mirror of
https://github.com/ZDoom/raze-gles.git
synced 2024-12-27 12:10:41 +00:00
718112a8fe
Currently none of these is being used, but eventually they will, once more code gets ported over. So it's better to have them right away and avoid editing the project file too much, only to revert that later.
652 lines
21 KiB
C
652 lines
21 KiB
C
|
|
/*-------------------------------------------------------------*/
|
|
/*--- Decompression machinery ---*/
|
|
/*--- decompress.c ---*/
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* ------------------------------------------------------------------
|
|
This file is part of bzip2/libbzip2, a program and library for
|
|
lossless, block-sorting data compression.
|
|
|
|
bzip2/libbzip2 version 1.0.8 of 13 July 2019
|
|
Copyright (C) 1996-2019 Julian Seward <jseward@acm.org>
|
|
|
|
Please read the WARNING, DISCLAIMER and PATENTS sections in the
|
|
README file.
|
|
|
|
This program is released under the terms of the license contained
|
|
in the file LICENSE.
|
|
------------------------------------------------------------------ */
|
|
|
|
|
|
#include "bzlib_private.h"
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
static
|
|
void makeMaps_d ( DState* s )
|
|
{
|
|
Int32 i;
|
|
s->nInUse = 0;
|
|
for (i = 0; i < 256; i++)
|
|
if (s->inUse[i]) {
|
|
s->seqToUnseq[s->nInUse] = i;
|
|
s->nInUse++;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
#define RETURN(rrr) \
|
|
{ retVal = rrr; goto save_state_and_return; };
|
|
|
|
#define GET_BITS(lll,vvv,nnn) \
|
|
case lll: s->state = lll; \
|
|
while (True) { \
|
|
if (s->bsLive >= nnn) { \
|
|
UInt32 v; \
|
|
v = (s->bsBuff >> \
|
|
(s->bsLive-nnn)) & ((1 << nnn)-1); \
|
|
s->bsLive -= nnn; \
|
|
vvv = v; \
|
|
break; \
|
|
} \
|
|
if (s->strm->avail_in == 0) RETURN(BZ_OK); \
|
|
s->bsBuff \
|
|
= (s->bsBuff << 8) | \
|
|
((UInt32) \
|
|
(*((UChar*)(s->strm->next_in)))); \
|
|
s->bsLive += 8; \
|
|
s->strm->next_in++; \
|
|
s->strm->avail_in--; \
|
|
s->strm->total_in_lo32++; \
|
|
if (s->strm->total_in_lo32 == 0) \
|
|
s->strm->total_in_hi32++; \
|
|
}
|
|
|
|
#define GET_UCHAR(lll,uuu) \
|
|
GET_BITS(lll,uuu,8)
|
|
|
|
#define GET_BIT(lll,uuu) \
|
|
GET_BITS(lll,uuu,1)
|
|
|
|
/*---------------------------------------------------*/
|
|
#define GET_MTF_VAL(label1,label2,lval) \
|
|
{ \
|
|
if (groupPos == 0) { \
|
|
groupNo++; \
|
|
if (groupNo >= nSelectors) \
|
|
RETURN(BZ_DATA_ERROR); \
|
|
groupPos = BZ_G_SIZE; \
|
|
gSel = s->selector[groupNo]; \
|
|
gMinlen = s->minLens[gSel]; \
|
|
gLimit = &(s->limit[gSel][0]); \
|
|
gPerm = &(s->perm[gSel][0]); \
|
|
gBase = &(s->base[gSel][0]); \
|
|
} \
|
|
groupPos--; \
|
|
zn = gMinlen; \
|
|
GET_BITS(label1, zvec, zn); \
|
|
while (1) { \
|
|
if (zn > 20 /* the longest code */) \
|
|
RETURN(BZ_DATA_ERROR); \
|
|
if (zvec <= gLimit[zn]) break; \
|
|
zn++; \
|
|
GET_BIT(label2, zj); \
|
|
zvec = (zvec << 1) | zj; \
|
|
}; \
|
|
if (zvec - gBase[zn] < 0 \
|
|
|| zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \
|
|
RETURN(BZ_DATA_ERROR); \
|
|
lval = gPerm[zvec - gBase[zn]]; \
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------*/
|
|
Int32 BZ2_decompress ( DState* s )
|
|
{
|
|
UChar uc;
|
|
Int32 retVal;
|
|
Int32 minLen, maxLen;
|
|
bz_stream* strm = s->strm;
|
|
|
|
/* stuff that needs to be saved/restored */
|
|
Int32 i;
|
|
Int32 j;
|
|
Int32 t;
|
|
Int32 alphaSize;
|
|
Int32 nGroups;
|
|
Int32 nSelectors;
|
|
Int32 EOB;
|
|
Int32 groupNo;
|
|
Int32 groupPos;
|
|
Int32 nextSym;
|
|
Int32 nblockMAX;
|
|
Int32 nblock;
|
|
Int32 es;
|
|
Int32 N;
|
|
Int32 curr;
|
|
Int32 zt;
|
|
Int32 zn;
|
|
Int32 zvec;
|
|
Int32 zj;
|
|
Int32 gSel;
|
|
Int32 gMinlen;
|
|
Int32* gLimit;
|
|
Int32* gBase;
|
|
Int32* gPerm;
|
|
|
|
if (s->state == BZ_X_MAGIC_1) {
|
|
/*initialise the save area*/
|
|
s->save_i = 0;
|
|
s->save_j = 0;
|
|
s->save_t = 0;
|
|
s->save_alphaSize = 0;
|
|
s->save_nGroups = 0;
|
|
s->save_nSelectors = 0;
|
|
s->save_EOB = 0;
|
|
s->save_groupNo = 0;
|
|
s->save_groupPos = 0;
|
|
s->save_nextSym = 0;
|
|
s->save_nblockMAX = 0;
|
|
s->save_nblock = 0;
|
|
s->save_es = 0;
|
|
s->save_N = 0;
|
|
s->save_curr = 0;
|
|
s->save_zt = 0;
|
|
s->save_zn = 0;
|
|
s->save_zvec = 0;
|
|
s->save_zj = 0;
|
|
s->save_gSel = 0;
|
|
s->save_gMinlen = 0;
|
|
s->save_gLimit = NULL;
|
|
s->save_gBase = NULL;
|
|
s->save_gPerm = NULL;
|
|
}
|
|
|
|
/*restore from the save area*/
|
|
i = s->save_i;
|
|
j = s->save_j;
|
|
t = s->save_t;
|
|
alphaSize = s->save_alphaSize;
|
|
nGroups = s->save_nGroups;
|
|
nSelectors = s->save_nSelectors;
|
|
EOB = s->save_EOB;
|
|
groupNo = s->save_groupNo;
|
|
groupPos = s->save_groupPos;
|
|
nextSym = s->save_nextSym;
|
|
nblockMAX = s->save_nblockMAX;
|
|
nblock = s->save_nblock;
|
|
es = s->save_es;
|
|
N = s->save_N;
|
|
curr = s->save_curr;
|
|
zt = s->save_zt;
|
|
zn = s->save_zn;
|
|
zvec = s->save_zvec;
|
|
zj = s->save_zj;
|
|
gSel = s->save_gSel;
|
|
gMinlen = s->save_gMinlen;
|
|
gLimit = s->save_gLimit;
|
|
gBase = s->save_gBase;
|
|
gPerm = s->save_gPerm;
|
|
|
|
retVal = BZ_OK;
|
|
|
|
switch (s->state) {
|
|
|
|
GET_UCHAR(BZ_X_MAGIC_1, uc);
|
|
if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC);
|
|
|
|
GET_UCHAR(BZ_X_MAGIC_2, uc);
|
|
if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC);
|
|
|
|
GET_UCHAR(BZ_X_MAGIC_3, uc)
|
|
if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC);
|
|
|
|
GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
|
|
if (s->blockSize100k < (BZ_HDR_0 + 1) ||
|
|
s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC);
|
|
s->blockSize100k -= BZ_HDR_0;
|
|
|
|
if (s->smallDecompress) {
|
|
s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
|
|
s->ll4 = BZALLOC(
|
|
((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar)
|
|
);
|
|
if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
|
|
} else {
|
|
s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
|
|
