mirror of
https://github.com/ZDoom/raze-gles.git
synced 2025-01-17 21:10:53 +00:00
253 lines
9 KiB
GLSL
253 lines
9 KiB
GLSL
#version 330
|
|
|
|
const int RF_ColorOnly = 1;
|
|
const int RF_UsePalette = 2;
|
|
const int RF_DetailMapping = 4;
|
|
const int RF_GlowMapping = 8;
|
|
const int RF_Brightmapping = 16;
|
|
const int RF_NPOTEmulation = 32;
|
|
const int RF_ShadeInterpolate = 64;
|
|
const int RF_FogDisabled = 128;
|
|
const int RF_MapFog = 256;
|
|
|
|
const int RF_HICTINT_Grayscale = 0x1;
|
|
const int RF_HICTINT_Invert = 0x2;
|
|
const int RF_HICTINT_Colorize = 0x4;
|
|
const int RF_HICTINT_BLEND_Screen = 64;
|
|
const int RF_HICTINT_BLEND_Overlay = 128;
|
|
const int RF_HICTINT_BLEND_Hardlight = 192;
|
|
const int RF_HICTINT_BLENDMASK = RF_HICTINT_BLEND_Screen | RF_HICTINT_BLEND_Overlay | RF_HICTINT_BLEND_Hardlight;
|
|
|
|
|
|
//s_texture points to an indexed color texture
|
|
uniform sampler2D s_texture;
|
|
//s_palswap is the palette swap texture where u is the color index and v is the shade
|
|
uniform sampler2D s_palswap;
|
|
//s_palette is the base palette texture where u is the color index
|
|
uniform sampler2D s_palette;
|
|
|
|
uniform sampler2D s_detail;
|
|
uniform sampler2D s_glow;
|
|
uniform sampler2D s_brightmap;
|
|
|
|
uniform float u_shade;
|
|
uniform float u_numShades;
|
|
uniform float u_shadeDiv;
|
|
uniform float u_visFactor;
|
|
uniform int u_flags;
|
|
uniform float u_alphaThreshold;
|
|
|
|
uniform vec4 u_tintOverlay, u_tintModulate;
|
|
uniform int u_tintFlags;
|
|
uniform vec4 u_fullscreenTint;
|
|
|
|
uniform float u_npotEmulationFactor;
|
|
uniform float u_npotEmulationXOffset;
|
|
uniform float u_brightness;
|
|
uniform vec4 u_fogColor;
|
|
uniform vec3 u_tintcolor;
|
|
uniform vec3 u_tintmodulate;
|
|
|
|
in vec4 v_color;
|
|
in float v_distance;
|
|
in vec4 v_texCoord;
|
|
in vec4 v_detailCoord;
|
|
in float v_fogCoord;
|
|
in vec4 v_eyeCoordPosition;
|
|
|
|
const float c_basepalScale = 255.0/256.0;
|
|
const float c_basepalOffset = 0.5/256.0;
|
|
|
|
const float c_zero = 0.0;
|
|
const float c_one = 1.0;
|
|
const float c_two = 2.0;
|
|
const vec4 c_vec4_one = vec4(c_one);
|
|
const float c_wrapThreshold = 0.9;
|
|
|
|
layout(location=0) out vec4 fragColor;
|
|
layout(location=1) out vec4 fragFog;
|
|
layout(location=2) out vec4 fragNormal;
|
|
|
|
//===========================================================================
|
|
//
|
|
// Color to grayscale
|
|
//
|
|
//===========================================================================
|
|
|
|
float grayscale(vec4 color)
|
|
{
|
|
return dot(color.rgb, vec3(0.3, 0.56, 0.14));
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Hightile tinting code. (hictinting[dapalnum]) This can be done inside the shader
|
|
// to avoid costly texture duplication (but needs a more modern GLSL than 1.10.)
|
|
//
|
|
//===========================================================================
|
|
|
|
vec4 convertColor(vec4 color)
|
|
{
|
|
int effect = u_tintFlags;
|
|
if ((effect & RF_HICTINT_Grayscale) != 0)
|
|
{
|
|
float g = grayscale(color);
|
|
color = vec4(g, g, g, color.a);
|
|
}
|
|
|
|
if ((effect & RF_HICTINT_Invert) != 0)
|
|
{
|
|
color = vec4(1.0 - color.r, 1.0 - color.g, 1.0 - color.b, color.a);
|
|
}
|
|
|
|
vec3 tcol = color.rgb * 255.0; // * 255.0 to make it easier to reuse the integer math.
