
lines[j].linenum = j;
lines[j].sidedef[0] = &sides[j];
lines[j].sidedef[1] = nullptr;
lines[j].v1 = &vertexes[i];
lines[j].v2 = &vertexes[sline->point2index];
sides[j].sidenum = j;
sides[j].sector = sectorp;
j++;
}
lines.Resize(j);
sides.Resize(j);
// Weed out any overlaps. These often happen with door setups and can lead to bad subsectors
for (unsigned i = 0; i < lines.Size(); i++)
{
auto p1 = lines[i].v1->p, p2 = lines[i].v2->p;
for (unsigned j = i + 1; j < lines.Size(); j++)
{
auto pp1 = lines[j].v1->p, pp2 = lines[j].v2->p;
if (pp1 == p2 && pp2 == p1)
{
// handle the simple case first, i.e. line j is the inverse of line i.
// in this case both lines need to be deleted.
lines.Delete(i);
lines.Delete(j);
i--;
goto nexti;
}
else if (pp1 == p2)
{
// only the second line's start point matches.
// In this case we have to delete the shorter line and truncate the other one.
// check if the second line's end point is on the line we are checking
double d1 = PointOnLineSide(pp2, p1, p2);
if (fabs(d1) > FLT_EPSILON) continue; // not colinear
bool vert = p1.X == p2.X;
double p1x = vert ? p1.X : p1.Y;
double p2x = vert ? p2.X : p2.Y;
double pp1x = vert ? pp1.X : pp1.Y;
double pp2x = vert ? pp2.X : pp2.Y;
if (pp2x > min(p1x, p2x) && pp2x < max(p1x, p2x))
{
// pp2 is on line i.
lines[i].v2 = lines[j].v2;
lines.Delete(j);
continue;
}
else if (p1x > min(pp1x, pp2x) && p1x < max(pp1x, pp2x))
{
// p1 is on line j
lines[j].v1 = lines[j].v2;
lines.Delete(i);
goto nexti;
}
}
else if (pp2 == p1)
{
// only the second line's start point matches.
// In this case we have to delete the shorter line and truncate the other one.
// check if the second line's end point is on the line we are checking
double d1 = PointOnLineSide(pp2, p1, p2);
if (fabs(d1) > FLT_EPSILON) continue; // not colinear
bool vert = p1.X == p2.X;
double p1x = vert ? p1.X : p1.Y;
double p2x = vert ? p2.X : p2.Y;
double pp1x = vert ? pp1.X : pp1.Y;
double pp2x = vert ? pp2.X : pp2.Y;
if (pp1x > min(p1x, p2x) && pp2x < max(p1x, p2x))
{
// pp1 is on line i.
lines[i].v1 = lines[j].v1;
lines.Delete(j);
continue;
}
else if (p2x > min(pp1x, pp2x) && p2x < max(pp1x, pp2x))
{
// p2 is on line j
lines[j].v2 = lines[j].v1;
lines.Delete(i);
goto nexti;
}
}
else
{
// no idea if we should do further checks here. Blood's doors do not need them. We'll see.
}
}
nexti:;
}
FNodeBuilder::FLevel leveldata =
{
&vertexes[0], (int)vertexes.Size(),
&sides[0], (int)sides.Size(),
&lines[0], (int)lines.Size(),
0, 0, 0, 0
};
leveldata.FindMapBounds();
FNodeBuilder builder(leveldata);
FLevelLocals Level;
builder.Extract(Level);
// Now turn the generated subsectors into triangle meshes
auto& entry = data[secnum].planes[plane];
entry.vertices.Clear();
entry.texcoords.Clear();
int fz = sectorp->floorz, cz = sectorp->ceilingz;
sectorp->floorz = sectorp->ceilingz = 0;
for (auto& sub : Level.subsectors)
{
if (sub.numlines <= 2) continue;
auto v0 = sub.firstline->v1;
for (unsigned i = 1; i < sub.numlines - 1; i++)
{
auto v1 = sub.firstline[i].v1;
auto v2 = sub.firstline[i].v2;
entry.vertices.Push({ (float)v0->fX(), (float)v0->fY(), 0 });
entry.vertices.Push({ (float)v1->fX(), (float)v1->fY(), 0 });
entry.vertices.Push({ (float)v2->fX(), (float)v2->fY(), 0 });
}
}
// calculate the rest.
auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum);
UVCalculator uvcalc(sectorp, plane, texture, offset);
entry.texcoords.Resize(entry.vertices.Size());
for (unsigned i = 0; i < entry.vertices.Size(); i++)
{
auto& pt = entry.vertices[i];
float planez;
PlanesAtPoint(sectorp, (pt.X * 16), (pt.Y * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr);
entry.vertices[i].Z = planez;
entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16.), int(pt.Y * -16.), pt.Z);
}
entry.normal = CalcNormal(sectorp, plane);
sectorp->floorz = fz;
sectorp->ceilingz = cz;
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void SectorGeometry::ValidateSector(unsigned int secnum, int plane, const FVector2& offset)
{
auto sec = &sector[sections[secnum].sector];
auto compare = &data[secnum].compare[plane];
if (plane == 0)
{
if (sec->floorheinum == compare->floorheinum &&
sec->floorpicnum == compare->floorpicnum &&
((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->floorxpan_ == compare->floorxpan_ &&
sec->floorypan_ == compare->floorypan_ &&
wall[sec->wallptr].pos == data[secnum].poscompare[0] &&
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[0] &&
!(sec->dirty & 1) && data[secnum].planes[plane].vertices.Size() ) return;
sec->dirty &= ~1;
}
else
{
if (sec->ceilingheinum == compare->ceilingheinum &&
sec->ceilingpicnum == compare->ceilingpicnum &&
((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->ceilingxpan_ == compare->ceilingxpan_ &&
sec->ceilingypan_ == compare->ceilingypan_ &&
wall[sec->wallptr].pos == data[secnum].poscompare[1] &&
wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[1] &&
!(sec->dirty & 2) && data[secnum].planes[1].vertices.Size()) return;
sec->dirty &= ~2;
}
*compare = *sec;
data[secnum].poscompare[plane] = wall[sec->wallptr].pos;
data[secnum].poscompare2[plane] = wall[wall[sec->wallptr].point2].pos;
if (data[secnum].degenerate || !MakeVertices(secnum, plane, offset))
{
data[secnum].degenerate = true;
//Printf(TEXTCOLOR_YELLOW "Normal triangulation failed for sector %d. Retrying with alternative approach\n", secnum);
MakeVertices2(secnum, plane, offset);
}
}