if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
|
|
}
|
|
|
|
GET_UCHAR(BZ_X_BLKHDR_1, uc);
|
|
|
|
if (uc == 0x17) goto endhdr_2;
|
|
if (uc != 0x31) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_BLKHDR_2, uc);
|
|
if (uc != 0x41) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_BLKHDR_3, uc);
|
|
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_BLKHDR_4, uc);
|
|
if (uc != 0x26) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_BLKHDR_5, uc);
|
|
if (uc != 0x53) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_BLKHDR_6, uc);
|
|
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
|
|
|
|
s->currBlockNo++;
|
|
if (s->verbosity >= 2)
|
|
VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo );
|
|
|
|
s->storedBlockCRC = 0;
|
|
GET_UCHAR(BZ_X_BCRC_1, uc);
|
|
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_BCRC_2, uc);
|
|
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_BCRC_3, uc);
|
|
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_BCRC_4, uc);
|
|
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
|
|
|
|
GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);
|
|
|
|
s->origPtr = 0;
|
|
GET_UCHAR(BZ_X_ORIGPTR_1, uc);
|
|
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
|
|
GET_UCHAR(BZ_X_ORIGPTR_2, uc);
|
|
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
|
|
GET_UCHAR(BZ_X_ORIGPTR_3, uc);
|
|
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
|
|
|
|
if (s->origPtr < 0)
|
|
RETURN(BZ_DATA_ERROR);
|
|
if (s->origPtr > 10 + 100000*s->blockSize100k)
|
|
RETURN(BZ_DATA_ERROR);
|
|
|
|
/*--- Receive the mapping table ---*/
|
|
for (i = 0; i < 16; i++) {
|
|
GET_BIT(BZ_X_MAPPING_1, uc);
|
|
if (uc == 1)
|
|
s->inUse16[i] = True; else
|
|
s->inUse16[i] = False;
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) s->inUse[i] = False;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (s->inUse16[i])
|
|
for (j = 0; j < 16; j++) {
|
|
GET_BIT(BZ_X_MAPPING_2, uc);
|
|
if (uc == 1) s->inUse[i * 16 + j] = True;
|
|
}
|
|
makeMaps_d ( s );
|
|
if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
|
|
alphaSize = s->nInUse+2;
|
|
|
|
/*--- Now the selectors ---*/
|
|
GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
|
|
if (nGroups < 2 || nGroups > BZ_N_GROUPS) RETURN(BZ_DATA_ERROR);
|
|
GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
|
|
if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
|
|
for (i = 0; i < nSelectors; i++) {
|
|
j = 0;
|
|
while (True) {
|
|
GET_BIT(BZ_X_SELECTOR_3, uc);
|
|
if (uc == 0) break;
|
|
j++;
|
|
if (j >= nGroups) RETURN(BZ_DATA_ERROR);
|
|
}
|
|
/* Having more than BZ_MAX_SELECTORS doesn't make much sense
|
|
since they will never be used, but some implementations might
|
|
"round up" the number of selectors, so just ignore those. */
|
|
if (i < BZ_MAX_SELECTORS)
|
|
s->selectorMtf[i] = j;
|
|
}
|
|
if (nSelectors > BZ_MAX_SELECTORS)
|
|
nSelectors = BZ_MAX_SELECTORS;
|
|
|
|
/*--- Undo the MTF values for the selectors. ---*/