|
|
|
|
// Much of this looks quite broken by design. Why is this effectively multplied by 4 if the flag is set...? :(
|
|
if ((effect & RF_HICTINT_Colorize) != 0)
|
|
{
|
|
tcol.r = min(((tcol.b) * u_tintModulate.r)* 4, 255.0);
|
|
tcol.g = min(((tcol.g) * u_tintModulate.g)* 4, 255.0);
|
|
tcol.b = min(((tcol.r) * u_tintModulate.b)* 4, 255.0);
|
|
}
|
|
else
|
|
{
|
|
tcol.r = min(((tcol.b) * u_tintModulate.r), 255.0);
|
|
tcol.g = min(((tcol.g) * u_tintModulate.g), 255.0);
|
|
tcol.b = min(((tcol.r) * u_tintModulate.b), 255.0);
|
|
}
|
|
|
|
vec4 ov = u_tintOverlay * 255.0;
|
|
switch (effect & RF_HICTINT_BLENDMASK)
|
|
{
|
|
case RF_HICTINT_BLEND_Screen:
|
|
tcol.r = 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 256.0);
|
|
tcol.g = 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 256.0);
|
|
tcol.b = 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 256.0);
|
|
break;
|
|
case RF_HICTINT_BLEND_Overlay:
|
|
tcol.r = tcol.b < 128.0? (tcol.r * ov.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 128.0);
|
|
tcol.g = tcol.g < 128.0? (tcol.g * ov.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 128.0);
|
|
tcol.b = tcol.r < 128.0? (tcol.b * ov.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 128.0);
|
|
break;
|
|
case RF_HICTINT_BLEND_Hardlight:
|
|
tcol.r = ov.r < 128.0 ? (tcol.r * ov.r) / 128.0 : 255.0 - (((255.0 - tcol.r) * (255.0 - ov.r)) / 128.0);
|
|
tcol.g = ov.g < 128.0 ? (tcol.g * ov.g) / 128.0 : 255.0 - (((255.0 - tcol.g) * (255.0 - ov.g)) / 128.0);
|
|
tcol.b = ov.b < 128.0 ? (tcol.b * ov.b) / 128.0 : 255.0 - (((255.0 - tcol.b) * (255.0 - ov.b)) / 128.0);
|
|
break;
|
|
}
|
|
color.rgb = tcol / 255.0;
|
|
return color;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
//
|
|
//
|
|
//===========================================================================
|
|
|
|
void main()
|
|
{
|
|
float fullbright = 0.0;
|
|
vec4 color;
|
|
if ((u_flags & RF_ColorOnly) == 0)
|
|
{
|
|
float coordX = v_texCoord.x;
|
|
float coordY = v_texCoord.y;
|
|
vec2 newCoord;
|
|
|
|
// Coordinate adjustment for NPOT textures (something must have gone very wrong to make this necessary...)
|
|
if ((u_flags & RF_NPOTEmulation) != 0)
|
|
{
|
|
float period = floor(coordY / u_npotEmulationFactor);
|
|
coordX += u_npotEmulationXOffset * floor(mod(coordY, u_npotEmulationFactor));
|
|
coordY = period + mod(coordY, u_npotEmulationFactor);
|
|
}
|
|
newCoord = vec2(coordX, coordY);
|
|
|
|
// Paletted textures are stored in column major order rather than row major so coordinates need to be swapped here.
|
|
color = texture(s_texture, newCoord);
|
|
|
|
// This was further down but it really should be done before applying any kind of depth fading, not afterward.
|
|
vec4 detailColor = vec4(1.0);
|
|
if ((u_flags & RF_DetailMapping) != 0)
|
|
{
|
|
detailColor = texture(s_detail, v_detailCoord.xy);
|
|
detailColor = mix(vec4(1.0), 2.0 * detailColor, detailColor.a);
|
|
// Application of this differs based on render mode because for paletted rendering with palettized shade tables it can only be done after processing the shade table. We only have a palette index before.