|
|
{
|
|
UChar pos[BZ_N_GROUPS], tmp, v;
|
|
for (v = 0; v < nGroups; v++) pos[v] = v;
|
|
|
|
for (i = 0; i < nSelectors; i++) {
|
|
v = s->selectorMtf[i];
|
|
tmp = pos[v];
|
|
while (v > 0) { pos[v] = pos[v-1]; v--; }
|
|
pos[0] = tmp;
|
|
s->selector[i] = tmp;
|
|
}
|
|
}
|
|
|
|
/*--- Now the coding tables ---*/
|
|
for (t = 0; t < nGroups; t++) {
|
|
GET_BITS(BZ_X_CODING_1, curr, 5);
|
|
for (i = 0; i < alphaSize; i++) {
|
|
while (True) {
|
|
if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
|
|
GET_BIT(BZ_X_CODING_2, uc);
|
|
if (uc == 0) break;
|
|
GET_BIT(BZ_X_CODING_3, uc);
|
|
if (uc == 0) curr++; else curr--;
|
|
}
|
|
s->len[t][i] = curr;
|
|
}
|
|
}
|
|
|
|
/*--- Create the Huffman decoding tables ---*/
|
|
for (t = 0; t < nGroups; t++) {
|
|
minLen = 32;
|
|
maxLen = 0;
|
|
for (i = 0; i < alphaSize; i++) {
|
|
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
|
|
if (s->len[t][i] < minLen) minLen = s->len[t][i];
|
|
}
|
|
BZ2_hbCreateDecodeTables (
|
|
&(s->limit[t][0]),
|
|
&(s->base[t][0]),
|
|
&(s->perm[t][0]),
|
|
&(s->len[t][0]),
|
|
minLen, maxLen, alphaSize
|
|
);
|
|
s->minLens[t] = minLen;
|
|
}
|
|
|
|
/*--- Now the MTF values ---*/
|
|
|
|
EOB = s->nInUse+1;
|
|
nblockMAX = 100000 * s->blockSize100k;
|
|
groupNo = -1;
|
|
groupPos = 0;
|
|
|
|
for (i = 0; i <= 255; i++) s->unzftab[i] = 0;
|
|
|
|
/*-- MTF init --*/
|
|
{
|
|
Int32 ii, jj, kk;
|
|
kk = MTFA_SIZE-1;
|
|
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
|
|
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
|
|
s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
|
|
kk--;
|
|
}
|
|
s->mtfbase[ii] = kk + 1;
|
|
}
|
|
}
|
|
/*-- end MTF init --*/
|
|
|
|
nblock = 0;
|
|
GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);
|
|
|
|
while (True) {
|
|
|
|
if (nextSym == EOB) break;
|
|
|
|
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
|
|
|
|
es = -1;
|
|
N = 1;
|
|
do {
|
|
/* Check that N doesn't get too big, so that es doesn't
|
|
go negative. The maximum value that can be
|
|
RUNA/RUNB encoded is equal to the block size (post
|
|
the initial RLE), viz, 900k, so bounding N at 2
|
|
million should guard against overflow without
|
|
rejecting any legitimate inputs. */
|
|
if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR);
|
|
if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
|
|
if (nextSym == BZ_RUNB) es = es + (1+1) * N;
|
|
N = N * 2;
|
|
GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
|
|
}
|
|
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
|
|
|
|
es++;
|
|
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
|
|
s->unzftab[uc] += es;
|
|
|
|
if (s->smallDecompress)
|
|
while (es > 0) {
|
|
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
|
|
s->ll16[nblock] = (UInt16)uc;
|
|
nblock++;
|
|
es--;
|
|
}
|
|
else
|
|
while (es > 0) {
|
|
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
|
|
s->tt[nblock] = (UInt32)uc;
|
|
nblock++;
|
|
es--;
|
|
};
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
|
|
|
|
/*-- uc = MTF ( nextSym-1 ) --*/
|
|
{
|
|
Int32 ii, jj, kk, pp, lno, off;
|
|
UInt32 nn;
|
|
nn = (UInt32)(nextSym - 1);
|
|
|
|
if (nn < MTFL_SIZE) {
|
|
/* avoid general-case expense */
|
|
pp = s->mtfbase[0];
|
|
uc = s->mtfa[pp+nn];
|
|
while (nn > 3) {
|
|
Int32 z = pp+nn;
|
|
s->mtfa[(z) ] = s->mtfa[(z)-1];
|
|
s->mtfa[(z)-1] = s->mtfa[(z)-2];
|
|
s->mtfa[(z)-2] = s->mtfa[(z)-3];
|
|
s->mtfa[(z)-3] = s->mtfa[(z)-4];
|
|
nn -= 4;
|
|
}
|
|
while (nn > 0) {
|
|
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
|
|
};
|
|
s->mtfa[pp] = uc;
|
|
} else {
|
|
/* general case */
|
|
lno = nn / MTFL_SIZE;
|
|
off = nn % MTFL_SIZE;
|
|
pp = s->mtfbase[lno] + off;
|
|
uc = s->mtfa[pp];
|
|
while (pp > s->mtfbase[lno]) {
|
|
s->mtfa[pp] = s->mtfa[pp-1]; pp--;
|
|
};
|
|
s->mtfbase[lno]++;
|
|
while (lno > 0) {
|
|
s->mtfbase[lno]--;
|
|
s->mtfa[s->mtfbase[lno]]
|
|
= s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
|
|
lno--;
|
|
}
|
|
s->mtfbase[0]--;
|
|
s->mtfa[s->mtfbase[0]] = uc;
|
|
if (s->mtfbase[0] == 0) {
|
|
kk = MTFA_SIZE-1;
|
|
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
|
|
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
|
|
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
|
|
kk--;
|
|
}
|
|
s->mtfbase[ii] = kk + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*-- end uc = MTF ( nextSym-1 ) --*/
|
|
|
|
s->unzftab[s->seqToUnseq[uc]]++;
|
|
if (s->smallDecompress)
|
|
s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
|
|
s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]);
|
|
nblock++;
|
|
|
|
GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Now we know what nblock is, we can do a better sanity
|
|
check on s->origPtr.
|
|
*/
|
|
if (s->origPtr < 0 || s->origPtr >= nblock)
|
|
RETURN(BZ_DATA_ERROR);
|
|
|
|
/*-- Set up cftab to facilitate generation of T^(-1) --*/
|
|
/* Check: unzftab entries in range. */
|
|
for (i = 0; i <= 255; i++) {
|
|
if (s->unzftab[i] < 0 || s->unzftab[i] > nblock)
|
|
RETURN(BZ_DATA_ERROR);
|
|
}
|
|
/* Actually generate cftab. */
|
|
s->cftab[0] = 0;
|
|
for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
|
|
for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];
|
|
/* Check: cftab entries in range. */
|
|
for (i = 0; i <= 256; i++) {
|
|
if (s->cftab[i] < 0 || s->cftab[i] > nblock) {
|
|
/* s->cftab[i] can legitimately be == nblock */
|
|
RETURN(BZ_DATA_ERROR);
|
|
}
|
|
}
|
|
/* Check: cftab entries non-descending. */
|
|
for (i = 1; i <= 256; i++) {
|
|
if (s->cftab[i-1] > s->cftab[i]) {
|
|
RETURN(BZ_DATA_ERROR);
|
|
}
|
|
}
|
|
|
|
s->state_out_len = 0;
|
|
s->state_out_ch = 0;
|
|
BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
|
|
s->state = BZ_X_OUTPUT;
|
|
if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );
|
|
|
|
if (s->smallDecompress) {
|
|
|
|
/*-- Make a copy of cftab, used in generation of T --*/
|
|