|
|
}
|
|
|
|
float visibility = max(u_visFactor * v_distance - ((u_flags & RF_ShadeInterpolate) != 0.0? 0.5 : 0.0), 0.0);
|
|
float shade = clamp((u_shade + visibility), 0.0, u_numShades - 1.0);
|
|
|
|
|
|
if ((u_flags & RF_UsePalette) != 0)
|
|
{
|
|
int palindex = int(color.r * 255.0 + 0.1); // The 0.1 is for roundoff error compensation.
|
|
int shadeindex = int(floor(shade));
|
|
float colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex), 0).r;
|
|
int colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation.
|
|
vec4 palettedColor = texelFetch(s_palette, ivec2(colorIndex, 0), 0);
|
|
|
|
if ((u_flags & RF_ShadeInterpolate) != 0)
|
|
{
|
|
// Get the next shaded palette index for interpolation
|
|
colorIndexF = texelFetch(s_palswap, ivec2(palindex, shadeindex+1), 0).r;
|
|
colorIndex = int(colorIndexF * 255.0 + 0.1); // The 0.1 is for roundoff error compensation.
|
|
vec4 palettedColorNext = texelFetch(s_palette, ivec2(colorIndex, 0), 0);
|
|
float shadeFrac = mod(shade, 1.0);
|
|
palettedColor.rgb = mix(palettedColor.rgb, palettedColorNext.rgb, shadeFrac);
|
|
}
|
|
|
|
fullbright = palettedColor.a; // This only gets set for paletted rendering.
|
|
palettedColor.a = c_one-floor(color.r);
|
|
color = palettedColor;
|
|
color.rgb *= detailColor.rgb; // with all this palettizing, this can only be applied afterward, even though it is wrong to do it this way.
|
|
if (fullbright == 0.0) color.rgb *= v_color.rgb; // Well, this is dead wrong but unavoidable. For colored fog it applies the light to the fog as well...
|
|
}
|
|
else
|
|
{
|
|
color.rgb *= detailColor.rgb;
|
|
if (u_tintFlags != -1) color = convertColor(color);
|
|
if ((u_flags & RF_FogDisabled) == 0)
|
|
{
|
|
shade = clamp(shade * u_shadeDiv, 0.0, 1.0); // u_shadeDiv is really 1/shadeDiv.
|
|
vec3 lightcolor = v_color.rgb * (1.0 - shade);
|
|
|
|
if ((u_flags & RF_Brightmapping) != 0)
|
|
{
|
|
lightcolor = clamp(lightcolor + texture(s_brightmap, v_texCoord.xy).rgb, 0.0, 1.0);
|
|
}
|
|
color.rgb *= lightcolor;
|
|
if ((u_flags & RF_MapFog) == 0) color.rgb += u_fogColor.rgb * shade;
|
|
}
|
|
}
|
|
if ((u_flags & RF_MapFog) != 0) // fog hack for RRRA E2L1. Needs to be done better, this is gross, but still preferable to the broken original implementation.
|
|
{
|
|
float fogfactor = 0.55 + 0.3 * exp2 (-5.0*v_fogCoord);
|
|
color.rgb = vec3(0.6*(1.0-fogfactor)) + color.rgb * fogfactor;// mix(vec3(0.6), color.rgb, fogfactor);
|
|
}
|
|
if (color.a < u_alphaThreshold) discard; // it's only here that we have the alpha value available to be able to perform the alpha test.
|
|
|
|
color.a *= v_color.a;
|
|
}
|
|
else
|
|
{
|
|
// untextured rendering
|
|
color = v_color;
|
|
}
|
|
|
|
if ((u_flags & (RF_ColorOnly|RF_GlowMapping)) == RF_GlowMapping)
|
|
{
|
|
vec4 glowColor = texture(s_glow, v_texCoord.xy);
|
|
color.rgb = mix(color.rgb, glowColor.rgb, glowColor.a);
|
|
}
|
|
|
|
color.rgb = pow(color.rgb, vec3(u_brightness));
|
|
color.rgb *= u_fullscreenTint.rgb; // must be the last thing to be done.
|
|
fragColor = color;
|
|
fragFog = vec4(0.0, 0.0, 0.0, 1.0); // Does build have colored fog?
|
|
vec3 normal = normalize(cross(dFdx(v_eyeCoordPosition.xyz), dFdy(v_eyeCoordPosition.xyz)));
|
|
normal.x = -normal.x;
|
|
normal.y = -normal.y;
|
|
fragNormal = vec4(normal * 0.5 + 0.5, 1.0);
|
|
}
|