for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];
|
|
|
|
/*-- compute the T vector --*/
|
|
for (i = 0; i < nblock; i++) {
|
|
uc = (UChar)(s->ll16[i]);
|
|
SET_LL(i, s->cftabCopy[uc]);
|
|
s->cftabCopy[uc]++;
|
|
}
|
|
|
|
/*-- Compute T^(-1) by pointer reversal on T --*/
|
|
i = s->origPtr;
|
|
j = GET_LL(i);
|
|
do {
|
|
Int32 tmp = GET_LL(j);
|
|
SET_LL(j, i);
|
|
i = j;
|
|
j = tmp;
|
|
}
|
|
while (i != s->origPtr);
|
|
|
|
s->tPos = s->origPtr;
|
|
s->nblock_used = 0;
|
|
if (s->blockRandomised) {
|
|
BZ_RAND_INIT_MASK;
|
|
BZ_GET_SMALL(s->k0); s->nblock_used++;
|
|
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
|
|
} else {
|
|
BZ_GET_SMALL(s->k0); s->nblock_used++;
|
|
}
|
|
|
|
} else {
|
|
|
|
/*-- compute the T^(-1) vector --*/
|
|
for (i = 0; i < nblock; i++) {
|
|
uc = (UChar)(s->tt[i] & 0xff);
|
|
s->tt[s->cftab[uc]] |= (i << 8);
|
|
s->cftab[uc]++;
|
|
}
|
|
|
|
s->tPos = s->tt[s->origPtr] >> 8;
|
|
s->nblock_used = 0;
|
|
if (s->blockRandomised) {
|
|
BZ_RAND_INIT_MASK;
|
|
BZ_GET_FAST(s->k0); s->nblock_used++;
|
|
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
|
|
} else {
|
|
BZ_GET_FAST(s->k0); s->nblock_used++;
|
|
}
|
|
|
|
}
|
|
|
|
RETURN(BZ_OK);
|
|
|
|
|
|
|
|
endhdr_2:
|
|
|
|
GET_UCHAR(BZ_X_ENDHDR_2, uc);
|
|
if (uc != 0x72) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_ENDHDR_3, uc);
|
|
if (uc != 0x45) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_ENDHDR_4, uc);
|
|
if (uc != 0x38) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_ENDHDR_5, uc);
|
|
if (uc != 0x50) RETURN(BZ_DATA_ERROR);
|
|
GET_UCHAR(BZ_X_ENDHDR_6, uc);
|
|
if (uc != 0x90) RETURN(BZ_DATA_ERROR);
|
|
|
|
s->storedCombinedCRC = 0;
|
|
GET_UCHAR(BZ_X_CCRC_1, uc);
|
|
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_CCRC_2, uc);
|
|
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_CCRC_3, uc);
|
|
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
|
|
GET_UCHAR(BZ_X_CCRC_4, uc);
|
|
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
|
|
|
|
s->state = BZ_X_IDLE;
|
|
RETURN(BZ_STREAM_END);
|
|
|
|
default: AssertH ( False, 4001 );
|
|
}
|
|
|
|
AssertH ( False, 4002 );
|
|
|
|
save_state_and_return:
|
|
|
|
s->save_i = i;
|
|
s->save_j = j;
|
|
s->save_t = t;
|
|
s->save_alphaSize = alphaSize;
|
|
s->save_nGroups = nGroups;
|
|
s->save_nSelectors = nSelectors;
|
|
s->save_EOB = EOB;
|
|
s->save_groupNo = groupNo;
|
|
s->save_groupPos = groupPos;
|
|
s->save_nextSym = nextSym;
|
|
s->save_nblockMAX = nblockMAX;
|
|
s->save_nblock = nblock;
|
|
s->save_es = es;
|
|
s->save_N = N;
|
|
s->save_curr = curr;
|
|
s->save_zt = zt;
|
|
s->save_zn = zn;
|
|
s->save_zvec = zvec;
|
|
s->save_zj = zj;
|
|
s->save_gSel = gSel;
|
|
s->save_gMinlen = gMinlen;
|
|
s->save_gLimit = gLimit;
|
|
s->save_gBase = gBase;
|
|
s->save_gPerm = gPerm;
|
|
|
|
return retVal;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- end decompress.c ---*/
|
|
/*-------------------------------------------------------------*/
|